

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

16510.7763/IJFCC.2015.V4.377DOI:

Abstract—In this paper, we propose an efficient way of

finding the exact distance in sequence comparison by using

Huffman coding method for alphabets with uniform symbol

probabilities. The approach is proposed as a refinement for

word pair comparison in D2 statistics, though it can readily be

generalised. Two given sequences with identical lengths are

encoded to Huffman binary codes by which we are able to

calculate Hamming Distance using binary operations efficiently.

This method is applied on D2 statistics to compare k-tuples

faster than its original version. The evaluation on emprical

sequences showed that the method is faster than original D2;

especially, when re-using the encoded sequences which resulted

in better performance.

Index Terms—Performance, experimentation, string and

sequence processing, huffman encoding, hamming distance, D2

statistics, string comparison, binary codes, bitwise operation.

I. INTRODUCTION

Finding similarities and differences of bio-sequences such

as DNA and amino acids is a fundamental problem in

biological science. Vinga and Almeida argue that “Sequence

analysis is a discipline that grew enormously in recent years in

response to the overwhelming burst in data generated by

molecular biology initiatives” [1]. As Bioinformatics is an

essential ingredient for the success of human genome projects,

powerful computer systems and sophisticated algorithms are

required [2]. Sequence comparison has played a crucial role

in molecular bio-sequence analysis [3] and is perhaps the

most well-known and intensively studied problems in modern

molecular biology [4]. Numerous sequence comparison

algorithms have been developed to address the overwhelming

amount of molecular data generated by sequencing of whole

genomes and molecular libraries [1], [5].

Alignment-free sequence comparison regimes are

frequenly used to compare genomic sequences and detect

regularity regions [6]. The earliest and the most widely

alignment-free approach is D2 statistics [7] which mesasures

the number of words shared between two biological

sequences called k-word (also known as k-tuple or k-grams)

[8], [9].

Among the more important aspects of sequence

comparison is the determination of sequences which „almost

match‟ the query, those which lie within some neighbourhood

of the perfect match. This paper aims to propose a heuristic

software solution for rapid determination of approximate

matches between word pairs in D2 statistics. By encoding the

base symbols through fixed codes according to the

application, we allow the comparison to be computed via

Manuscript received January 26, 2015; revised March 24, 2015.

The author is with the Faculty of Science and Engineering, Queensland

University of Technology, Australia (e-mail: H.Kamelrahimi@qut.edu.au).

bitwise operations. The library sequence to be search against

and the query is encoded only on one run and the rest of the

computation approximates similar matches based on the

encoded sequence as many times as needed with variant

queries.

This paper is organized as follow paragraphs. In the next

section, we introduce the main ideas in Section II before

introducing the method formally in Section III and Section IV.

Results are presented in Section V, and conclusions in Section

VI.

II. HUFFMAN CODING

The proposed approach relies on the well-knownentropy

encoding method Huffman coding which is a common

technique for data compression [10]. Various Huffman

applications have been proposed and the method is still

widely used. Mcintyre and Pechuraapplied Huffman to test

data over various source programs in four different languages

where the data was read from files [11]. Nourani and

Tehranipour used Huffman technique to reduce test data

volume, power dissipation and pattern delivery time in the

field of Integrated Circuits [12]. Also, Tang utilised Huffman

encoding methods for a proposed method of multimedia

encryption for vast amounts of MPEG video data [13].

Since efficiency and effectiveness are the key aims in

bio-sequence comparison algorithms, the aim of the proposed

method is to utilize Huffman Binary Encoding as a

mechanism of rapidly identifying exact and approximate

matches of two bio-sequences and comparing pairs of

bio-sequences much quicker than previous approaches.

Encoded in Huffman binary codes, a bio-sequence could be

compared rapidly regardless of the sequence‟s actual symbols

because the core of the proposed algorithm, being Huffman

Binary code, could be operated at machine bit level.

Therefore, this research topic is seeking an accurate, fast, and

efficient way of bio-sequence comparison which has been

crucial in bioinformatics science for many years.

III. HUFFMAN BINARY ENCODING

According to Huffman, the symbol or sequence symbol

associated with a given message is called the message code

[10]. In Bioinformatics, sequence k-mers are considered the

message code which are the members of a set of alphabetic

characters

Σ = 𝐴, 𝐶, 𝐺, 𝑇

Let 𝑃(𝑖) be the probability of i-th message, then

 𝑃(𝑖)𝑁
𝑖=1 = 1 (1)

Efficient Sequence Comparison Using Binary Codes

Hossein Kamel Rahimi

𝑁 = Σ

The basic type of the Huffman method is the „static type‟,

where the frequencies of message codes are constant; while in

„dynamic type‟, the frequencies change. Knuth [14] describes

that “a Huffman tree with nonnegative integer weights can be

represented in such a way that any weight can be increased or

decreased”. In this preliminary study, it is assumed that

occurrence probabilities of the k-mers throughout the

sequence are identical in such a way that satisfies equation (1)

as equation (2):

𝑃 𝐴 = 𝑃 𝐶 = 𝑃 𝐺 = 𝑃 𝑇 =
1

𝑁
,

an assumption which is only mildly in error for most sequence

data, and one that may be modified for high GC content

sequences.

Having two bio-sequences S1 and S2 over the alphabet set

 = 𝐴, 𝐶, 𝐺, 𝑇 , we assign static binary codes 00,01,10 and

11 to A,C,G and T respectively:

S1 =a1a2a3… aw

S2 =b1b2b3… bw

𝑎𝑖 ∈ and 𝑏𝑖 ∈

1 ≤ 𝑖 ≤ 𝑤

Message codes are

A=00, C=01, G=10, T=11

At this point, we are able to compute the Huffman code for

a given sequence by substituting any k-mer to its

correspondent message code. For instance, given sequence S1

=TCATG, the Huffman Binary code is H1=1101001110.

A. D2 Statistics

Definition: The D2 statistic is defined as the number of

words of pre-specified length k between two given sequences

A=(A1, …, Am) and B=(B+1, …, Bn) where Ai and Bj

belonging to the alphabet set ∑ of size =N and also let fa

be the occurrence probability of letter „a‟, though in this work

uniform probability for each letter is considered as fa=
1

𝑁
 .

Also, it is assumed that each sequence is generated

independently and identically (i.i.d) of the letters in alphabet

∑ [8]. Let𝑌(𝑖, 𝑗) be the k-word match indicator variable

indicating if the words starting at position i in A and word at

position j in B match [5], [16].

𝐷2(𝐴, 𝐵) = 𝑌

(𝑖 ,𝑗)∈𝐼

(𝑖, 𝑗)

where index set 𝐼 = 𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑛 − 𝑘 + 1 , 1 ≤ 𝑗 ≤ 𝑚 −

𝑘+1. Similarly, the approximate word match statistic

𝐷2 𝑡 = 𝑌

 𝑖 ,𝑗 ∈𝐼

(𝑡)(𝑖. 𝑗)

where Y(i, j)
(t)0 < 𝑡 < 𝑘 is the k-word match indicator variable

allowing up to t mismatches.

IV. METHOD

The fundamental aspect of the method is the encoding

function in which each base is substituted with its

corresponding message code. Bradford [16] used the idea of

fixed binary codes to measure Levenshtien [17] edit distance

between a set of encoded strings with the respect to a given

super-sequence, though the method is only reliable to the

existence of the super-sequence. Although Bradford‟s work

does not address the performance, in particular, for empirical

sequences, its concept is promising to be studied for wider

string comparison projects. In this paper, the idea of encoding

strings to binary codes is developed to compare sequence

pairs in respect to the facts that

1) Bitwise operations are highly efficient by which total

comparison between sequence pairs is performed fast and (see

section V-A)

2) Since most of the computation cost is paid as sequences

are encoded, and needs to be done only once, the comparison

process could be repeated comparatively rapidly with little

computation [16]. (see Section V-B)

Given two sequences with identical length N, we aim to

find the Hamming Distance [18] Hd between two Huffman

Binary Codes associated to the sequences.

s1 =a1a2a3… aN

s2=b1b2b3… bN

Let h1 and h2, the Huffman binary bit vectorsof s1 and s2 and

Hd (equation 3) is the Hamming Distance bit vector calculated

from Exclusive OR operation of h1 and h2 and represents

those positions where there are mismatches comparing h1 and

h2,.

Despite true bits in Hd could be pronounced as distances

between h1 and h2 bit vectors, it does not demonstrate

Hamming Distance between s1 and s1, as each k-mer has been

substituted with 2 bits and some substitutions involve more

bits than others. In order to deal with this issue, we introduced

normalized D as Dz (equation 4). We apply an OR operation

on each adjacent bit-pair representing one k-mer

𝐷𝑧 𝑖 = 𝑂𝑅 𝐷 𝑖 , 𝐷 𝑖 + 1 𝑤ℎ𝑒𝑟𝑒 𝑖 = 2𝑘 (4)

For computing Dz in an efficient way, bitwise operation is

again required. Let Ds be the shifted version of D by one to the

left and let (,)Z OR D DS . Due to the differences between

𝐷 and 𝐷𝑠, then it could be claimed that

()Z i = 𝑂𝑅 𝐷 𝑖 , 𝐷 𝑖 + 1 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑁 − 1

To satisfy equation (4), bits at indexes 2𝑘 + 1 𝑤ℎ𝑒𝑟𝑒 0 ≤

𝑘 ≤ 𝑁 − 1 positions in Z should be eliminated which here

we call them noise bits; let Ί a finite sequence of “10”s with

the length equal to Z .

ΊΊ = 1010101010 …

where

 Ί = Ẕ

and

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

166

(2)

Hd = XOR(h1, h2) (3)

Dz = 𝐴𝑁𝐷(Ẕ , Ί)

k←1; l←1 N←Length of s;

While (k≤N)

D(l) and D(l+1)←binary Code of s(k);

k←k+1; l←l+2;

EndWhile();

EndEncode;

hi←HuffmanEncoder(si);

hj ← HuffmanEncoder(sj);

D ← XOR(hi,hj);

i←1;j←1;N← |D|;

While(i ≤N)

Dz(j)←OR(D(i),D(i+1))

i←i+2; j ←j+1;

EndWhile

k←0;

While(k ≤N)

Ί (k)←”1”;

Ί (k+1)←”0”;

EndWhile

Dz←AND(Dz, Ί);

Return Dz.cardinality();

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

167

By counting true bits in Dz, Hamming distance Hd between

S1 and S2 is revealed:

𝐻𝑑(𝑠1, 𝑠2) = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝐷𝑧)

In equation (4), cardinality Dz is the number of true bits

found in Dz. For example, considering S1=ACGTC and S2=

GCATG, we then have

ℎ1 = 0001101101

ℎ2 = 1001001110

Then

𝐷 = 𝑋𝑂𝑅(ℎ1, ℎ2) = 1000100011.

and D is shifted to the left by one as

𝐷𝑠 = 0001000110

Ẕ = 𝑂𝑅(𝐷, 𝐷𝑠) = 100110011

Since the length of Z is 10, thus is defined as a finite

sequence of “10”s with the identical length of Z .

Ί = 1010101010

To eliminate noise bits at odd index position

Dz = AND(100110011, 1010101010) = 1000100010

Finally Hamming distance between two sequences s1 and s2

1 2(,) ()Hd s s cardinality Dz

By replacing their corresponding values

(,) (1000100010) 3Hd ACGT GCATG cardinality

Hamming Distance of two sequences is 3 which was

computed using bitwise operations.

A. Algorithm

Definition: Given a genome g={s1, s2, …, sn} on an

alphabet { , , , }A C G T , 4 , si is a sub-sequence

of g with the length |N| where 1≤ i ≤n and

1
() () () ()

4
P A P C P G P T and let bit vector h as

Huffman code where each alphabet in ∑ is encoded to binary

codes as A← 00, C← 01, G←10 and T←11. Also, let D and

Dz be bit vectors – the „Distance Vector‟ and „Normalized

Distance Vector‟ respectively.

HuffmanEncoder(Sequence s)

V. EXPERIMENTS

Experimental evaluations were performed using custom

implementations to evaluate the speed of the proposed

approach. Given the library sequence to be searched against

and the query to be searched for, let λ(s) and λ(q) be the

elapsed CPU time for encoding s and q to fixed binary codes

time to search the encoded query q over the encoded library

sequence s, then denote total execution time

() () (,)s q s q (5)

In this section, k-tuple comparison is performed using

string comparison and the proposed approach to compute D2

total execution time approach (section A). Then CPU time

will be recorded for the proposed comparison approach over

encoded library sequence and the result is evaluated with

section B. Finally, the effect of various k over CPU time and

accuracy will be demonstrated (section C).

A. D2 String Comparison vs. Proposed Approach

B. Efficiency over Encoded Library Sequences

respectively. Furthermore, let γ(s, q) be the required CPU

In this section, the D2 value between the encoded library

sequence s with the length 50 50,000N and query with the

length 300 and word size k = 3 are computed to examine the

efficieny of the proposed approach by capturing total

execution time ∆. One common approach to find the

dissimilarity between k-tuples in D2 statistics is to take the

minimum of all window distances for each pair

((), ())W W L W Q , where ()W L and ()W Q are the k-tuples

in library sequence and query sequence respectively [19]. In

Fig. 1, we used the proposed binary method and string

compariosn to compare k-tuples and recored total execution

time for each sequence lengths in regard to equation (5).

Fig. 1. Total execution time ∆ for D2 computation over proposed binary

approach and string comparison.

Several query searches could be performed over a given

library sequence which has been already encoded in section A

to address reusability aspect of this approach rather than

running the encoding procedure several times over the same

library sequence. Hence, in equation (5), let () 0s and

denote new total execution time

* () (,)q s q (6)

Equation (6) demonstrates that encoding time for queries

()q should be included as queries could be different. In

this experiment, different queries with identical length 50

have been selected in order to have the same impact on query

encoding time ()q in (6) with respect to the total time

analysis with uniform data characteristics. In regard to Table I,

the figures show that this approach could be even more

efficient while re-using the encoded library sequence over

various query searches.

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

168

TABLE I: THE PROPOSED APPROACH TOTAL EXECUTION TIME (MS) BEFORE ENCODING ∆ AND AFTER ENCODING ∆*

N=50 N=100 N=20

0

N=50

0

N=1,00

0

N=2,00

0

N=5,00

0

N=10,00

0

N=20,00

0

N=50,000

∆ 87 85 88 93 95 92 97 117 142 282

∆* 0.023 0.024 0.323 1.560 2.160 2.663 9.471 26.239 53.651 193.293

Comparing Fig. 1 and Table I, the performance of the

approach is effected whether encoder is included (Fig. 1) or

excluded (Table II) despite the fact that both scenarios are

faster than the regular approach. Table II also demonstrated

that reusing the encoded library sequence could decrease the

computation cost dramatically.

C. K-Selection

TABLE II: N=1000 AND Q=300

K=3 K=6 K=9 K=12 K=15 K=18 K=21

∆* 70 88 97 89 94 94 111

D2 20 44 68 92 110 125 140

INDEX 2804 2804 2804 2804 2804 2804 2804

examined respectively (Table II, III and IV). For each

experiment, total execution time ∆
*
, D2 value and index

position where the most similar sequence segment with the

minimum dissimilarity have been recorded. In accordance

with minimum of all window distances discussed in section A

the smaller D2 value yields a more similar sequence segment,

though in regard to Table II, III and IV, the results show that

selecting various k does not have a huge impact on the

performance. Also in Table IV, an exact match has been

found as D2=0. Furthermore, for all k‟s, it was found that the

approach could recognize the identical index positions.

TABLE IV: N=100,000 AND Q=3000

K=3 K=6 K=9 K=12 K=15 K=18 K=21

∆* 230 295 212 232 223 298 201

D2 0 0 0 0 0 0 0

INDEX 387994 387994 387994 387994 387994 387994 387994

VI. CONCLUSIONS

In this paper, an efficient method for sequence pair

comparison using Huffman coding was proposed. The

genome sequences were viewed as text documents and

applying fixed binary codes to the base symbols allowed the

comparison to be performed with the help of bitwise

operations, which enhances the performance. This simple

approach appears to perform well over a wide range of

sequences and conditions and offers superior performance to

commonly used methods. It was also shown that the exact

distance degree of sequence pairs could be achieved using this

approach. The experiments showed that applying this

approach could speed up original D2 statistics. In addition,

re-using encoded sequences would decrease execution time

dramatically so that the total computation focuses on the

comparison of binary codes rather than time-consuming

encoding procedure.

Several attempts might be done to improve the core of the

proposed approach in future. Firstly, storing and re-using the

encoded sequences is the major step which helps to decrease

total execution time; instead of parsing the actual sequences.

In this section, the effect of applying various k‟s over total

execution time ∆
*

for sequence length N=1000,10,000 and

100,000 and query length Q=300, 1000 and 3,000 is

TABLE III: N=10,000 AND Q=1000

K=3 K=6 K=9 K=12 K=15 K=18 K=21

∆* 107 121 119 132 118 197 223

D2 19 46 73 98 119 140 161

INDEX 38808 38808 38808 38808 38808 38808 38808

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

169

 Hossein Kamel Rahimi finished his bachelor degree

in software engineering in Azad University of Iran in

September 2006 and he graduated with the master

degree of IT with the major of software architecture at

Queensland University of Technology in Brisbane,

Australia in December 2013. During his studies, he

was awarded “Certificate of Dean’s List for Excellent

Academic Performance” in July 2013 and December

Since the encoded sequences are in binary format, less space

is required for storage, yet an efficient methodology for

storing and retrieving the binary codes is needed. Moreover,

this approach only works for alphabet sets with uniform

symbol probabilities. Since many bio-sequence comparisons

are performed with different symbol probabilities, the

encoding procedure is required to be improved for further

applications.

ACKNOWLEDGMENTS

The authors would like to thank Dr. James M. Hogan for

the comments and providing sample data.

REFERENCES

[1] S. Vinga and J. Almeida, “Alignment-free sequence compariosn-A

review,” Bioinformatics, vol. 19, no. 4, pp. 513-523, 2003.

[2] R. Fuchs, “From sequence to biology: The impact on bioinformatics,”

Bioinformatics, vol. 18, no. 4, pp. 505-506, 2002.

[3] K. Sang, J. Ren, G. Reinert, M. Deng, M. S. Waterman, and F. Sun,

“New development of alignment-free sequence comparison: Measures,

statistics and next generation sequencing,” Briefing in Bioinformatics

Advance Access, pp. 1-11, 2013.

[4] E. Behnam, M. S. Waterman, and A. D. Smith, “A geometric

interpretation for local alignment-free,” Computational Biology, vol.

20, no. 7, pp. 471-485, 2013.

[5] S. Foret, M. R. Kantorovitz, and C. J. Burden, “Asymptotic behaviour

and optimal word size for exact and approximate word matches

between random sequences,” BMC Bioinformatics, vol. 5, pp. 1-9,

2006.

[6] S. Foret, S. R. Wilson, and C. J. Burden, “Characterizing the D2

statistic: Word matches in biological sequences,” Statistical

Applications in Genetics and Molecular Biology, vol. 8, no. 1, 2009.

[7] X. Liu, L. Wan, J. Li, G. Reinert, and M. S. Waterman, “New powerful

statistics for alignment-free sequence comparison under a

patterntransfermodel,” Journal of Theoretical Biology, vol. 284, issue

1, pp. 106-116, 2011.

[8] M. R. Kantorovitz, G. E. Robinson, and S. Sinha, “A statistical method

for alignment-free comparison of regulatory sequences,”

Bioinformatics, vol. 23, no. 13, pp. 249-255, 2007.

[9] G. Reinert, D. Chew, F. Sun, and M. S. Waterman, “Alignment-Free

sequence comparison (I): Statistics and power,” Journal of

Computational Biology, vol. 16, no. 12, pp. 1615-1634, 2009.

[10] D. A. Huffman, “A method for the construction of

minimum-redundancy codes,” in Proc. the I.R.E, 1952, pp.

1908-1102.

[11] D. R. Mcintyre and M. A. Pechura, “Data compression using static

huffman code-decode tables,” Communications of the ACM, vol. 28,

no. 6, 1985.

[12] M. Nourani and M. H. Tehranipour, “RL-Huffman encoding for test

compression and power reduction in scan applictaions,” ACM

Transactions on Design Automation of Electronic Systems, vol. 10, no.

1, pp. 91-115, 2005.

[13] L. Tang, “Methods for encrypting and decrypting MPEG video data

efficieny,” ACM MULTIMEDIA 96, Carneigie Mellon University, pp.

219-229, 1996.

[14] D. E. Knuth, “Dynamic huffman coding,” Journal of Algorithm, vol. 6,

pp. 163-180, 1983.

[16] J. H. Bradford, “Sequence matching with binary codes,” Information

Processing Letter, vol. 34, pp. 192-196, 1990.

[17] V. I. Levenshtein, “Binary codes capabale of correcting, deletions,

insertions, and reversals,” Soviet Physics-Doklady, vol. 10, no. 8, pp.

845-848, 1966.

[18] R. W. Hamming, “Error detectiong and error correcting codes,” Bell

System Technical Journal, vol. 29, no. 2, pp. 147-150.

[19] T.-J. Wu, Y.-H. Huang, and L.-A. Li, “Optimal word sizes for

dissimilarity measures and estimation of the degree of sissimilarity

between DNA sequences,” Bioinformatics, vol. 21, no. 22, pp.

4125-4132, 2005.

[15] C. Burden, S. Foret, and S. Wilson, “K-word matches: An

alignment-free sequence compariosn method,” International

Conference on Pattern Recognition (ICPR 2008), IEEE Computer

Society, Melbourne, Australia, pp. 235-238.

2013. He was also recognized as the top student for his academic

performance from Golden Key International Honour Society in July 2013.

He is interested in software optimization and bioinformatics, particularly, in

sequencing and sequence comparisons of genomes.

