



Abstract—Cloud Computing can accelerate industrial and

mechanical design. It can also bring people and ideas together to

design products collaboratively. Its adoption by the enterprise

community is increasing opening opportunities for affordable

scalable IT infrastructures even for small companies. In this

work we study a system that exploits the cloud computing

paradigm to realize a scalable CAD service for designing lifts. In

this context we present and dissect the architecture and discuss

several issues. The system is designed with the principle of

reducing the cloud size (cost) while maintaining reasonable QoS

and considerable effort has been done to be technology agnostic.

Index Terms—CAD, cloud computing, lift, manufacturing.

I. INTRODUCTION

Cloud Computing can accelerate industrial and mechanical

design. It can also bring people and ideas together to design

products collaboratively. At an enterprise level it can boost

on-demand the infrastructure size at a manageable monetary

cost. In particular a Cloud can be treated as a set of a uniform

standardized virtual hardware and software resources that

increase or decrease in size on-demand. A number of studies

[1]-[3] formalize and categorize the Cloud Computing

principles and architectures under a consistent scheme.

Usually the various categories are being named as XaaS

where S stands for Service and X stands for either Hardware,

Software, Platform, Infrastructure, Desktop, Database,

Framework, Organization or any other virtualized

technology.

Our view of the Cloud in this paper is a set of VMs (Virtual

Machines) that can be spawned, killed, and customized on

demand. Given this scheme and the almost infinite long-term

potential of the Cloud, we present a case study for a scalable

architecture that manages a fauna of VMs for CAD

(Computer Aided Design) of hydraulic lifts in an attempt to

reduce the infrastructure cost, automate the design process,

and minimize the human error. This case study is performed

and implemented on behalf of a reputable company.

The CAD systems became a key asset in every product

design and construction process the last decades. Important

contributions of the CAD modeling include a strict

description of the illustrated prototype products, ability for

further customization and easily managed and distributed

product information. In the context of the lifts engineers and

designers have to be employed for calculating, studying and

Manuscript received September 9, 2014; revised March 6, 2015.

G. Andreadis and K.-D. Bouzakis are with the Mechanical Engineering

Department, Aristotle University of Thessaloniki, Greece (e-mail:

andreadi@eng.auth.gr, bouzakis@eng.auth.gr).

A. Vakali and K. Stamos are with the Department of Informatics,

Aristotle University of Thessaloniki, Greece (e-mail: avakali@csd.auth.gr,

kstamos@csd.auth.gr).

designing annually hundreds of design layouts at offering and

ordering level, supporting the work of the sales people.

Additionally, investments in expensive hardware

infrastructure are necessary as the deployment of the many

CAD software licenses dictate. Consequently, the

manufacturing cost of the final product is significantly

increased. Promptness, accuracy and fullness of the

order/offer, determine to a great extent the success of the sale

and a company’s reputation. However, with such excessive

parameterization of the designs the human error factor is not

negligible. In fact, an estimation of the human

computing/designing mistake is around 10% (internal report

2007) of the total sales. Therefore, the need for an automated

system, that customizes and designs a product automatically,

becomes evident. Motivated from the above challenges and

the potential of Cloud Computing as an enterprise level

solution, our primary contributions are:

1) Propose a technology agnostic architecture for managing

a set of Virtual Machine workers. The life-cycle of each

VM involves its creation, customization, operation, and

discard. Each VM offers a CAD environment as a

service.

2) We study the case of a lift design by identifying building

blocks, templates, and design rules.

3) Suggest a scheduling algorithm for managing the

requests on the Cloud. This is designed to be scalable,

resilient, and concurrent.

4) We discuss issues related to the

advantages/disadvantages of the system in practice, and

we offer insight for future improvement.

II. RELATED WORK

The recent advances in Cloud Computing and

virtualization [4], [5] are attractive, affordable, and scalable

solutions for potential deployment of CAD software, and

eventually setting up an entire industrial-scale infrastructure.

The outline of the Cloud computing technology is that there is

an “infinite” amount of processing power and hardware

available on demand, available in affordable prices.

Computing is being transformed into a model consisting of

services that tend to resemble to traditional utilities such as

water, electricity, gas, and telephony. Cloud Computing is an

emerging technology which enables the on-demand

availability of virtualized resources. Cloud Computing

effectively can turn a small-to-medium company into a

company having large-scale infrastructure on-demand

without have to buy a single PC.

Traditionally there is a Cloud provider (e.g. Amazon, MS,

Hp) that offers a set of services in the form of an API

(Application Programming Interface). Via this API one may

write software applications that manage a set of Virtualized

Automated Design in the Cloud

Georgios Andreadis, Konstantinos-Dionysios Bouzakis, Athina Vakali, and Konstantinos Stamos

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

18810.7763/IJFCC.2015.V4.382DOI:

recourses. A Virtualized resource is actually a Virtual

Machine (VM) which is essentially a machine with CPU, hard

drive, RAM and operating system being virtualized by

software. Inside a VM there can be installed preconfigured

software to perform actual, “real” complex tasks.

A Cloud in this context can be considered as a pool of such

VMs which can be monitored, stopped, started, and deleted

on demand as needed. The primary challenge we face in this

paper is how to take into advantage such enormous amount of

processing resources for the benefit of the manufacturing

process.

Motivated by the potential the Cloud Computing has to

offer, we suggest an architecture ready to accommodate tasks

concerning the designing process. More specifically the

proposed architecture is developed with the following

principles in mind:

Extensibility Sets of rules are defined that describe classes

of the objects to be designed. This includes dimensions and

relative positions of design blocks. This generic approach

may lead to any product.

Scalability Depending on the workload the system is read

to scale on-demand. From a single VM up to hundreds. This

dynamic expansion and shrinking of the infrastructure

facilitates the optimal usage of the resources within the Cloud

and reduces effectively the final cost while maintaining

acceptable response times.

Quality of Service (QoS) The architecture supports

configuration about response times; the actual time span

within a document must be prepared. Furthermore, the

delivery of the documents is ensured since upon a failure of

any VM the design can be prepared somewhere else

transparently.

Monitoring the pending and running design tasks can be

monitored, retrieved and canceled on-demand. Furthermore

the active VMs are monitored periodically for failures and

updates.

Security The communication among the various elements

of the infrastructure is performed with respect to privacy and

enhanced security via secured connections and protocols.

We bind together the technology of Cloud Computing and

the standardized CAD to sketch and build a system that

ultimately reduces errors, reduces infrastructure costs and

adapts to the current industrial needs. Although our

implementation is focused on the context of hydraulic

elevators, it is not limited by that. One may specify different

parameters and rules to identify and eventually produce other

products as well.

III. SYSTEM ARCHITECTURE

At this point a bird’s eye view of the system’s architecture

is presented. The basic entities of the system include a) the

Blocks, b) the Rules, c) the Templates, d) the Tickets, e) the

VMs, f) the Orchestrator. The various interactions between

them, as discussed later, are illustrated in Fig. 1. The Blocks

are common sub-designs that are used as-is during the

designing process (e.g. a motor). The rules include

information and constraints about the placement of the blocks

and the designing of non-block sub-designs (e.g. there must

be no more than 3cm distance between the door and the shaft).

The Templates are user-defined design skeletons (e.g. the

positions of various blocks). The Tickets are in effect

messages that may contain a command for a VM (e.g. get

status update), and may encapsulate data (e.g. new blocks,

new rules, or the final design). The VMs are the actual places

where the designing process is performed. The Coordinator is

responsible for the scheduling of the Tickets and for the

monitoring and maintenance of the VMs. Each entity has a

more complex structure as follows.

Fig. 1. System architecture.

A. Basic Entities

Each basic entity may have internal structure and serve

various purposes. In particular: _ Blocks Since a large number

of objects on the lift plans are reused frequently, it is efficient

to retain a library of pre-drawn blocks of these objects and

inject them when needed. These objects include, for instance,

doors, brackets, pilots, mechanisms. A block may appear

visually as in Fig. 2. The collection of the blocks can be

updated (insert, delete, update);

Fig. 2. Blocks injected into the design.

Rules. The rules define the relationships of the blocks and

the non-block in during the design process. Especially, for

each design, a tree is constructed where each node of the tree

wraps the children-subtrees. The root of the tree is the design

itself. The rules define constraints in terms of containment,

siblings positions, and some general positional constraints.

Templates. A Template is a set of variables/parameters for

the design of the elevator. They are defined by the users via a

Web form. In practice a Template is an XML file that is being

verified in a two-step process. Check if the schema is

respected, and then check if any Rules are broken

Tickets. A ticket is in effect a SOAP envelope that wraps

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

189

any form of information exchanged in the system. It contains

fields including but not limited to a unique ID, the priority, the

timestamp when it was created, the IP address and the port of

the sender, the type, and possibly a data section. The data

section may contain a new rule/template/block or commands

for deletion, query for status update, request for the VM to be

terminated, or an actual design document that has just been

designed.

VMs. In each VM the actual design operation is performed.

In terms of software and design content each VM is identical

with the others. Of course, each VM is responsible for

designing lifts according to the tickets, different tickets for

each VM. In particular, a VM consists of a CAD application

(Autocad in our case) and a designer module that according to

the tickets, the templates and the rules it designs the actual

document using the API of the CAD application (in our case,

DWG document and ObjectARX API). The designer module

bridges the tickets stream from the coordinator to the CAD

software. In effect the designer module exposes aWeb

services API for the various ticket operations, queues the

tickets, verifies them, and executes the respective commands.

The VMs are located at the infrastructure of the Cloud

provider and they have encrypted virtual hard drives by

default to prevent security leaks.

CLOUD

Orchestrator

VM [1]

VM [2]

VM [4]

VM [N]

VM [3]

Fig. 3. Orchestrator managing design requests.

Orchestrator. The Orchestrator (Fig. 3) is essentially a

server that offers Web interfaces for managing the whole

infrastructure along with requests for design creation. It can

be part of the Cloud or it can be located in a company’s

intranet. More specifically, a designer (human) is given a set

of options to configure the design of a custom hydraulic

elevator (e.g. its shaft dimensions, positions of the doors etc.).

Then in a matter of a few minutes the Orchestrator forms a

new ticket containing the design parameters, submits it to the

Cloud, and receives the produced design available under a

URI. Afterwards, the designer can further edit the design

since is exported into an OpenDWG specification compliant

file, allowing any application to access it. Another role of the

Orchestrator is to define a set of rules that are applied during

the design process. The rules include dimensional relations

between various elevator components and set other business

specific requirements. This enables design adaptation to the

end client's desires and needs. The product can be built either

as the baseline of its series, or can be customized with

materials and accessories, each of which has its own

ramifications on the final design of the product. Its placement

allows for very granular changes in the purpose and structure

of the rest of the system. Moreover, it helps to create reusable

intelligence without the need to explicitly transform

designers’ intentions into code. Through the Orchestrator one

is able to update a database of pre-drawn blocks of objects

including doors, brackets, pilots, mechanisms etc. The most

useful aspect of this approach is that it enables the designer to

use the automatic drafting system to expand the variety of

these components, by creating new blocks. The blocks

participate inside rule definition and they are used during the

design process.

B. APIs

All the APIs are implemented and exposed via Web

services (WSDL document) and provide respective

encryption and authentication schemes. Here, we present only

the basic operations of the APIs. We divide the available APIs

into two groups according to which module is responsible to

serve each request:

Designer. API execute/cancelTicket() As mentioned

earlier a ticket may contain any form of command or data like

add new block or cancel rule. Both operations alter the queues

content, meaning that the cancel ticket just removes it from

the queue and the execute ticket places it at the correct

position in queue according to the priority and time-stamp of

the ticket. getStatus() Returns a ticket with information about

the system’s load and the queue’s load. The load is defined as

the moving average of the last 1, 5 and 15 minutes of wall

clock time. getTicketStatus() retrieves the status of the ticket

(done, queued, failed) and if done it encapsulates the result

(DWG document). system() It orders the system to power-off,

reboot, halt any pending tickets or resume the queue. The

tickets’ execution is performed based on the priority and then

by FIFO.

Scheduler. API insert/delete/updateBlock() This will

broadcast the related ticket including the related block

information to all VMs. The VMs are obliged to execute it

with high priority. insert/delete/updateRule() This will

broadcast a ticket for altering a rule. This ticket has a high

priority and it is executed as soon as possible. createDesign()

Given a template the coordinator prepares the ticket and it

submits it to the appropriate VM. restart/poweroff() Waits for

a period of time to let the tickets finish and then broadcasts the

ticket to all VMs.

C. Scheduling

The goal of the scheduler is two-fold; serve the users with

new designs while keeping the Cloud as small as possible.

This delicate balance is vital for efficient cost management

and swift service. In practice all the system’s operations

originate and being controlled by the scheduler. Furthermore,

the scheduler is fault tolerant in case of a failed tickets or

event failed VMs, reports the failed tickets and provides

details to the users. All in all the system should be up and

running, it is a mission critical runtime system. More

specifically, the algorithm of the scheduler includes several

phases described as follows:

Startup. During the start-up of the system two VMs are

spawned. The first VM is instantiated given a mould VM and

it will be an actual worker. The second VM becomes the

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

190

current mould from which future VMs are spawned. Every

ticket that involves the alteration of rules or blocks it is also

applied to the mould VM to keep it up-to-date. Shrink

Periodically the scheduler checks the load of the VMs and

frees the one that is close to idle. The minimum number of

worker VMs must be at least one. If a decision is made and a

VM is about to be terminated then the scheduler prevents the

assignment of any tickets to it and also waits for the

termination of the remaining tickets.

Design. Given a template from the user, the scheduler

identifies the most loaded server that satisfies the min QoS

and sends the ticket. That is, the scheduler keeps statistics

about the average time a ticket requires to be created (not

waiting in the queue) and evaluates the waiting time for all the

VMs. Then it selects the one that has the maximum possible

queue length but satisfies a maximum waiting time limit

(QoS). This load unbalancing policy enables the appearance

of idle VMs so that they can be terminated during the

shrinking process saving money. Then, at the expected time of

completion the scheduler periodically probes the worker VM

for the ticket’s result. In the case where no VM satisfies the

QoS limitations a new VM is spawned from the current

mould.

Shut-down. During the shut-down process, any remaining

ticket is given a time out to be completed, the mould replaces

the old one and the VMs are eventually terminated (gracefully

and then forcefully).

The scheduler logic although straight forward it involves

proper coordination of the tickets and in order to prevent

deadlocks applies the tickets asynchronously allowing

different designs to be designed perhaps with different rules.

This is a rather rare case, however, and do not pose any actual

problems in practice as the rules and blocks rarely change and

the designs are always verified by humans. Every interesting

event is logged (like failures) and statistics are gathered to

help future improvement.

IV. DISCUSSION

In the above we have presented in a technology agnostic

way how to expose a CAD application to do more with less

resources. The advantages of this approach come straight

from the Cloud computing domain. Those include payment

according to usage which is far better than

buying/maintaining/upgrading strong desktop machines to

run the CAD application for each employee. Furthermore,

adding an automated rule-based mechanism to build the

designs tends to reduce the common human error and improve

productivity of the designers. The designers revise the final

document which expresses their intentions rather than

spending hours doing repetitive designs. In terms of energy

consumption and environmental pollution by using powered

resources, adapting to the load and the day-to-day needs is the

way to go.

Despite the improvements of scalability and cost there are

several considerations to be taken into account including the

following:

Security. This is an issue that is usually forgotten and in the

case of a Cloud environment is essential. Because of the

nature of the Cloud you have to trust the safety of your data to

the discretion of the provider. In order to fully protect the

system all the communication channels must be encrypted,

and most importantly the virtual hard drives of the VMs must

also be encrypted. The coordinator itself should be located

in-house where the maintainers can have physical access.

Failure. A possible shortcoming of the proposed

architecture is the fact that although the VMs can be replaced

easily the coordinator cannot. The coordinator consists a

single point of failure. A way to approach this problem is to

have many coordinator replicating the activity of the primary

coordinator and resume if a failure occurs. Another approach

is to create groups of VMs with different coordinator in an

attempt to reduce the failure in to a small group of VMs.

CAD. The CAD software itself is not designed or either

licensed as a server application. This imposes several

challenges. The majority of the application’s time is spent in

waiting while nonconcurrent processes are running. In order

to maximize the availability of the component, we have

encapsulated the CAD software in a single user interface,

which is then wrapped by a queued Web Service. Another

issue that was encountered is the need in part of the CAD

software for administrative privileges on the host system,

which would in turn require the same privileges for the web

server that supports the WS. This is generally ill advised since

it would allow for shatter attacks. That means that security

exploits that are found on the web server are always critical

since they can perform anything an administrator can do. An

advantage of the architecture we propose is the gradual

limiting of the privileges on the services, as the attack surface

and exposure to the outside increases. In terms of licensing

the problem is to define who the user is and how many are

there. So, still, each user must have obtained a license.

V. CONCLUSION

The suggested architecture is a proof of concept that heavy

design procedures can be carried out effectively in a Cloud.

We broaden the so far short sighted approach of design which

included a single real workstation with a designer. The

potential within this architecture would boost small-scale

companies by having access to virtually unlimited resources

in an affordable way. For large scale companies, it offers a

convenient way to reduce infrastructure costs but also to cope

with many requests simultaneously. Future directions include

the presentation of statistics from long term operation of the

system and a detailed study of concurrency issues related to

fault tolerance and sane sequence of the tickets execution.

REFERENCES

[2] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud

computing systems,” in Proc. Fifth International Joint Conference on

INC, IMS and IDC, NCM ’09, Washington, DC, USA. IEEE Computer

Society, 2009, pp. 44-51.

[3] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What's inside

the Cloud? An architectural map of the Cloud landscape,” in Proc. the

2009 ICSE Workshop on Software Engineering Challenges of Cloud

Computing, Washington, DC, USA IEEE Computer Society, 2009, pp.

23-31.

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

191

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski

et al., “A view of cloud computing,” Communications of the ACM, vol.

53, no. 4, pp. 50-58, 2010.

[4] D. Sharma, S. K. Garg, and C. Sharma, “A cloud computing-based

framework for internationalisation of SMEs,” International Journal of

Cloud Computing, vol. 2, no. 4, pp. 364-377, 2013.

[5] X. Xu, “From cloud computing to cloud manufacturing,” Robotics and

Computer-Integrated Manufacturing, vol. 28, no. 1, pp. 75-86, 2012.

Georgios Andreadis was born in 1959 in Serres, Greece. He is a graduate of

the Mechanical Engineer Department of the Aristotle University of

Thessaloniki, Greece. He works as a lecturer in the Mechanical Engineer

Department since 2002, specialised in web based CAD/CAM, mechanical

design. He is also the instructor of educative seminars and the author of

several papers published in various conferences and magazines.

Konstantinos Stamos was born in 1983 in Thessaloniki, Greece. In 2005 he

graduated from Computer Science Department at Aristotle University of

Thessaloniki, Greece. He received his Msc in 2007 at the same faculty and

his PhD in 2010. His main research interests are focused on web data

management, content distribution and delivery over the web, web data

clustering, replication and web data caching.

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

192

