
  

 

Abstract—Usage of statistical tools is important in reporting 

valid and unbiased findings of a research. Therefore, this paper 

aims to discuss the statistical tools commonly used among 

researchers in the swarm intelligence field. Among the tools 

discuss is the boxplot. Boxplot is a common data representation 

method chosen in the field. Nonparametric statistical test for 

pairwise comparison, namely, Wilcoxon signed rank test, and a 

test for multiple comparison, namely, Friedman test are also 

reviewed. 
 

Index Terms—Boxplot, Friedman test, Holm procedure, 

Wilcoxon signed rank test.  

 

I. INTRODUCTION 

The days where mean and standard deviation are sufficient 

in evaluation of the performance of a swarm intelligence 

algorithm are gone. Now a common trend observed in this 

area is the usage of statistical analysis methods to validate any 

observations and findings regarding algorithms performance. 

The usage of statistical tools is important in order to make a 

more concrete and unbiased conclusion on any algorithm.  

This paper aims to discuss the statistical methods that can 

be used in representing and analyzing the results of swarm 

intelligence algorithm. In Section II, boxplot which is a 

common data representation method is discussed. The 

boxplot shows the quality and distribution of the data. The 

fundamental components used in the statistical analysis are 

described in Section III. Often the results obtained by swarm 

intelligence algorithms are not normally distributed [1], hence 

nonparametric statistical tests need to be used to test the 

significance of the results. Therefore, in Section IV and 

Section V, nonparametric statistical tests are discussed. 

Wilcoxon signed rank test is chosen for pairwise comparison, 

while Friedman test is picked for multiple comparison. The 

paper is concluded in Section VI. 
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II. DATA REPRESENTATION – BOXPLOT 

Boxplot is commonly chosen in this area to represent the 

collected data [2]–[6]. A boxplot represent numerical data 

using their quartiles [7].  
 

 
Fig. 1. Data. 

 

 
Fig. 2. Usage of quartiles in boxplot. 

 

A boxplot construction starts with sorting the data in 

ascending order and identification of the median, the first 

quartile, Q1, and third quartile, Q3 (Fig. 1). These data is then 

marked and the box is formed between the third quartile and 

the first quartile (Fig. 2). The minimum whisker is drawn 

based on the following; 
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max( , 1 1.5 )smallest data Q IQR                  (1)

where IQR is the interquartile range, which can be calculated 

as follow;

3 1IQR Q Q                                     (2)

The maximum whisker is drawn based on the following 

condition;

min( , 3 1.5 )biggest data Q IQR          (3)

Fig. 3. Outliers.

Fig. 4. Data normality.

Any values beyond the whiskers are outliers, which are out 

of ordinary observations (Fig. 3). The boxplot shown here is 

drawn horizontally, however it can also be drawn vertically. 

The boxplot can be used to approximate the normality of 



  

the data. Based on this information suitable statistical test can 

be properly selected. A boxplot with longer tail towards a 

direction show the skewedness of the data distribution 

towards that particular direction (Fig. 4). Therefore, the data 

is not normally distributed, thus, nonparametric statistical test 

need to be chosen in analyzing the data. 

Other than analyzing normality of the data distribution, 

boxplot can also be used to indicate the stability of the 

algorithm performance. A smaller box indicate smaller 

variance in the data hence a stable performance. 

The location of the box plot also indicates the quality of the 

algorithm. In minimization function optimization, a lower 

location of the box indicates better quality of solutions.  It is 

important for researchers to take note on the presence of 

outliers, as they can be indicators whether the proposed 

algorithm is problematic or not. 

 

   

 

 
Fig. 5. Options of statistical test procedures based on categories. 

 

  

 

  

  

The null hypotheses of the tests state that the algorithms 

compared are statistically equivalent, with no significant 

difference. For statistical test involving multiple algorithms, a 

post hoc procedure should be conducted if a significant 

difference is detected. A post hoc procedure helps to identify 

which algorithms caused the rejection of the null hypothesis. 

Once a suitable test is identified the significant level, α 

needs to be determined. This value indicates the significant 

difference of the algorithms. The common value chosen for α 

is 0.05, other values are 0.1 and 0.01. A bigger α has a higher 

chance of claiming significant difference, while a lower α is 

more rigid in detecting significant difference.  

An algorithm performance is commonly studied using a set 

of n benchmark functions over several runs. Hence, each of 

the functions will have set of data for every algorithm. The 

mean values of these data are used for the statistical test. 
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IV. PAIRWISE NONPARAMETRIC STATISTICAL TEST:

WILCOXON SIGNED RANK TEST

In this paper, the Wilcoxon signed rank test is chosen as a 

pairwise statistical analysis tool. The test starts with finding 

the differences between the performances of the two 

algorithms in each test functions, di. The next step is to rank 

di’s based on their absolute value. In event of ties between two 

di values, the rank is evenly assigned for each fitness functions. 

After that, the sum of ranks where the first algorithm 

outperforms the second, R
+
, and the sum of ranks where the 

second algorithm is the best, R
-
, are calculated as follow;

)(
2

1
)( 00  


dd i ii i drankdrankR              (4)

)(
2

1
)( 00  


dd i ii i drankdrankR               (5)

The smallest value between R
+

and R
-
is then chosen as the 

test statistic, T.

),min( RRT                                       (6)

The null hypothesis is rejected if the test statistic value is 

lesser than critical value, T0. These critical values are listed in 

Table I below. The application of Wilcoxon signed rank test 

is shown in example 1.

TABLE I: CRITICAL VALUES OF T0 IN WILCOXON SIGNED RANK TEST [7]

α 0.10 0.05 0.01 α 0.10 0.05 0.01

n = 5 1 n = 28 130 117 92

n = 6 2 1 n = 29 141 127 100

n = 7 4 2 n = 30 152 137 109

n = 8 6 4 0 n = 31 163 148 118

n = 9 8 6 2 n = 32 175 159 128

n = 10 11 8 3 n = 33 188 171 138

n = 11 14 11 5 n = 34 201 183 149

n = 12 17 14 7 n = 35 214 195 160

n = 13 21 17 10 n = 36 228 208 171

n = 14 26 21 13 n = 37 242 222 183

n = 15 30 25 16 n = 38 256 235 195

n = 16 36 30 19 n = 39 271 250 208

n = 17 41 35 23 n = 40 287 264 221

n = 18 47 40 28 n = 41 303 279 234

n = 19 54 46 32 n = 42 319 295 248

n = 20 60 52 37 n = 43 336 311 262

n = 21 68 59 43 n = 44 353 327 277

n = 22 75 66 49 n = 45 371 344 292

n = 23 83 73 55 n = 46 389 361 307

n = 24 92 81 61 n = 47 408 379 323

n = 25 101 90 68 n = 48 427 397 339

n = 26 110 98 76 n = 49 446 415 356

n = 27 120 107 84 n = 50 466 434 373

III. STATISTICAL TEST — PRELIMINARIES

Selection on the type of statistical test to be used depends 

on number of algorithms to be compared, k. It can be either 

comparison of two algorithms – pairwise comparison – or 

more than two algorithms. If more than two algorithms are 

compared, the choice of test depends on whether the 

comparisons are 1 × N – control method vs other algorithms, 

or N × N comparisons, where all algorithms tested are 

compared with each other. Proposed algorithm is often 

chosen as the control method in 1 × N comparison. Multiple 

choices exist for each of the categories [1]. Among the 

statistical procedures commonly chosen are shown in Fig. 5. 



  

1) Example 1 

Two algorithms are tested here (k=2), asynchronous 

particle swarm optimization (A-PSO) and 

synchronous-asynchronous PSO (SA-PSO). The particles in 

A-PSO are updated asynchronously where a particle 

immediately moves to new location once its performance is 

measured [8]. This is done without the need to wait for the 

entire swarm to finish their performance evaluation (Fig. 6). 

The SA-PSO algorithm is hybrid of the standard PSO with 

A-PSO (Fig. 7) [9]. The swarm in SA-PSO is divided into 

groups of particles. All particles within a group are evaluated 

first before they move to new position. However, these 

particles movement is independent of particles from other 

groups. The performance of the algorithms is compared using 

set of nine benchmark functions (n=9). The functions tested 

are minimization functions consisting of unimodal and 

multimodal functions. The functions are – quadric, quartic, 

hyperellipsoid, Rosenbrock, sphere, Ackley, Griewank, 

Rastrigin and Salomon functions (Table II). 
 

 
Fig. 6. A-PSO algorithm. 

 

 
Fig. 7. SA-PSO algorithm. 

TABLE II: TEST FUNCTIONS 

Function Type Function Name Equation 

Unimodal 

Quadric 
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The algorithms are tested using each function for 500 runs. 

The averages of the results are recorded in Table III. The 

significance level, α, is set to 0.05.  

The statistic value, T, of Wilcoxon signed rank test 

obtained is compared with T0 from table of critical values of 

T0 in Wilcoxon signed rank test, which can be found in [7]. It 

is found that T<T0 , therefore, significance difference exist, 

indicating SA-PSO performs better than A-PSO. 

 

V. MULTIPLE ALGORITHMS NONPARAMETRIC STATISTICAL 

TEST: FRIEDMAN TEST AND ITS POST HOC 

Friedman test can be used for both 1 × N and N × N multiple 

algorithms comparison. The test is done by ranking the 

while not stopping condition 

 for each group 

  for each member 

   evaluate performance 

  end 

  identify best values 

  for each member 

move //update velocity & 

position 

  end 

 end 

end 

while not stopping condition 

 for each particle 

  evaluate performance 

  identify best values 

  move //update velocity & position 

 end 

end 
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algorithms based on the performance for each benchmark 

function. The ranks of each algorithm are summed and 

averaged, Rj. The rank is then used to calculate the Friedman 

statistic value, Ff.  
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This statistic value is then compared with  2  value. The 

 2  value is taken using (k-1) degree of freedom and α degree 

of rejection. The null hypothesis is rejected if  2F f .  

 

TABLE III: A-PSO VS SA-PSO 

  A-PSO SA-PSO di rank(di) 

Quadric 131.4246 0.0537 -131.371 8 

Quartic 3.0793 0 -3.0793 5 

Rosenbrock 71.5899 37.9161 -33.6738 7 

Spherical 0.1628 0 -0.1628 3 

HyperEllipsoid 2.5037 0 -2.5037 4 

Ackley 0.0898 0 -0.0898 2 

Griewank 371.7447 0.0071 -371.738 9 

Rastrigin 42.2694 36.1207 -6.1487 6 

Salomon 0.3211 0.3263 0.0052 1 

 

The rejection of null hypothesis indicates that significant 

difference exist between at least two of the algorithms. 

However Friedman test alone cannot identify where is the 

difference. Therefore post hoc procedure of pairwise 

comparison needs to be conducted to identify the difference.  

1) Example 2 

Three algorithms are tested here (k=3), synchronous PSO 

(S-PSO), A-PSO and SA-PSO. S-PSO is the standard PSO 

[10]. The whole particles in S-PSO are evaluated first before 

moving to their respective new position (Fig. 8). The 

algorithms are tested using the same benchmark functions as 

example 1.  
 

 
Fig. 8. S-PSO algorithm. 

 

The performances of the algorithms for all test functions 

are ranked based on their mean value. The average 

performance of the algorithms for each test function and their 

rank are tabulated in Table IV. According to the Friedman 

test’s statistic value, significant difference exists between the 

algorithms. Therefore, post hoc procedure needs to be 

conducted to identify the difference. 

A. Holm Post Hoc Analysis 

Post hoc procedure to identify the differences must be 

chosen based on the main statistical test used. For Friedman 

test there are selections of post hoc procedures (Fig. 9). Holm 

procedure is among the suitable post hoc procedures for 

Friedman test. It can be used for both 1 × N comparison and N 

× N comparison. However, there is slight difference between 

Holm procedure for 1 × N comparison and N × N comparison.   

 

TABLE IV: FRIEDMAN TEST OF S-PSO, A-PSO AND SA-PSO 

 S-PSO A-PSO SA-PSO 

Quadric Mean 305.4320 131.4246 0.0537 

 Friedman Rank 3 2 1 

Quartic Mean 1.9524 3.0793 0.0000 

 Friedman Rank 2 3 1 

Rosenbrock Mean 58.7646 71.5899 37.9161    

 Friedman Rank 2 3 1 

Spherical Mean 0.0963 0.1628 0.0000     

 Friedman Rank 2 3 1 

HyperEllipsoid Mean 0.4151 2.5037 0.0000     

 Friedman Rank 2 3 1 

Ackley Mean 0.0941 0.0898     0.0000 

 Friedman Rank 3 2 1 

Griewank Mean 317.8628   371.7447     0.0071     

 Friedman Rank 2 3 1 

Rastrigin Mean 38.6035    42.2694    36.1207    

 Friedman Rank 2 3 1 

Salomon Mean 0.3227     0.3211     0.3263     

 Friedman Rank 2 1 3 

Average Friedman Rank, Rj 2.22 2.56 1.22 

 

 
Fig. 9. Friedman test’s post hoc procedure. 

 

The statistic value for Holm procedure is calculated as 

follow; 

 

n
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                                  (8) 

 

Ri and Rj in the equation are Friedman rank for algorithm i
th

 

and j
th

. This statistic value is then used to get the p-value from 

two tails normal distribution table. 

The p-values are then sorted in ascending order such that 

p1< p2< p3<…< pl <…< pk. Each of the p-value corresponds to 

their own null hypothesis, H1, H2, H3,…, Hl ,…, Hk, which 

state that the algorithms are statistically identical.  

In Holm of 1 × N comparison the null hypotheses from H1 

to Hl are rejected if; 

lk
pl 



                                   (9) 

While for Holm of N × N comparison the null hypotheses 

from H1 to Hl are rejected if; 

 

1


lm
pl


                               (10) 

while not stopping condition 

 for each particle 

  evaluate performance 

 end 

 identify best values 

 for each particle 

  move //update velocity & position 

 end 

end 
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where 

 

2

)1( 


kk
m                                   (11) 

 

2) Example 3 

The Friedman test in example 2 shows that significant 

difference exist between the three algorithms. Thus, post hoc 

procedure is conducted to identify the difference.  

  

  

   

 

The Holm post hoc for N × N comparison successfully 

detects the significant difference. The null hypothesis, H1 and 

H2 are rejected. Significant difference exists between the 

performance of SA-PSO and S-PSO and also A-PSO, where 

SA-PSO has a better performance than both algorithms. 
 

TABLE V: HOLM POST HOC FOR 1 × N COMPARISON 

i  DataSet  z p Holm Observation 

1  A-PSO 2.8284 0.0047 0.0250 p1<Holm  

2  S-PSO 2.1213 0.0340  0.0500 p2<Holm  

 

      

      

      

      

      

 

VI. CONCLUSION 

Proper usage of statistical tools in data analysis is important 

in strengthening and justifying findings of a research. Hence, 

essential statistical tools to analyze performance of swarm 

intelligence algorithms are discussed in this paper. The paper 

starts with description of boxplot which is a common method 

chosen in data representation for swarm intelligence 

algorithms. The information represented by the boxplot is 

also discussed. The Wilcoxon signed rank test for pairwise 

comparison and Friedman test together with Holm post hoc 

procedure for multiple algorithms comparison are presented.  
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