



Abstract—Distributed systems are computing systems where

a number of components cooperate by communicating over a

network. Few systems are still working in a stand-alone system

where the user interface, persistent data and applications

resided in one computer. However, the majority of nowadays

systems are designed to work in distributed systems.

Provide mechanisms for the storage and the manipulation of

large amount of data is one of the largest technological

challenges in software systems research today. Social media and

web services produce an impressive amount of data daily. In this

context, Hadoop Distributed file system (HDFS) is an open

source software framework for distributed storage and

processing of very large data (Big Data).

In this paper we introduce new functionalities for Hadoop

Distributed File System using probabilistic distributed

algorithms, our proposition is working in both homogenous and

heterogeneous HDFS nodes which can reduce the

communication cost.

Index Terms—Distributed systems, big data, Hadoop

distributed file system, probabilistic distributed algorithms.

I. INTRODUCTION

Distributed systems are a collection of independent nodes

(computers) that appears to its users as a single coherent

system [1]. It has the potential to be more reliable than

stand-alone systems.

The main motivation behind studying those systems is that

they increase the performance, the resource sharing, and the

reliability of the network, and also allows users to share a

common large data set.

The use of concurrent processes that communicate by

message-passing holds the attentions of many researches

since 1960s. The predecessor of the Internet, called

ARPANET, was introduced in the late 1960s in which E-mail

became its most successful application [2]. This technology is

probably the earliest example of the large-scale distributed

applications.

The study of distributed systems had become a branch of

computer science in the late 1970s. The first conference in

this field, called “Symposium on Principles of Distributed

Computing (PODC)”, was organized in 1982.

Moving the data while performing computations is the

main issue in distributed systems, while dealing with a large

scale of data, which requires a high bandwidth.

Hadoop Distributed File System is an open-source software

framework for distributed storage and distributed processing

Manuscript received January 2, 2015; revised March 6, 2015.

The authors are with FS– Abdelmalek Essaâdi University, M’Hannech II

93030 Tetuan, Morocco (e-mail: ismailhind@gmail.com).

of very large data sets (Big Data). It is designed to have a

highly fault-tolerance, to be deployed on low-cost hardware

providing a high throughput access to application data and to

be suitable for application that have a large data sets.

The biggest two criterion imposed by HDFS provider are

first, satisfying the minimum shares and second, the fairness,

considering fairness disallow starvation of any user, dividing

in fair manner the resources among the users. In bellow we

present some of its assumptions and goals:

 Hardware Failure: Detection of faults and quick, automatic

recovery from them is the biggest goal of HDFS.

 Streaming Data Access: Applications need streaming

access to their data sets.

 Large Data Sets: A typical file in HDFS is gigabytes to

terabytes in size.

 Simple Coherency Model: Based on write-once-read-many

files, HDFS files application can run in a simple coherency

model.

In this paper we will suggest and analyze new

functionalities for Hadoop Distributed File System (HDFS)

using the probabilistic distributed algorithms for uniform

election introduced in [3].

The paper is organized as follows: Section II exposes some

definitions and tools necessary for understanding the rest of

the document. Section III is devoted to describe our

propositions whereas Section IV presents a general analysis

of the introduced methods. Finally, Section V summarizes the

paper and shows our further work.

II. TOOLS AND ASSUMPTIONS

In this section we present the different tools used in this

study. We start by describe HDFS architecture, then, we show

the used probabilistic distributed algorithm for uniform

election.

A. Hadoop Architecture

Hadoop is a well-known implementation of the

MapReduce model platform. It consists of two main parts:

First, MapReduce responsible of parallel computing and

second, Hadoop Distributed File System which is the

responsible for data management. Hadoop can directly work

with different distributed file system, but the most common

file system used by Hadoop is the Hadoop Distributed File

System.

The HDFS systems were initially designed to optimize the

performance with a highly fault-tolerance and to be deployed

on low-cost hardware providing a high throughput access to

application data. However, due to HDFS advantages, the

number of its applications is increasing which leads to grow

Toward a New HDFS Functionalities Using a Probabilistic

Distributed Algorithm

Ismail Hind and Ali Dahmani

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

20310.7763/IJFCC.2015.V4.385DOI:

the demand for its platform. One of the most important

aspects which should be considered is homogeneity of the

system.

Hadoop uses a master/slave architecture for both

distributed computation and distributed storage. The HDFS

cluster is formed by a single NameNode (master server which

greatly simplifies the system architecture) manages the file

system namespace and controls access to files by clients. In

addition, there are a number of DataNodes (slaves) which

manage storage attached to the nodes that they run on. HDFS

makes visible a file system namespace allowing user data to

be stored in files. HDFS file is split into one or more blocks

which are stored in a set of DataNodes.

The NameNode can opens, closes and renames the

namespace files and directories. It also directs the mapping of

blocks to DataNodes.

The DataNodes are responsible for distributing read and

write requests from the file system's clients. It can also create

and deletes blocks, and replication upon the NameNode

instructions.

All applications that deal with large data sets are

compatible with HDFS. HDFS holds up the

write-once-read-many semantics on files. Internally, typical

block size is 64 MB which splits the HDFS file into 64 MB

chunks.

When the client wants to create a file, his request does not

reach immediately the NameNode. In fact, the HDFS client

hides initially the file data into a temporary local file. The

NameNode allocates a data block for the client after inserting

the file name into the file system hierarchy. So, it responds to

his request by identifying the DataNode and the destination

data block. Then the client takes the data block from the local

temporary file to chosen DataNodes. After closing a file, the

remaining un-flushed data in the temporary local file is

transferred to the DataNode. Then, the client informs the

NameNode that the file is closed. However, if the NameNode

dies before the file is closed, the file is lost.

The following figure shows HDFS architecture.

Fig. 1. HDFS architecture.

As it shown in the Fig. 1, the main function of the

NameNode is to maintain and to execute the file system

namespace. Indeed, all the modifications in the file system

namespace or in its properties are tracked by the NameNode.

In addition, it has other various functionalities we cite bellow

the principle ones:

 NameNode remains a record of the way the HDFS files are

divided into blocks where the nodes of these blocks are

stored.

 It is responsible for mapping a file name to a set of blocks

and then mapping the block to the DataNodes where it is

located.

 NameNode also records the metadata of all the cluster files,

e.g. the location, permissions, hierarchy, the size of the

files, etc.

 To make sure that the DataNodes are working properly,

NameNode regularly receives a Heartbeat and a Block

report from all the DataNodes in the cluster. This block

report holds a list of all blocks on a DataNode.

 In case of a DataNode failure, new DataNodes for new

replicas are chosen by the NameNode which also treats the

communication traffic to the DataNodes.

In the other side, the DataNodes also had various

functionalities which could be summarized in the ones below:

 DataNodes effectuate the low-level read and write requests

from the file system's clients.

 Based on the decisions taken by the NameNode,

DataNodes are responsible for deleting and creating blocks

and also replicating.

 They send regularly a report about the blocks present in the

cluster to the NameNode.

 They redirect data to other specified DataNodes.

 DataNodes send heartbeats to the NameNode reporting the

overall health of HDFS.

 The DataNode stores in separate files each block of HDFS

data in its local file system.

B. Uniform Election

When you submit your final version, after your paper has

been accepted, prepare it in two-column format, including

figures and tables.

The election problem is a well-known combinatorial

optimization problem which holds the attention of many

researchers since it was first suggested by LE LANN [4]. The

election is to choose one and only one element from a network.

However, the uniform election is special case of election

where all the elements of an undirected and connected

network must had the same chance to be elected. Therefore,

this problem has been studied under various hypotheses:

oriented or not oriented network, synchronous or

asynchronous system, anonymous or with identifier elements,

etc.

Many researches known in the literature has treated this

type of election, such as, uniform election in trees [5],

polyominoids [6] and triangular grid graphs [3]. The last

Local computation algorithm is used in this paper. This

algorithm is based on local computations [7] and graph

relabeling systems [8].

III. PROPOSED HADOOP FUNCTIONALITIES

HDFS architecture is designed to have a highly

fault-tolerance, to be deployed on low-cost hardware

providing a high throughput access to application data and to

be suitable for application that have a large data sets.

However some of it functionalities are still in development.

Indeed, in this section, we will introduce our proposed HDFS

functionalities.

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

204

The main motivation for our study is as follows:

 To reduce the communication cost in the entire HDFS;

 To reduce the search overhead for resources and matching

jobs.

To reduce the communication cost between the elements of

HDFS we proposed a new topology for clustering DataNodes

taking under consideration the homogeneity of clusters. So, as

it shown in Fig. 2, the master organizes virtually the

DataNodes under a specific topology called Triangular grid

graph which simplify applying the uniform election algorithm

introduced in [3].

The following figure represents HDFS cluster architecture.

Fig. 2. HDFS cluster architecture.

As it shown in the Fig. 1, the cluster comprises of a single

NameNode (Master) and a number of DataNodes (Slave

nodes). The set of DataNodes is represented by triangular grid

graph where each vertex represents a DataNode and the link

of communications is represented by edges. The master can

communicate with special DataNodes in a cluster. Those

vertices are the ones with degree ∈ {5, 6} which can be used

later to transfer messages and jobs.

In fact, the main aim of choosing the maximum degree

vertices is that they are in the middle of the graph which on

one hand, decrease the mean of communication costs, on the

other hand, simplify the communications between vertices

leading to improve the system performance.

So in the next we introduce our two methods.

A. Based on Homogeneous DataNodes

In this method, we supposed the homogeneity of the

DataNodes. We represent the DataNodes by a graph G which

had the topology of triangular grid graph as it shown in Fig. 2.

We distinguish between 3 levels of vertices:

 Vertices of level 1 will be localized at the leaf of G i.e. the

vertices of degree < 2 ;

 Vertices of level 2 whom degree in {3, 4};

 And finally vertices of degree >4 which are considered as

level 3 vertices.

Fig. 3. DataNodes levels inside a cluster.

Fig. 3 represents the different levels of vertices.

The master communicates with the level 3 vertices, which

simplified the message transmissions and the communication

between nodes and master. Therefore, the master uses the

probabilistic distributed algorithm for uniform election to

decide which DetaNode will take the charge.

The main goal for this method is to decrease the charge on

the middle vertices by rearranging the all the graph.

B. Based on Heterogeneous DataNodes

In this method, we keep the triangular grip graph topology

but we supposed that the graph G could be heterogeneous.

Every period k, where k defined as the necessary time to

refresh the graph G, i.e., each time the master received a

failure in a DataNode, or else in one hour, taking under

consideration that it received the heartbeat from the entire

nodes every three seconds. In addition, the central vertices

must be a chosen from the high performance nodes. We

distinguish here between three levels:

 Low quality nodes considered as vertices of level 1;

 Medium quality nodes considered as vertices of level 2;

 And finally high quality nodes considered as level 4

vertices.

So, the vertices are localized at G according to their quality.

In [9] the authors proved that use of heterogeneous

DataNodes reduced the communication cost. So, and for our

topology, the middle DataNodes take a higher charge than

others which explains the use of high quality nodes in the

middle of clusters.

IV. ANALYSIS

In this section, we analyze the proposed HDFS

functionaries. Indeed, for the homogeneous datanodes, the

central vertices are rearranged in duration k, where k

represents the necessary time for master to receive the

heartbeat of the entire cluster, or else, to discover the failure

of one those vertices.

This rearrangement is necessary to avoid the charge on the

middle vertices caused by communications. So, according to

the vertices level, the master redesigns the graph adding a

level to each vertex each k-duration:

 Vertices of level one will be located at the level two

vertices;

 Vertices of level two will be located at the middle of the

graph (changed to level three);

 Vertices of level three will be located at leafs of graph.

V. CONCLUSION

In this paper, we have introduced and analyzed two

functionalities to HDFS using a probabilistic distributed

algorithm for uniform election. According to our propositions,

and in each cluster, the HDFS DataNodes will be represented

by a triangular grid graph where each vertex v represents a

single DataNode and the edges represent the links between

DataNodes. Indeed, the proposed methods support both,

homogeneous and heterogeneous DataNodes.

As perspective, we aim to experiment our work in a real

application. Also, we attend to prove that mean of HDFS

communication cost is lower when using our suggestions.

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

205

REFERENCES

[1] G. R. Andrews, Foundations of Parallel and Distributed

Programming, 1st ed., Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1999.

[2] I. Peter, History of the Internet, Autopilot Productions [Brisbane],

2004.

[3] M. Stouti, I. Hind, and A. E. Hibaoui, “Probabilistic distributed

algorithm for uniform election in triangular grid graphs,” International

Journal of Advanced Computer Science and Applications, vol. 4,

2013.

[4] G. L. Lann, “Distributed systems - Toward a formal approach,” in Proc.

of the IFIP Congress 77, 1977, pp. 155-160.

[5] Y. Métivier, N. Saheb, and A. Zemmari, “A uniform randomized

election in trees (extended abstract),” in Proc the 10th International

Colloquium on Structural Information and Communication

Complexity (SIROCCO 10), Carleton University Press, 2003, pp.

259-274.

[7] A. Sellami, “Des calculs lacaux aux algorithmes distribués,”

Ph.D.dissertation, Université Bordeaux I, 2004.

[8] I. Litovsky, Y. Métivier, and E. Sopena, “Graph relabelling systems

and distributed algorithms,” in Handbook of Graph Grammars and

Computing by Graph Transformation, H. Ehrig, H. Kreowski, U.

Montanari, and G. Rozenberg, Eds., World Scientific, 1999, vol. 3, pp.

1-56.

[9] A. Rasooli and D. G. Down, “A hybrid scheduling approach for

scalable heterogeneous hadoop systems,” IEEE Computer Society,

2012, pp. 1284-1291.

Ismail Hind was born in Fnideq north, Morocco in

1987. He is a PhD student at Abdelmalek Essaadi

University, working on probabilistic distributed

algorithms from 2010 to 2015. He got the master in

engineering and computer science at Tetouan,

Morocco, 2010, and the bachelor degree in

mathematical sciences at Tetouan, Morocco, 2005.

International Journal of Future Computer and Communication, Vol. 4, No. 3, June 2015

206

[6] A. E. Hibaoui, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari,

“Uniform election in trees and polyominoids,” Discrete Appl. Math.,

vol. 158, no. 9, pp. 981-987, May 2010.

