

we can simulate model or source code of IoT systems to test

many of these operations. Existing simulation techniques can

either perform model-based or code-based simulation one at a

time. In this approach, already developed model cannot be

utilized for code-based simulation and vice-versa. Also most

of the existing simulation techniques work in central isolated

environment.

In this paper, we propose a ZeroMQ-based [3] framework

for simulating distributed components to mitigate the

aforementioned problems. The framework enables a

component of a system to communicate with other

components of the system to simulate through ZeroMQ-based

message broker. The proposed structure is able to perform

cooperative simulation among model and code components,

which makes it possible to incrementally implement the

system.

This paper is structured as follows. Section II provides

related work and Section III provides the structure of

framework to cooperatively simulate model and code. For

providing feasibility of our approach, in Section IV, case

study is presented and Section V provides conclusion.

II. RELATED WORK

A. Host-Based Testing

Unlike general software which is developed in target

machine environment, embedded software is developed in

host environment and is usually tested in the same

environment [4]. Simulation is usually performed in the host

environment that is not a target machine but PC or VP

(Virtual Prototype) [5]. IoT system [1] possess the same

problems faced by embedded distributed environment. Some

parts of the system must be tested in target environment

whereas other parts can be tested in the host environment

because the host environment is clearly different from the

target machine environment. In this paper, the proposed

framework performs simulation in host environment in which

independent simulation of each components represents unit

testing whereas simulation of multiple components represents

integration testing.

B. Model-Based Simulation

It is not difficult to simulate a model which does not

interact with other components. But in IoT environment, most

systems have not only several abstract levels but also several

distributed applications which interact among themselves [6].

These distributed models are defined as sub-models and

these sub-models may be parts of one model which impose the

object-oriented concept. Model components communicate

with each other only through specified message. In this

Design of ZeroMQ-Based Cooperative Simulation

Framework for Distributed Code and Model Components

Sunghee Lee, Heungjun Park, and Woo Jin Lee

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

25810.7763/IJFCC.2015.V4.397DOI:


Abstract—Recently, the scale of distributed computing

environment is growing larger. One of the reasons is

development of IoT environment which directly impacts the

human life by providing instant access to vast amount of

information and services correspond to healthcare, smart home

service, etc. Interaction testing among distributed systems such

as IoT systems is non-trivial task, also cooperative simulation of

both model and code components is more difficult one.

Model-based and code-based simulation techniques are widely

used to test embedded systems. Usually code-based simulation is

possible when all the modules are implemented, after finishing

model-based simulation. Both simulations cannot be applied

cooperatively due to lacks of cooperation among model and code

components. In this paper, we propose a ZeroMQ-based

simulation framework for simulating distributed components to

mitigate these problems of testing distributed components. This

framework can be applicable to even incompletely implemented

system, which makes it possible to develop the system

incrementally.

Index Terms—Cooperative simulation, distributed simulation,

model and code, IoT.

I. INTRODUCTION

Today, many people are interested in IoT (Internet of

things) which make anyone connect to anything at any time

and place or which make anything connect to anything at any

time and place [1]. These availability and connectivity

features have led to development of IoT systems for

enhancing the convenience of our life. For example, wearable

devices such as „Galaxy Gear‟ and „G Watch‟ can consume

contents at any time and place. Also „LG Home Chat‟ makes it

possible for user to remotely control and monitor home

appliance through mobile messenger whenever and wherever

he wants.

These IoT systems constantly connect, interact, and

cooperate with their surrounding environment and other

devices such as PC, smart phone, tablet, and so on [2]. We

need to test whether IoT systems work normally or not, for

example, when CCTV is connected with user‟s smart phone to

monitor user‟s house. But it is very difficult to test all of these

operations of real IoT systems in real environment. Instead,

Manuscript received November 10, 2014, revised June 25, 2015. This

work was supported by the IT R&D program of MSIP/KEIT [10041145,

Self-Organized Software platform (SoSp) for Welfare Devices] and Basic

Science Research Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education(2014R1A1A2058733).

The authors are with the Department of Computer Science and

Engineering, Kyungpook National University, Republic of Korea (e-mail:

lee3229910@gmail.ac.kr, bbakeung@naver.com, woojin@knu.ac.kr).

perspective, shown in Fig. 1, it is possible to simulate a model

irrespective of how each sub-model is distributed on

computers and how many sub-models exist on a computer [7].

Fig. 1. Component of IoT system distribution.

Modeling is usually represented by state chart and each

state has information of system‟s behavior. States (or models)

communicate via message with each other. In this paper, the

unit of modeling is a component which is composed of one or

more model components. And a combination of one or more

components is able to simulate single or multiple applications

[7].

C. Code-Based Simulation

After model-based simulation, verified model is

implemented by source code. In IoT system, all models can be

implemented concurrently. The primary goal of code-based

simulation is verifying the designed models with respect to

source code, testing whether the models perform normally

after model-based simulation and whether the models can be

implemented correctly. Also, well-written code may be

reused when real system is implemented [8].

To simulate code, virtual component is implemented by

using dummy and stub. Dummy is a simple interface which

simulates the real functions and stub can substitute a part of

functions which system actually performs. Scale and

precision of code-based simulation are decided by how these

virtual components are implemented. The more detail they are

implemented, the more precise code-based simulation is;

otherwise code-based simulation may be poor.

Code will not be able to simulate either if all components

that compose an application are not implemented or if any

components that compose the application has been partially

implemented. Precisely, this problem we are solving using our

proposed framework.

D. ZeroMQ

ZeroMQ [3], LGPL open source, is socket library which

supports concurrency framework. It can be used to connect

codes in any language such as C, C++, JAVA, .NET, Python

and on any platform such as Linux, Windows. It is known as

Ø MQ, 0MQ, zmq and provides sockets that transport atomic

messages across various transport layers such as in-process,

inter-process, TCP, and multicast. It is able to connect sockets

with N-to-M and uses asynchronous I/O which provides

scalable multicore applications.

ZeroMQ is appropriate in IoT because it can be used in

centralized, distributed, small, or large system. In this paper

as shown in Fig. 2, we use REQ and REP sockets of ZeroMQ.

REQ-REP communication is similar to TCP communication.

For example, as in TCP communication, here also only client

can initiate communication by using REQ socket. Similar to

TCP, a server responds using REP socket but it can‟t initiate

communication. Distributed components use this REQ-REP

combination to communicate with each other through

message broker.

Fig. 2. REQ-REP combination.

E. Remote Procedure Call (RPC)

 RPC is based on the semantics of a local procedure call,

but actually it acts across the network [9]. It is used to call a

procedure which doesn‟t exist in local system; instead it exists

in remote system which can be accessed through the network.

Fig. 3 represents basic RPC mechanism. For example, as

shown in Fig. 3, client calls a function which has parameters a,

b, and c. Since the function does not exist in local system,

client needs client procedure stub. Then, to call the real

function which exists in server, the stub generates a message

by encapsulating parameters to be sent to the function located

at server and then the message is delivered through network.

Server also needs server procedure stub to de-capsulate the

received message and call the function with received

parameters. The stub calls function in server which in turn

returns value of the function from itself to the stub. The stub

then sends back the returned value to client by following the

same encapsulation and de-capsulation procedure. In this way,

client can call a function in server.

Fig. 3. RPC mechanism.

In this paper, we apply RPC mechanism to framework for

model and code cooperative simulation. Distributed

components can be both client-side and server-side at the

same time, so that they also include stubs.

III. DESIGN OF ZEROMQ-BASED FRAMEWORK FOR MODEL

AND CODE COOPERATIVE SIMULATION

In this paper, to perform model and code cooperative

simulation, both model and code should be made up unit of

component which contains ZMQ, stub and simulator that is

based on either model or code. In this section, we propose the

structure of ZeroMQ-based framework and component for

model code cooperative simulation.

A. ZeroMQ-Based Framework for Distributed Simulation

We apply aforementioned RPC mechanism to framework

in order to simulate distributed components which are either

model-based or code-based as shown in Fig. 4. The message

broker acts as connector (network in RPC) among

components (client or server in RPC) so that components can

interact with others through message broker. A component is

composed of three different entities: ZMQ, stub and simulator.

The simulator may be either model-based or code-based.

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

259

Fig. 4. ZeroMQ-based framework for distributed components.

B. Cooperative Simulation of Model and Code

Components

For cooperative simulation of model and code components,

we assume that simulator entity can communicate with

component message translate stub by using only component

API call and All interface among distributed component of a

system is defined. Fig. 5 shows structure of component for

cooperative simulation.

Fig. 5. Structure of component for cooperative simulation.

ZMQ entity has REQ and REP socket. The REQ socket

makes component to act as client-side network in RPC

whereas the REP socket makes component to act as

server-side network in RPC. Component message translate

stub has component message enveloper which act as client

procedure stub in RPC and component message developer

which act as server procedure stub in RPC. Enveloper makes

component message enveloped API information whereas

developer gets API information from enveloped component

message. Component API Table contains API information

that system defined previously. Simulator calls a component

API, which is called by other component.

For example, component A based on model has two API

which are defined as “int add(int a, int b)” and “int subtract(a,

b)” in each component API table. The add API exists in its

local but the subtract API doesn‟t. Component B based on

code also has two API which are the same as component A.

The subtract API exists in component B but the add API

doesn‟t. Therefore, both components A, B should be perform

cooperative simulation by interacting each other.

If simulator of component A calls the subtract API,

Component A envelopes component message with parameters

on the basis of component API table and then it delivers the

message to component B through REQ socket. In component

B which receives the message, stub gets information API from

delivered message through REP socket and then the stub call

real subtract API in component B. Then the returned value

from component B is sent back to component A by following

the same aforementioned procedure. In the same way,

component B calls add API and gets return value.

IV. CASE STUDY

In this section, shown in Fig. 6, our framework can be apply

to simple smart home environment which has three

components: model-based Smart Home Model, code-based

Emergency Control System and model-based Lamp Model.

This environment already has two defined API:

EmergencyModelAPI() to broadcast a “emergency” event,

LampOffAPI() to generate a “lampOff” event.

Fig. 6. Example of simple smart home environment.

For example, first we have implemented the entire system

and finish Emergency Control System after completing

model-based simulation. Then, we need to test the system

which interact with the others based on model. When home is

under emergency situation, “emergency” event in Smart

Home Model is broadcasted by EmergencyModeAPI() which

is API called from model and exists in Emergency Control

System. This is process of API call from model to code. Next,

because home is under emergency situation, Emergency

Control System must turn off some devices. As one of them

the system must turn off a lamp in LampModel, so that the

system calls LampOffAPI() to generates a “lampOff” event.

Lamp Model is “Off” state if it is “On” state. In this way, our

framework makes it possible to simulate among different

components.

V. CONCLUSION

In this paper, we proposed the structure of ZeroMQ-based

framework for distributed simulation. In the framework,

components interact with each other through message broker

by using REQ-REP sockets combination. Our framework,

which there are three different entities such as ZMQ, message

translation stub, and code or model simulator, supports

cooperative simulation among model and code components.

For presenting feasibility of our approach as a case study, we

applied it to a simple example of smart home environment. As

using our framework, each distributed component of system

can be developed incrementally on a computer and on

computers. Also the framework is applicable in any language

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

260

and on any platform because it is ZeroMQ-based. In future we

study concurrent simulation of distributed model and code for

the same component.

[9] C.-S. Lee, K.-H. Lee, J.-K. Lee, “A group RPC protocol for distributed

systems,” in Proc. International Conference on Information,

Communications and Signal Processing, vol. 2, pp. 805-809, 1997.

Sunghee Lee is a student in the School of Computer

Science and Engineering at Kyungpook National

University, Korea. He received a bachelor‟s degree and

a master‟s degree from Kyungpook National

University. He is currently a candidate for the Ph.D.

degree in the Department of Computer Science and

Engineering. He has been a researcher at Embedded

Software Engineering Laboratory, Kyungpook

National University. His reserch interests include embedded sofeware

testing and distributed embedded software testing.

Heungjun Park is a student in the School of Computer

Science and Engineering at Kyungpook National

University, Korea. He received a bachelor‟s degree

from Kumoh National Institute of Technology. He is

currently studying the master‟s degree in the

Department of Computer Science and Engineering. He

has been a researcher at Embedded Software

Engineering Laboratory, Kyungpook National

University. His reserch interest is embedded sofeware testing.

Woo Jin Lee is a professor in the School of Computer

Science and Engineering at Kyungpook National

University, Korea. He received the Ph.D. degree in

computer science from Korea Advanced Institute of

Science and Technology in 1999. His main research

interests include software testing, embedded systems,

software simulation, and formal methods.

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

261

REFERENCES

[1] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The

Internet of things architecture, possible applications and key

challenges,” in Proc. 10th International Conference on Frontiers of

Information Technology (FIT), 2012, pp. 257-260.

[2] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,

“Interacting with the SOA-based Internet of things: Discovery, query,

selection, and on-demand provisioning of web services,” IEEE

Transactions on Services Computing, vol. 3, issue 3, pp. 223-235,

2010.

[3] Information. [Online]. Available: http://zeromq.org

[4] H.-M. Qian and C. Zheng, “A embedded software testing process

model,” in Proc. International Conference on Computational

Intelligence and Software Engineering, 2009, pp. 1-5.

[5] S. Y. Jang, H. Ryu, and W. J. Lee, “Development environment of SWF

based virtual prototype for embedded software simulation,” Journal of

KIISE: Computing Practices and Letters, vol. 19, no. 12, pp. 643-647,

2013.

[6] T.-G. Kim, “Modeling simulation engineering,” Communications of

the Korea Information Science Society, vol. 25, no. 11, pp. 5-15, 2007.

[7] F. Junqueira, E. Villani, and P. E. Miyagi, “A platform for distributed

modeling and simulation of productive systems based on Petri nets and

object-oriented paradigm,” in Proc. 10th IEEE Conference on

Emerging Technologies and Factory Automation, vol. 1, 2005, pp.

907-914.

[8] S. Demers, P. Gopalakrishnan, and L. Kant, “A generic solution to

software-in-the-loop,” IEEE Military Communications Conference,

pp. 1-6, 2007.

