



Abstract—Steganography is a stealth technique used to hide

messages inside of images, typically used for unauthorized

covert communication. Detecting images that have hidden data

inside of them has always been an interesting and challenging

problem in cyber security. There are currently a handful of

methods that exist for detection of such hidden messages in the

form of data or images, which mostly require physical

examination. In this paper, we describe a solution to automatic

detection of Steganographic images with the novel application of

the fuzzy hashing technique. In this paper, we discuss the

methods used in this study, the experimental results, followed by

a discussion on future research.

Index Terms—Context triggered piecewise hashing, fuzzy

hashing, image analysis, image processing, Steganography.

I. INTRODUCTION

Image Steganography is a stealth technique used to hide

message inside of image, typically used for unauthorized

covert communication. While the original message itself will

be altered at some level to hide the information of interest,

efficient Steganography programs assures that the hidden

information is undetectable by the naked eye. Steganalysis,

which is the detection of such hidden information, is

particularly challenging, as such solutions often require

physical examination of the digital evidence or the use of very

high compression techniques. In this research, we applied

Fuzzy hashing for Steganalysis. Fuzzy hashing is a technique

used to determine the extent of similarity between two

entities.

This paper is structured in the following way. Section II

discusses the background of the research and related work,

including description of the fuzzy hashing application.

Section III describes the experiments and their results.

Section IV discusses future work regarding further

improvements and application. Section V concludes the

paper.

II. BACKGROUND AND RELATED WORK

Steganography and fuzzy hashing are both very interesting

and well-researched subject matters in cybersecurity. The

following is a brief discussion of the two.

A. Steganography

Steganography is the act of hiding an image, text, or

another file (stegotext) inside of another image, file, or text

(covertext) [1]. Classically, it refers to using some kind of

Manuscript received September 17, 2015; revised November 11, 2015.

The authors are with Tennessee Technological University, 110 University

Drive, Cookeville, TN 38505 USA (e-mail:

jddodson43@students.tntech.edu, asiraj@tntech.edu).

message as a cover to hide another secret message [2].

Steganography is primarily used for hiding text or image files

inside of image files. The use of Steganography can be traced

back to ancient Greece where text was hidden under writing

tablets’ wax [2]. The study of Steganography gained

popularity in 1983 with Simmons’ famous “Prisoner’s

Problem”, where ciphertext had to be hidden with

inconspicuous covertext [3].

For the purposes of this paper, Steganography will refer to

hiding information (text or image) inside of an image. There

are many different ways that Steganography can be

implemented. One simple method of Steganography involves

hiding information inside of the pixels of an image in the most

inconspicuous pieces [4]. Often, encryption is used to

generate a keystream based on a secret key to select

appropriate pixels to hide information in [2]. More advanced

methods also use algorithms that check pixels and their

surrounding pixels to make sure that they can be used to

appropriately hide information without being visibly

noticeable [2]. When Steganographers anticipate

compression prior to message transmission, such as for large

jpeg images, to thwart prevention, they split up the hidden

message to reside in multiple places or inside of the cover

image’s frequency domain [5], making covert communication

feasible - even with compression.

There exist a vast number of options for different

Steganography tools. Many of these tools are free or open

source. The main differentiators between the tools are the

different types of files that one can use to hide messages

within and the actual messages to hide. There are tools that

will only allow one to hide text inside of images, and vice

versa. To investigate the effectiveness of the application of

fuzzy hashing in Steganalysis, we wanted to use a versatile

open source tool that would provide the capability to hide any

file type inside of any other file type, and the tool we selected

is: Stego Magic.

1) Stego magic

Stego Magic is a publicly available open source

Steganography tool [6]. It can be downloaded as two

executable files; one for hiding text files inside of other files

and another for hiding any binary file inside of any other

binary file. In essence, this allows one to hide any file type

inside of any other file type. The two different executables

behave in the exact same way. The program is easy to use.

Both executables open up a window that is very similar to a

command prompt window. As this tool works for all types and

sizes of files [6], it makes it an ideal candidate for this

experiment because we assume in our experiments that the

size of the hidden file is unknown. In the real world, any size

of file can potentially be hidden, and an effective Steganalysis

approach should be able to work in all cases.

Applying Fuzzy Hashing to Steganography

Jeffery D. Dodson and Ambareen Siraj

International Journal of Future Computer and Communication, Vol. 4, No. 6, December 2015

421doi: 10.18178/ijfcc.2015.4.6.429

B. Fuzzy Hashing

Hashing is a cryptographic technique to compute a unique

representation of a digital entity. Hashing allows one to

uniquely identify an entity (except for rare collisions). Thus,

to compare entities, either the computed hash matches with a

known hash or it does not - there is no in-between or

consideration of match to a certain degree. Fuzzy Hashing is a

method of hashing that uses fuzzy logic to identify two entities

as similar to some extent [7]. Fuzzy logic, based on the theory

of possibility, deals with the notion of uncertainty by

measuring the degree of truth [8]. This approach is effective

when issues are uncertain, vague or incomplete.

Fuzzy hashing is more technically referred to as context

triggered piecewise hashing (CTPH) [7]. Context triggered

piecewise hashes are made up of a combination of two kinds

of hashes, a piecewise hash and a rolling hash [9]. While a

regular hashing algorithm creates a single hash for the entire

file, piecewise hashing creates multiple hashes/checksums for

the single file. In other words, piecewise hashing generates

multiple hashes for certain sized segments of a file [9]. This

can be thought of as block based hashing. Block based

hashing is where one takes the input and divides it into equal

sized blocks where the hashes of each individual blocks are

calculated [7]. A rolling hash works by creating a

pseudo-random value using the given input in a sequential

fashion [9]. It is essentially a function that changes based on

the last bytes it receives as input. Context-triggered piecewise

hashing combines piece-wise and rolling hashing to create

fuzzy hashes [9].

1) Ssdeep

Ssdeep is an application used in computer forensics for

creating and comparing fuzzy hashes [9]. Ssdeep is based on

the fuzzy hashing technique that was originally created for

spamsum, an application to detect spam by identifying

potential spam emails with similar features to known spam

emails [7].

What makes ssdeep powerful is that it allows one to

compare the context triggered piecewise hash values, called

signatures, to each other to determine how similar they are.

The algorithm determines a scaled weighted edit distance of

the files after removing sequences from the block size of the

signatures, which is the trigger value for the rolling hash [9].

This produces a match score as output, which can be thought

of as a similarity percentage.

C. Related Work

As mentioned before, originally fuzzy hashing was applied

for spam detection [9]. The spamsum algorithm was

developed and successfully used by Dr. Andrew Tridgell to

identify emails that are similar to known spam emails by

checking for match values greater than 50 [9].

Breitinger and Baier offer some improvements for the

fuzzy hashing methodology [7] and implement their own

method for fuzzy hashing called bbHash, which is based on

random Sequences and Hamming Distance” [10]. This

method is more robust, allows for more precision, and allows

for very small parts of files to be compared [10].

F. H. Al-Rubbaiy used fuzzy hashing for the concealment

of images using Steganography [11]. Using a fuzzy approach

to hiding text allowed for resilience against some common

types of detection methods [11].

Fuzzy Hashing has been used successfully for the detection

of malware [12]. While traditional hash methods failed to

recognize files that are not exactly identical to files known to

contain malware variants, fuzzy hashing was able to find files

with similar hashes indicating variants of the malware in files

[12].

III. EXPERIMENTAL APPROACH

We believe that fuzzy hashing can be an effective solution

to the detection of steganographic images. Images that have

information hidden inside of them should generate

signatures/hashes, which may not be identical to the ones with

no information hidden but can be similar to some extent.

Moreover, this similarity would degrade to the extent of the

size/nature of the hidden information.

In order to study this hypothesis, we used ssdeep and

experimented with a number of different stegotext and

covertext combinations. These included a wide range of sizes

of images with different sizes of hidden text or images.

Section A. explains the experimental setup, section B explains

each experiment in detail, and then section C presents the

results of the experiments with discussion.

A. Setup

The experiment consisted of a series of tests matching

different fuzzy hashes against each other using ssdeep’s file

signature comparison function. First, different text files

varying in sizes were created and then hidden inside image

files with Stego Magic. The images also varied in sizes. Then

the fuzzy hashes for the images were calculated using ssdeep

and its recursive functionality, the –r flag, to insert all the

hashes into one text file per experiment. Lastly, the actual file

signature comparisons were executed between all of the

hashes by using the –x flag for the ssdeep command. This

produced match values, which can be thought of as similarity

percentages.

1) Image selection

Four different popular images were selected for the

experiments. The reason behind selecting these is that there is

a vast amount of copies of these images available on the

Internet. This means that if these images were used to hide

information, they would likely not raise any kind of alarm due

to familiarity. The images are tankman.jpg, sadkeanu.jpg,

grumpycat.jpg, and water.jpg. Tank Man is a famous

historical image, Sad Keanu and Grumpy Cat are both famous

for being Internet memes, and Water is a rather popular high

definition desktop background.

B. Experimental Setup

The first three experiments used images that had text files

hidden inside of them via Steganography (using the Stego

Magic tool). Six text files with increasing sizes were used.

1.txt was 6kb, 2.txt was 15kb, 3.txt was 23kb, 4.txt was 34kb,

5.txt was 56kb, and 6.txt was 130kb. The last two experiments

used images that had other images hidden inside of them. Also,

two images (space and water) were hidden a different number

International Journal of Future Computer and Communication, Vol. 4, No. 6, December 2015

422

of times to simulate different sized images. These

experiments included seven test cases. One copy was hidden

for the first test, two were hidden for the second test, three

were hidden for the third test, and so on. A test using different

images of various sizes could also be performed rather easily

and would show almost identical results, as seen in our

preliminary testing.

Fig. 1 depicts the basic layout of each experiment. The

rounded rectangle represents the original image, double

rectangles represent text files, and double rounded rectangles

represent images with information hidden inside of them.

Rectangles with two vertical lines represent programs used

and hexagons represent match comparison results. Thus, at

the top is the original image (covertext) with the six text files

(stegotext). These files all feed into Stego Magic, which

creates the six steganographed test images as output. The six

test images and the original image are sent to ssdeep for match

comparison and the results of these comparisons are shown at

the bottom.

Fig. 1. Experimental setup.

Five experiments of the same setup were conducted for five

original images of varying sizes.

1) Experiment 1

The first experiment compared the hashes computed by

ssdeep for a medium sized image hiding a series of different

sized text files inside of it. The image used for this experiment

was tankman.jpg, a famous image of a Chinese protestor who

stood in front of a series of tanks [13]. The original image

measured 940x530 and was 65.4 kb in size. The test images

were named 1, 2, 3, 4, 5, and 6 after their respective text tiles.

The largest image, 6, ended up being 196 kb in size, a very

plausible size for an image like this.

2) Experiment 2

The second experiment used a smaller image sadkeanu.jpg,

a picture famous for being an internet meme [14]. The

original image was 16 kb and was 480x360 pixels. The test

images were named 1, 2, 3, 4, 5, and 6 as in experiment 1.

6.jpg ended up being 145 kb, which once again, was a

plausible size and would not raise alarm on its own.

3) Experiment 3

The third experiment used a very large cover image with

small text files hidden inside of it. The image was

grumpycat.jpg, a picture also famous for being an internet

meme [15].

4) Experiment 4

The fourth experiment consisted of an original image

hiding other images inside of it via Steganography. It used the

image water.jpg. This is a rather popular high definition

background easily accessible via a Google search for “high

definition wallpapers.”

5) Experiment 5

The fifth experiment reused the image of Grumpy Cat in

order to compare how the results would differ when images

were hidden in an image versus when texts were hidden.

C. Results and Analysis

1) Experiment 1 (Various sized texts hidden inside

medium sized image) results

Experiment 1 showed very promising results (Fig. 2). It

showed that the all hashes compared against the original at

varying levels of similarity where the similarity measures

decreased with size of the hidden messages.

Fig. 2. Results of experiment 1.

2) Experiment 2 (Various sized texts hidden inside small

sized image) results

Experiment 2 showed similar results to those of experiment

1 (Fig. 3). The hash comparison percentages all clearly

showed that something was very different about these images

when compared against the original. Since there was a major

size difference between the cover image, which was very

small, and the text file, 6.txt, which was the largest in the

group, it caused the image to change so drastically that the

result of the fuzzy hash comparison was below the threshold

of similarity (hence the 0 in the chart). Another interesting

point is that test images 4 and 5 both displayed similarity of

41% against the original, despite having different sized text

files hidden inside. When compared to each other, the hashes

of images 4 and 5 were 94% similar. This may be due to the

transformation function of ssdeep dealing with precision.

Fig. 3. Results of experiment 2.

International Journal of Future Computer and Communication, Vol. 4, No. 6, December 2015

423

3) Experiment 3 (Various sized texts hidden inside very

large image) results

In Experiment 3 (Fig. 4), the hashes for all tests indicated

they are 99% similar to the original. This may be due to lack

of precision used in the ssdeep program. If one could examine

files in finer precision, perhaps these changes would become

apparent.

Fig. 4. Results of experiment 3.

4) Experiment 4 (Various sized images hidden inside

medium sized image) results

As shown, there is significant dissimilarity between the

fuzzy hashes (Fig. 5). Beyond test image 4, the similarity gets

so insignificant that ssdeep does not even recognize them as

similar.

Fig. 5. Results of experiment 4.

5) Experiment 5 (Various sized images hidden inside very

large image) results

Experiment 5 showed very promising results (Fig. 6) in

comparison with experiment 3 (Fig. 4). Both of these

experiments used the same original image, and while

experiment 3 showed that hiding small text files did not alter

the very large original image very much, experiment 5

showed that hiding images resulted in very different hash

values. The same overall trend of decreasing similarity for

increasing hidden image size is seen here as well.

Interestingly, test images 4, 5, and 6 all compared at the

same level of similarity, despite being of different sizes. This

may also be related to how ssdeep handles precision.

Fig. 6. Results of experiment 5.

6) Overall results and analysis

As a whole, the experimental results were very promising

in demonstrating that fuzzy hashing can be used as a viable

method for detecting images with hidden messages (text or

images). All experiments, with the exception of experiment 3,

showed an overall trend of decreasing similarity when

compared with increasing hidden file size. Fig. 7 combines

the results of all experiments on one graph. Something to keep

in mind that results could vary based on the Steganography

program used. One improvement that could be made to these

experiments is to enable the fuzzy hashing algorithm to

compute with more precision such that slightest differences

are taken into consideration.

One interesting observation about these experiments was

the reporting of identical similarity measures, even if the

hidden files were different. While a match value of 0 should

warrant immediate attention (indicating that there is a very

large file hidden inside of an image), other similarity

measurements should also warrant further investigation.

Fig. 7. Results of all experiments.

IV. FUTURE WORK

The approach described in this paper requires the original

image for comparison. To align more with real world

applications where images are likely to be intercepted and

analyzed to detect covert communication, future research is

ongoing to devise an automated technique that would allow

one to scout similar images available in the Internet for

comparison with image under investigation. In this regard,

Reverse Image Searching tools, such as TinEye, have the

potential to be used to find images that appear similar to the

image in question. TinEye is able to retrieve images that have

been edited in some way, such as being cropped or resized

[16]. This implies that given a steganographic image, TinEye

should be able to find candidates to compare with such that

fuzzy hashing approach can be applied to detect and confirm

suspicious steganographic images.

V. CONCLUSION

In this paper we have outlined a novel approach for the

detection of steganogaphic images. The results of these

experiments have shown that the fuzzy hashing method can be

useful for Steganography detection and could become a great

tool for computer forensics and cyber security.

ACKNOWLEDGMENT

Our thanks to Jesse Kornblum for developing ssdeep and

making it available to public for general use. We would also

International Journal of Future Computer and Communication, Vol. 4, No. 6, December 2015

424

like to thank Srikanth Ramesh for creating Stego Magic and

making it available for free. Thanks to Dr. Elizabeth Dodson

for her help in peer reviewing this paper.

REFERENCES

[2] R. J. Anderson, “On the Limits of steganography,” IEEE J. Sel. Areas

Commun., vol. 16, no. 4, pp. 474-481, May 1998.

[3] G. J. Simmons. “The prisoners’ problem and the subliminal channel,”

in Proc. CRYPTO ‘83, pp. 51-67, 1984.

[4] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne. “A digital

watermark,” IEEE Trans. Image Process. vol. 2, pp. 86-90, 1994.

[5] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “A secure, robust

watermark for multimedia,” Information Hiding, Springer Lecture

Notes in Computer Science, vol. 1174, pp. 183-206, 1996.

[6] S. Ramesh. (Oct. 28, 2011). Hide Data in Image, Audio and Video

Files: Steganography. [Online]. Available:

http://www.gohacking.com/hide-data-in-image-audio-video-files-steg

anography/

[7] F. Breitinger, "Sicherheitsaspekte von fuzzy-hashing," M.S. thesis,

Fachbereich Informatik, Hochschule Darmstadt, Darmstadt, Germany,

2011.

[8] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control and

Information, Upper Saddle River, NJ: Prentice Hall, 1999.

[9] J. Kornblum, “Identifying almost identical files using context triggered

piecewise hashing,” Digital Investigation, pp. 91-97, 2006.

[10] F. Breitinger and H. Baier, “A fuzzy hashing approach based on

random sequences and hamming distance,” in Proc. ADFSL

Conference on Digital Forensics, Security and Law, pp. 89-101, May

2012.

[11] F. H. Al-Rubbaiy, “Concealment of information and encryption by

using fuzzy technique,” Univ. of Al Mustansuraia, Baghdad, Iraq.

2011.

[12] D. French, “Fuzzy hashing techniques in applied malware analysis,”

Software Engineering Institute Blog, 2011.

[13] J. Makinen. (June 4, 2014). Tiananmen square mystery: Who was

'Tank Man'? [Online]. Available:

http://www.latimes.com/world/asia/la-fg-china-tiananmen-square-tan

k-man-20140603-story.html

[14] Keanu Is Sad / Sad Keanu. [Online]. Available:

http://knowyourmeme.com/memes/keanu-is-sad-sad-keanu

[15] Grumpy Cat. [Online]. Available:

http://knowyourmeme.com/memes/grumpy-cat

[16] Idée Inc. (2014). FAQ – TinEye. [Online]. Available:

https://www.tineye.com/faq

Jeffery D. Dodson is a master’s candidate in the MBA

program at Tennessee Tech University in Cookeville,

Tennessee. He got his undergraduate degree in

computer science with a focus in software and

scientific applications at Tennessee Tech University in

May 2015.

He currently works as a database programmer and

informatics analyst for Cumberland Health Analytics,

LLC in Cookeville, Tennessee. He is also currently a research assistant to Dr.

Thad Perry at the Center for Healthcare Informatics at Tennessee Tech

University in Cookeville, Tennessee. He is currently working on research

involving data mining of healthcare claims to find new ways of grouping

claims as well as text mining patient satisfaction surveys in order to create a

more useful feedback form based on patient interests. He has previously

done research in the field of cyber security on both the safety of QR Codes as

well as steganography.

Ambareen Siraj is an associate professor at the

Computer Science Department and serves as the

director of cybersecurity education, research and

outreach center at Tennessee Tech University. She

teaches various security courses both at undergraduate

and graduate level. Her research is in the areas of

situation assessment in network security, secure

communication in smart grid, security metrics and

security education. She has authored/co- authored around thirty journal and

conference articles in security. She also serves as the faculty advisor of

Tennessee Tech Cybersecurity Club for students.

International Journal of Future Computer and Communication, Vol. 4, No. 6, December 2015

425

[1] A. Cheddad, J. Condell, K. Curran, and P. Mc. Kevitt, “Digital image

steganography: Survey and analyses of current methods,” Signal

Processing, vol. 90, issue 3, pp. 727-752, March 2010.

