
  

 

Abstract—Avionic systems are safety-critical systems because 

system failure can be catastrophic resulting in loss of life and/or 

resources. Consequently, safety-critical systems must be 

developed carefully and adhere to standards such as DO-178C. 

As these types of systems need to maintain critical mechanisms, 

some of the mechanisms can be complicated and difficult to use 

appropriately, written descriptions can be vague and error 

prone. This paper aims to explore graphical specification 

method as alternative to represent the textual DO-178C. Several 

UML diagrams are created in order to represent DO-178C in a 

format that is easier related to model-driven software 

development. Specifically, UML Package Diagrams, Activity 

Diagrams and Class Diagrams are used to illustrate the various 

processes, sub-processes, activities and contents as defined in the 

DO-178C specification. 

 

Index Terms—DO-178C specification, model transformation, 

safety-critical systems, UML diagrams. 

 

I. INTRODUCTION 

The impacts of safety in avionic systems that comprise 

software and hardware integration have to be considered at 

system development level. For this reason, such systems 

should be planned and developed in accordance with airborne 

software considerations and system standards. DO-178C is 

the "Software Considerations in Airborne Systems and 

Equipment Certification" [1]. DO-178C is the modified 

edition of DO-178B that was published in December 2011. 

DO-178C has the purpose similar as its predecessor, which is 

"providing guidance for the production of software for 

airborne systems and equipment that performs its intended 

function with a level of confidence in safety that complies 

with airworthiness requirements" [2]. There are changes in 

DO-178C which tighten some previously established controls 

and also established concrete guidance for more flexibility in 

development approaches. These flexibility includes 

examination of costs and benefits, establishment of certifiable 

product development approach [3]. 

The RTCA DO-178C specification ―Software 

Considerations in Airborne Systems and Equipment 

 
 

 

Manuscript received February 28, 2016; revised April 18, 2016. This 

work was supported in part by a grant from the University of North Dakota 

Faculty Seed Grant Program 2014. 

E. S. Grant is with the University of North Dakota Department of 

Computer Science, North Dakota, ND 58202, USA (e-mail: 

grante@aero.und.edu). 

T. Datta is with the Department of Computer Science, the University of 

North Dakota, North Dakota, USA (e-mail: Tanaya.datta@und.edu). 

Certification‖ is an internationally accepted document that 

sets out guidelines to plan, design, development, and certify, 

software systems for the avionic industry. In a research 

project to develop a model-driven object-oriented software 

development methodology, for avionic systems it was 

determined that the textual format of DO-178C was a 

hindrance to the research effort. Consequently, work was 

directed at developing an alternative representation of 

DO-178C that would complement and enhance the research 

on developing the aforementioned methodology. The 

approach taken is to transform the textual representation of 

DO-178C into a set of UML (Unified Modeling Language) [4] 

models that would be in the same representation models of the 

research methodologies. The transformed representation of 

DO-178C would be in the form of UML package, class 

diagram, and activity diagrams. This would allow for a 

seamless transition from the DO-178C specification to the 

model-driven object-oriented software development 

methodology. The goal of this research is to develop a subset 

of the UML model representation of DO-178C as a precursor 

to defining the research methodology. 

This paper is a description of a particular section of "RTCA 

DO-178C Software Considerations in airborne Systems and 

Equipment Certification guidelines" titled Software 

Configuration Management Process [1]. This is one of the 

integral processes mentioned in this guideline in Section 7.0. 

This research transforms the textual description of this section 

into UML notation in the form of package diagrams, class 

diagrams and activity diagrams. 

The structure of the remainder of the paper is as follows. 

Section II presents a background of the research project.  

 

II. BACKGROUND 

A. Software System Modeling 

Modeling is a problem solving technique that is popular in 

many engineering disciplines [4], [5]. A model is defined as a 

representation of a system from a specific perspective that is 

intended to promote understanding of the real system and to 

provide the capability to serve as a high fidelity validation test 

beds prior to construction of the potential system [6]. The 

advantages of the modeling method include understanding 

complexity, evolution, and manipulation of the modeled 

systems, and simulations. Thus, models are used to better our 

understanding of fundamental processes. This can be useful in 

policymaking and interventions, concerning efficient training, 

scenario development, risk assessment, forensic analysis, and 

future trends prediction; resulting in simplifying the problem 

Modeling RTCA DO-178C Specification to Facilitate 

Avionic Software System Design, Verification, and 

Validation 

Emanuel S. Grant and Tanaya Datta 

International Journal of Future Computer and Communication, Vol. 5, No. 2, April 2016

120doi: 10.18178/ijfcc.2016.5.2.457

mailto:grante@aero.und.edu
mailto:Tanaya.datta@und.edu


  

solving processes for complex systems. 

The benefits of modeling have made it a popular problem 

solving approach in many disciplines, including the 

engineering disciplines where it has brought forth the Model 

Driven Engineering concept (MDE) [7]. MDE refers to 

Engineering approaches that use models as primary artifacts 

through the engineering lifecycle. Engineering models are 

built and tested before development of the real system. The 

use of models in engineering processes have significantly 

minimized errors and reduced the cost of the final product. In 

the Software Engineering field [8], Model Driven 

Development (MDD) constitutes the MDE vision of software 

development processes [9]. The MDD approach is 

characterized by the use of modeling languages and formal 

specification methods to describe the software system under 

development; analogous to other engineering disciplines 

where the created models can be tested and validated before 

the actual system is developed. 

A need for standards arose from the various 

implementations of MDD. The need for standards was 

addressed by the Unified Modeling Language (UML) [7]: a 

general purpose standardized specification language for 

object oriented software design. UML uses a set of graphical 

notations to create an abstract model of a system. In addition 

to providing a standard for MDD with a wide variety of 

diagrams at many levels of abstractions, UML offers different 

views of a system model, which facilitates emphasis on a 

particular aspect of the modeled software product. With its 

visual communication, various levels of abstractions, and the 

modeling of different views of a system, UML has become the 

de-facto standard in the software development industry. 

Empirical evidence supports the claim that UML is an 

effective approach to modeling software systems [10]. The 

popularity of the UML standards gives evidence of usefulness 

and lower difficulties of implementation as it pertains to the 

development of new software systems. 

The growing complexity of the software is the motivation 

behind model driven development. The model driven 

development concentrates on describing the complex systems 

at multiple levels of abstraction in the form of models and 

using the models in implementation. Using the model driven 

software development for space payload systems decreases 

the complexity and helps in efficient software implementation 

and testing. The objective of this project is to design and 

implement a series of UML models that presents a graphical 

view of the DO-178C specification [1]. 

B. Unified Modeling Language (UML) 

The Unified Modeling Language (UML) is the ISO 

standard for designing and conceptualizing graphical models 

of software systems [11]. Since its development by the Object 

Management Group (OMG) in the early 1990’s its use has 

proliferated in both industry and academia. Graphical 

software models, such as UML models, possess simplistic 

designs and promote good software engineering practices.  

In the traditional approach to software engineering, 

graphical models would precede code generation. However, it 

is common for a prototype to preexist. In such scenarios, 

reverse engineering activities are used to derive the graphical 

models.  

The UML is an object-oriented modeling language for 

specifying, visualizing, constructing, and documenting the 

artifacts of software systems [11]. The UML is used to depict 

a high-level representation of the proposed system. This is 

achieved through the design of various types of models, which 

capture the structure and behavior of the system. Diagrams in 

UML are categorized as structure or behavior diagrams. 

Structure diagrams represent the static framework of the 

system; whereas behavior diagrams depict the dynamic 

features of the system. These informal models have an 

advantage of being expressive – which makes them easily 

conveyed to both technical and nontechnical stakeholders. 

This work focuses on use of the UML class and activity 

diagrams: 

Class diagram [11] - is used at the analysis phase to present 

a view of the static entities in the problem domain, and at the 

design phase to present a view of the static entities (classifiers) 

in the solution domain. This is the UML diagram used to 

captures the static information at the requirement phase of 

software development. 

A class diagram (CD) is described as ―. . . a graph of 

Classifier elements connected by their various static 

relationships.‖ [11]. The set of classifier elements that may be 

present in a CD include interfaces, packages, relationships, 

instances, and links, etc. The UML labels a CD that contains 

no classes an object diagram (OD). An example of a UML CD 

is illustrated in Fig. 1. 
 

 
Fig. 1. UML class diagram example. 

 

Activity diagram - is used to present the control or data 

flow of a process. An activity diagram is a type of state 

machine, where the states are represented by actions or 

sub-activities, and transitions are implicitly triggered by the 

completion of an action or a sub-activity. An activity diagram 

is associated with a classifier, such as a use case (at a high 

level or granularity) or an operation (at a more detailed level 

of granularity). Activity diagrams are made up of a sub-set of: 

Action state, Call state, Sub-activity state, Decision, 

Swimlane, and Synch state. An example UML activity 

diagram is presented in Fig. 2. 

The level of abstraction provided by models helps 

developers and stakeholders visualize different aspects of the 

system while avoiding the details of implementation. This 

represents two principles of software engineering, namely the 

abstraction and separation of concern principles [8]. For any 

given system, a large number of models can exist and it is 

important to ensure their overall consistency. Model 

transformation uses a set of rules called transformation rules, 

International Journal of Future Computer and Communication, Vol. 5, No. 2, April 2016

121



  

which accepts one or more models as input and produce one 

or more target models as output [12]. 
 

 
Fig. 2. UML activity diagram example. 

 

C. DO-178C Specification 

In order to develop a model-based software development 

methodology that complies with the DO-178C specification 

[1] a series of UML models were developed to represent 

aspects of DO-178C. This approach taken is similar to the 

approach used in defining the UML specification [11]. Fig. 7 

depicts a high-level UML package model of DO-178C, which 

illustrates that the Software Planning Process defines the 

Software Development Process and the System Integral 

Process. The Software Integral Process comprises the 

Software Certification Process, the Software Safety Quality 

Assessment Process, the Software Verification Process, and 

the Software Configuration Management Process. Each 

package is then further refined to provide the detail content of 

the package. 
 

 
Fig. 3. DO-178C high-level UML package diagram. 

 

Each of the packages of Fig. 3 is decomposed into its 

components and these components are further decomposed 

into the low-level constituents of the DO-178C specification. 

These constituents are made up of processes, data items, and 

constraints. The goal of this approach is to re-orient the 

DO178C textual specification into a more understandable 

hierarchical graphical model that presents an ontological map 

between the DO178C constituents. Numbers appearing in Fig. 

3 denotes the section number in the DO-178C specification [1] 

for the associated item. Fig. 4 captures a subset of the 

high-level DO-178C processes that are necessary in order to 

be compliant. Similar to the Fig. 3, the numbering in Fig. 4 

references the relevant section of the DO-168C specification. 

 

III. RESEARCH METHODOLOGY 

In order to develop a model-based software development 

methodology that complies with the DO-178C specification a 

series of UML models were developed to represent aspects of 

DO-178C. This approach taken is similar to the approach 

used in defining the UML specification [6]. Fig. 3 depicts a 

high-level UML package model of DO-178C, which 

illustrates that the Software Planning Process defines the 

Software Development Process and the System Integral 

Process. The Software Integral Process comprises the 

Software Certification Process, the Software Safety Quality 

Assessment Process, the Software Verification Process, and 

the Software Configuration Management Process. Each 

package is refined to the detail content of the package. 

In this research, different UML models were developed to 

represent particular section of DO-178C. In order to convert 

Software Configuration Management Process from its textual 

representation to diagrams, work first started from a 

high-level diagrams which is created using package diagram. 

Fig. 4 represents this main package diagram, which illustrates 

the complete Software Configuration Management Process, 

consisting of the defined by Software Configuration 

Management Objectives (SCMPO) Section 7.1 of [1], 

Software Configuration Management Process Activities 

(CMPA) Section 7.2 of [1], Data Control Categories (DCC) 

7.3 of [1]) Software Load Control (SLC) Section 7.4 of [1], 

and Software Life Cycle Environment Control (SLCEC) 

Section 7.5 of [1]. 
 

 
Fig. 4. UML software configuration management process package. 

 

The next Package diagram of Fig. 5 further illustrates the 

Software Configuration Management Process Activities 

(Section 7.2 of [1]). Fig. 5 represents this process that is a 

composition of several activities, namely: 

 Configuration Identification(CI) Section 7.2.1 of [1], 

 Baselines and Traceability(BT) Section 7.2.2 of [1], 

 Problem Reporting, Tracking and Corrective Action 

PRTCA) Section 7.2.3 of [1], 

 Change Control (CC) Section 7.2.4 of [1], 

 Change Review (CW) Section 7.2.5 of [1], 

 Configuration Status Accounting(CSA) Section 7.2.6 of 

International Journal of Future Computer and Communication, Vol. 5, No. 2, April 2016

122



  

[1] and 

 Archive, Retrieval and Release(ARR) Section 7.2.7 of 

[1]. 
 

 
Fig. 5. Software configuration management process activities. 

 

For each package, separate activity diagrams are created. 

Some activities are associated or connected with other 

activities, those connected activities are not showed here 

separately(e.g. Change Control and Change Review are 

connected with all other activities). Fig. 6 illustrates the 

activity diagram for Configuration Identification (Section 

7.2.1 of [1]). This activity first identifies configuration for 

each configuration items, based on success, it further proceed 

for next steps which can be Change Control, Traceability 

Analysis and Items used or referenced by other software. If all 

these activities completed successfully, it will generate output, 

otherwise it will again go to previous stage to perform those 

activities again. 
 

 
Fig. 6. Configuration identification UML activity diagram. 

 

The next activity diagram is of the activity Baseline and 

Traceability (Section 7.2.2 of [1]). Fig. 7 illustrates this 

activity. In this activity first baselines need to be established 

followed by change control activities which will help to 

determine derived baselines (such as Intermediate baselines - 

established as aids in controlling the Software Lifecycle 

processes, Software Product Baselines - established for 

Software products and General baselines - established for 

Configuration Items) and these baselines should be traceable 

from their output stage. 

Applying same methodology, activity diagrams are created 

for all processes listed in the DO-178 specification. Fig. 8 

illustrates the activity diagram for the Problem Reporting, 

Tracking and Corrective Actions process of the Software 

Configuration Management Process Activities (Section 7.2 of 

[1]). 
 

 
Fig. 7. Activity diagram for baselines and traceability. 

 

 
Fig. 8. Activity diagram for problem reporting, tracking and corrective 

action. 

 

 
Fig. 9. Class diagram for data control categories. 

 

Along with the UML activity diagrams, the UML class 

diagrams are created for all other processes which are part of 

the main configuration process. Fig. 9 is the class diagram for 

Data Control Categories(Section 7.3 of [1]). It can be 

International Journal of Future Computer and Communication, Vol. 5, No. 2, April 2016

123



  

subdivided into two parts, CC1 (Control Category 1) and CC2 

(Control Category 2). CC2 activities are subset of CC1 

activities [1]. Fig. 9 describes Software Load Control (Section 

7.4 of [1]). 
 

 
Fig. 9. Class diagram for software load control. 

 

IV. CONCLUSION 

This paper is a description and implementation of UML 

model transformation in order to represent a particular 

module of the RTCA DO-178C specification for airborne 

software systems. Airborne Software systems are complex, 

they are categorized as safety-critical systems. Textual 

representation can be difficult to understand and time 

consuming while gathering requirements during development 

of such complex airborne software systems. Hence 

diagrammatic representation can be an aid to the requirements 

elicitation, documentation, and understanding of the system. 

In this work, multiple UML diagrams are used in the 

implementation of a methodology to represent particular 

module of DO-178C specification. 

In future work, this methodology will be used to represent 

all other modules of the DO-178 specification, which will 

lead the development strategies to a different level with less 

time and very comprehensive and clear requirements. 

REFERENCES 

[1] RTCA Special Committee 205 (SC-205), ―DO-178C — Software 

considerations in airborne systems and equipment certification, 

RTCA,‖ Washington DC, DO-178C, Dec. 2011.  

[2] C. M. Holloway, ―Making the implicit explicit: Towards an assurance 

case for DO-178C,‖ NASA Langley Research Center, Hampton, 

Virginia, USA, 2013. 

[3] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller, ―Rotation, 

scale, and translation resilient public water marking for images,‖ IEEE 

Trans. Image Process., vol. 10, no. 5, pp. 767-782, May 2001. 

[4] J. Garcia-Molina, A. Moreira, and G. Rossi, "UML and model 

engineering," European Journal for the Informatics Professional, vol. 

V, no. 2, pp. 3-4, 2004.  

[5] B. Selic, "The pragmatics of model-driven development," Software, 

IEEE, vol. 20, no. 5, pp. 19-25, 2003. 

[6] A. M. Law, "How to build valid and credible simulation models," 

presented at Winter Simulation Conference, Berlin, Germany, 2005. 

[7] D. C. Schmidt, "Model-driven engineering," IEEE Computer, vol. 7, 

no. 2, pp. 25-31, 2006. 

[8] I. Sommerville, Software Engineering, 9th ed. Old Tappan, NJ, USA: 

Addison-Wesley, 2011. 

[9] R. France and B. Rumpe, "Model driven development of complex 

software: A research roadmap," presented at Future of Software 

Engineering, Minneapolis, USA, 2007. 

[10] R. S. Pressman, Software Engineering: A Practitioner's Approach, 

Indianapolis, Indiana, USA: Pressman & Associates, Inc., 2010. 

[11] ISO/IEC 19501:2005, Information technology – Open Distributed 

Processing – Unified Modeling Language (UML) Version 1.4.2. 

[12] S. Sendall and W. Kozaczynski, ―Model transformation: The heart and 

soul of model-driven software development,‖ Software, IEEE, vol. 20, 

no. 5, pp. 42-45, Sept.-Oct. 2003. 

 

 

Emanuel S. Grant received a B.Sc. from the 

University of the West Indies, Barbados, a MCS from 

Florida Atlantic University, USA, and a Ph.D. from 

Colorado State University, USA, all in computer 

science. His research interests are in the areas 

software development methodologies, model driven 

software development formal specification 

techniques and domain-specific modeling languages. 

He is an associate professor in the Department of Computer Science at the 

University of North Dakota, USA, since 2008, where he started as an 

assistant professor in 2002. He is an adjunct professor at the Holy Angel 

University, Philippines, where he is conducting research in software 

engineering teaching with collaborators from HELP University College, 

Malaysia; III-Hyderabad, India; Singapore Management University, 

Singapore; Rochester Institute of Technology, Baylor University, Montclair 

State University, and University of North Carolina Wilmington of the USA; 

and the University of Technology, Jamaica. 

Dr. Grant is a member of the Science and Engineering Institute (SCIEI), 

the Association for Computing Machinery (ACM), Upsilon Pi Epsilon 

(UPE), and the Institute of Electrical and Electronics Engineers (IEEE), and 

the International Association of Engineers (IAENG). 

 

 

Tanaya Datta is pursuing a MS in computer science 

from University of North Dakota, Grand Forks. She 

completed her B-Tech in information technology 

from Techno India, Kolkata. She has industry work 

experience of almost 4 years in data warehousing, 

MDM. She has worked in different modeling 

language, such as UML, SysML, and OCL. Her 

research     interests    are     modeling     of    software  

development, data & web mining. 

 

 

 

International Journal of Future Computer and Communication, Vol. 5, No. 2, April 2016

124


