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Abstract—An improved ensemble particle filter (EnPF) 

algorithm combining the advantages of ensemble Kalman filter 

(EnKF) and particle filter (PF) is proposed for the nonlinear 

target tracking system. Two independent ensembles are 

adopted, one ensemble is handled by EnKF first, then the 

analysis ensemble produced by EnKF and another ensemble is 

used to generate proposal distribution which approximates the 

true posterior distribution more accurately, finally PF is 

executed to track the target based on this proposal distribution 

in the nonlinear target tracking system. Simulation results show 

that the improved EnPF can increase the stability of the 

tracking system and provide better tracking precision without 

increasing the computational complexity. 

 

Index Terms—Target tracking, ensemble particle filter, 

proposal distribution, nonlinear 

 

I. INTRODUCTION 

Many nonlinear tracking algorithms have been advised to 

the nonlinear target tracking problem before, such as 

extended Kalman filter(EKF), unscented Kalman filter(UKF), 

and particle filter(PF), in which PF proposed by Gordon had 

better tracking performance than others [1]. It was difficult to 

obtain the true posterior probability density distribution from 

nonlinear target tracking system, so PF usually uses proposal 

distribution to simulate the true posterior probability density 

distribution. If the samples between proposal distribution and 

the true posterior density distribution exists great bias, the 

tracking performance of PF will decline quickly. So the key 

of modifying PF was to find the appropriate proposal 

distribution function, then many improved PF algorithms 

based on this thought were proposed in the past ten years. 

In1998, extended Kalman particle filter(EKPF) proposed by 

Doucet A [2] used EKF to integrate the latest observation 

data and approximate the posterior probability density 

distribution by locally linearized, the tracking performance 

for nonlinear target tracking system was improved 

correspondingly. But the large error was introduced when the 

nonlinear model was linearized by EKF, so the tracking 

precision was limited in a certain degree. In 2001, unscented 

particle filter (UPF) [3] proposed by Merwe gained the closer 

proposal distribution to true posterior probability density 

distribution, and the tracking performance of UPF was better 

than EKPF. But with the increase of state dimension, the 
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calculation of UPF rose rapidly, and the performance of UPF 

was limited by the assumption of Gaussian noise distribution 

in addition [4]. In 1994, Geir Evensen proposed the ensemble 

Kalman filter (EnKF) [5], which was a particle filter 

algorithm introducing ensemble forecast thought and 

integrated the advantages of ensemble forecast theory and 

Kalman filter algorithm. EnKF was the general form of UKF, 

which used ensemble forecasted thought to replace 

deterministic sampling of UKF and formed the observation 

ensemble. So the EnKF can be used more widely than UKF 

and become the better choice to propagate the proposal 

distribution, but EnKF was also limited by the assumption of 

Gaussian noise distribution in a certain degree.  In 2006, 

Werrts and El Serafy compared the EnKF and PF in detail [6]. 

Paper [7] proposed ensemble particle filter (EnPF) and 

presented several combinations of EnKF and PF, and then the 

parallel mode of EnKF and PF was applied to rainfall-runoff 

model. In 2009, Mandel [8] used an EnKF as predicator at 

first, and then used PF as corrector to reduce the affection of 

Gaussian distribution assumption of EnKF. In 2011, DU 

Hangyuan used EnKF to propagate the proposal distribution 

of PF, and the proposal distribution function integrated the 

latest observation into state transition density of the system, 

so the proposal distribution can approximate the true 

posterior distribution more accurately [9]. The improved 

EnPF for nonlinear target tracking system is proposed in this 

paper. Two independent ensembles are adopted, one 

ensemble is handled by EnKF first, then the analysis 

ensemble produced by EnKF and another ensemble is used to 

generate proposal distribution of PF, finally PF is executed 

based on this proposal distribution [10], [11]. The improved 

EnPF not only combines the advantages of EnKF and PF, but 

also solves the deficiency of Gaussian noise distribution of 

EnKF and provides better tracking performance under the 

nonlinear condition. 

 

II. THE STRUCTURE OF IMPROVED ENPF 

EnPF combines the advantages of EnKF and PF. PF uses a 

set of weighted particles to describe any posterior probability 

distribution function, but there is no updating in nature 

because of only changing the weights of particles. There are 

several combinations of EnKF and PF as follows: 
 

 
Fig. 1. EnKF pre-filter. 
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It is pre-filter structure in Fig. 1, two independent 

ensembles are included. The number of members in the first 

ensemble is N1, and the number of members in the second 

ensemble is N2. The first ensemble with N1 members uses 

EnKF to pre-filter, and then the state estimation after 

pre-filter is as input for the second EnKF filter using the 

ensemble with N2 members.   
 

 
Fig. 2. Serial of weighted EnKF and PF. 

 

 
Fig. 3. Parallel of EnKF and PF. 

 

Fig. 2 uses weighted EnKF filter to estimate and output the 

weighted average, then the PF is executed to track the target, 

in which EnKF computes corresponding weight using the 

similar method to PF for each ensemble member. 

Fig. 3 describes the parallel structure of EnKF and PF. The 

ensemble with N1 members is executed by EnKF, and then 

the ensemble with N2 members is handled by PF. Whether 

EnKF and PF interacting each other depends on the specific 

system. 

The method in this article is based on the first and second 

structure. Two independent ensembles are adopted, the first 

ensemble with N1 members is handled by EnKF at first, then 

the analysis ensemble of EnKF and second set with N2 

particles constitute the proposal distribution of PF, following 

random sampling is done from this proposal distribution, 

finally PF is executed to track the target. The structure of 

improved EnPF is described in Fig. 4. 
 

 
Fig. 4. The structure of improved EnPF. 

 

III. NONLINEAR TARGET TRACKING ALGORITHM BASED ON 

IMPROVED ENPF 

Consider a discrete-time nonlinear system with dynamics 

 

1( )i i iX f X W                                (1) 

 

and measurements 

( )i i iZ H X N                           (2) 

 

where iW  is the process noise and model error, and iN  is the 

measurement noise, iZ is the measurement vector in the 

target tracking system. 

1) Initialing: The initial ensemble is produced by prior 

knowledge. At time k, the ensemble can be described as: 
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where N1 is the number of ensemble members 

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]R T

i i i i i i iX k x k y k z k x k y k z k is state of the 

i-th member at time k, R=F is forecasted state, R=A is 

analysis state. 

2) EnKF sampling 

 Forecasted step: forecasted state of each ensemble 

member is computed at time k+1: 

 

( 1) ( ( )) ( )F A

i i iX k f X k W k                          (4) 

 

and the forecasted state can be described as: 

 

1

( 1) ( ) ( 1)
N

F F

i i
i

X k w k X k


                         (5) 

 

where 
1

( ) 1
N

i
i

w k


 . 

 Kalman gain matrix ( 1)K k  is computed at time k+1: 

 
1( 1) ( 1) ( ( 1) )F T F T

iK k P k H HP k H R                     (6) 

 

 Analysis step: Observed data are used at the analysis step, 

and state variable and error covariance matrix are 

computed at time k+1. For i = 1… N, 
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  (7) 

 

3) The proposal distribution is generated from the ensemble 

with N2 particles and the analysis ensemble of EnKF. 

 

{ ( ( 1), ( 1)), 2}A A

i iq N X k P k N                          (8) 

 

4) Random sampling is done from proposal distribution 

function q, and the new samplings are obtained at time 

k+1 

( 1) ( ( 1) | ( ), ( 1))i i iX k q X k X k Z k                  (9) 

5) Computing  the weight of each particle 
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6) Weight normalizing: 
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7) Resampling: 

 Use 
1

1

ˆ ( ( 1))
Ns

eff i
i

N w k 



  to compute the number of 

effective particles of PF;                        

 If the number of the effective particles is less than the 

threshold, then resample N random particles 

8) Fusion results: 
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9) Go to step 2). 

 

IV. EXPERIMENTS AND ANALYSIS 

A. Experiments 

Fig. 5 shows the comparison of different nonlinear target 

tracking algorithms for one random nonlinear motion. Fig. 6 

shows the comparison of different nonlinear target tracking 

algorithms for one random nonlinear motion. Fig. 6 shows 

the comparison of different nonlinear target tracking 

algorithms for another random nonlinear motion. The 

feasibility of improved EnPF algorithm  can be observed in 

the nonlinear target tracking system when the target performs 

the motion. 

From the figures we can see that UKF, EnKF, PF, EnPF 

can be applied to nonlinear target tracking system. But UKF 

has the lowest performance due to the limitation of 

non-Gaussian noise distribution condition. The performance 

of EnKF is a little better than the UKF because EnKF is the 

extension of UKF, but still affected in a certain degree by the 

assumption of non-Gaussian noise. PF can be applied to any 

nonlinear non-Gaussian target tracking system, but when the 

selection of proposal distribution is unreasonable, PF still 

exist certain tracking error.  

It can be observed from figures that improved EnPF have 

the better tracking performance than UKF, PF, and EnKF. 

EnPF is the improvement of PF and utilizes the EnKF to 

produce the proposal distribution function of PF. From the 

theoretical analysis and experiments, the proposal 

distribution function of improved EnPF is generated based on 

the analysis ensemble and another set with N2 particles, 

which solves the limitation of Gaussian system for EnKF. So 

the tracking performance of EnPF based on EnKF is better 

than the performance of UPF based on UKF.    
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Fig. 5. Comparison of different nonlinear target tracking algorithms. 

 

B. Characteristics Analysis 

1) The improved EnPF adopts two independent ensembles, 

where the ensemble with N1 members is handled by 

EnKF, and the ensemble with N2 members is filtered by 

PF. The algorithm can increase the stability of the 

tracking system. Once PF does not work normally, 

EnKF can filter independently using the ensemble with 

N1 members. If EnKF disables, PF tracks the object 

independently. Both EnKF and PF work normally, the 

tracking performance is better than EnKF or PF alone, so 

the improved EnPF can increase the stability.    

2) The nonlinear target tracking algorithm of improved 

EnPF does not use directly the state estimation of EnKF. 

It generates the proposal distribution from the analysis 
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ensemble of EnKF and another set with N2 particles, and 

random sampling is done from this proposal distribution. 

So the proposal distribution is closer to true distribution 

and don’t limited by the condition of Gaussian noise 

distribution. The improved EnPF can apply to 

non-Gaussian system which solving the problem of 

EnKF limited by the Gaussian noise assumption.  

3) The improved EnPF fuses the latest measurements at 

analysis step, which remedies the defection of only 

changing the weights of particles in PF in which no 

really updating is executed. 
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Fig. 6. Comparison for the another random nonlinear motion. 

 

C. Comparison of Computation Complexity 

Supposing a multiplication is executed in one forecasted 

step of EKF, and B multiplication is executed in one analysis 

step of EKF. There are 2n+1 sample in UKF, N particles in 

PF, N1 members in the ensemble of EnKF, and k Monte 

Carlo for generating observed ensemble. And EkPF is the 

combination of EnKF and PF, UPF is integration of UKF and 

PF, EnPF is the combination of EnKF and PF. Then 

comparison of different nonlinear filter algorithms is 

described in Table I. From table we can see that EnPF has the 

same computation complexity as EkPF and UPF but has 

higher tacking precision. 
 

TABLE I: COMPARISON OF NONLINEAR FILTER ALGORITHMS 

Algorithm Computation complexity 

UKF 3 2 24 (4 5 ) (6 2) 5 (2 1)*( )n m n n m mn n A B       
 

PF *( )N A B
 

EnKF 
3 2 2

1 14 (4 5 ) (6 2) 5 ( )n m n n m mn kN N A B       
 

EkPF 3 2 2*(3 3 2 )N n mn m n mn A B    
 

UPF 3 2 2*(4 (4 5 ) (6 2) 5 (2 1)*( ) )N n m n n m mn n A B B        
 

EnPF 
3 2 2

1 14 (4 5 ) (6 2) 5 ( )n m n n m mn kN N A B NA NB         
 

 

V. CONCLUSION 

An improved EnPF combining the advantages of EnKF 

and PF has been presented in the nonlinear target tracking 

system. The algorithm can increase the stability of the 

tracking system, and generates the proposal distribution 

closer to the true probability density distribution. 

Furthermore, the improved EnPF has the better tracking 

performance without increasing the computation complexity. 
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