



Abstract—Key retrieval is the most basic and important

technology. The trie is one of the key retrieval methods that can

be retrieved without depending on the number of registered keys.

The development of implementation method of a trie is

indispensable for use in application fields. The double array is

an excellent implementation method of a trie with high speed

retrieval and compactness. However, there is room for the

improvement in comparison with the implementation method

given priority to memory efficiency because the size for two

integer types per one node is necessary. This paper presents a

novel implementation method for a trie by using the idea of the

randomized algorithm. From experimental observations, it was

shown that the proposal method promotes efficiency of a

trade-off of memory size and the speed well.

Index Terms—Trie, double array, randomized algorithm,

pseudorandom number generator.

I. INTRODUCTION

Key retrieval is the most basic and important technology.

Because key retrieval is daily used by all scenes with the

spread of the Internet, more efficient technological

development is always demanded. The trie [1] is one of key

retrieval methods, and has the feature that can be retrieved

without depending on the number of registered keys.

Therefore, a trie is used in various application fields such as

natural language processing [2], a lexical analyzer of a

compiler [3], a bibliographic search [4], and so on.

The development of implementation methods of a trie that

is a tree structure is indispensable for use in application fields.

The double array [5] is an excellent implementation method

of a trie with high speed retrieval and compactness. Even

though a double array is a memory size almost proportional to

the number of nodes of tries, the retrieval speed that depends

only on the length of a key is achieved. However, there is

room for the improvement in comparison with the

implementation method given priority to memory efficiency

because the size for two integer types per one node is

necessary. Therefore, a lot of techniques for improving the

storage efficiency of a double array are proposed [6], [7]. Still,

further improvements are difficult because base positions to

Manuscript received October 14, 2016; revised December 29, 2016. This

work was supported in part by the Kayamori Foundation of Informational

Science Advancement.

Kazuhiro Morita and Masao Fuketa are with the Department of Computer

Science, Graduate School of Science and Technology, Tokushima

University, Tokushima, Japan (e-mail: kam@is.tokushima-u.ac.jp,

fuketa@is.tokushima-u.ac.jp).

Shunsuke Kanda is with the Department of Information Science and

Intelligent Systems, Graduate School of Advanced Technology and Science,

Tokushima University, Tokushima, Japan (e-mail: shnsk.knd@gmail.com).

next nodes storing in order to traverse a trie tree become a

bottleneck.

This paper proposes an implementation method for a trie by

the new approach. The proposal method decides the next node

using the idea of the randomized algorithm. Accurately, the

next node is decided by using the techniques of a

pseudorandom number generator. Therefore, a storage like

storing base positions in a double array is unnecessary. It only

has to store information that confirms the definition of nodes,

and the improvement of the space efficiency can be expected.

From experimental observations, the effectiveness of the

proposal method is shown.

II. TRIES AND IMPLEMENTATION

A. Tries

The trie is a tree structure with labels in edges. To enable

key retrieval by traversing the tree from the root along labels,

a trie is used in various applications. Fig. 1 shows the trie to

key set K={“be,” “boy,” “by,” “bye,” “ebb,” “eye,” “obey”}.

„#‟ in the figure is a special endmarker to distinguish the key.

For example, the key “bye#” is able to be retrieved by

traversing the node 1, 3, 8, 13 and 21 sequentially. Therefore,

the high-speed retrieval without depending on the number of

registered keys is possible. For the following explanations,

the function g (g(s, a)=t) indicates that the edge with label a is

defined from the node s to t. When the edge is not defined, it

becomes g(s, a)=fail. To retrieve the key “bye#,” it is only to

confirm g(1, „b‟)=3, g(3, „y‟)=8, g(8, „e‟)=13 and

g(13,„#‟)=21 sequentially.

1

3

b

4
e

5

o

6

e

7
o

8

y

9b

12

y

10

b

14#

16y

11
#

13

e

17
b

15
e

19
e

20
#

21
#

23
#

24
#

22
y

25
#

Fig. 1. Example of a trie for key set K.

B. Double Array

As for implementing the trie, various techniques are

proposed from respect of the retrieval speed and memory

An Implementation Method of Trie Structure Using

Xorshift

Kazuhiro Morita, Shunsuke Kanda, and Masao Fuketa

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

229doi: 10.18178/ijfcc.2016.5.6.476

mailto:kam@is.tokushima-u.ac.jp

usage [5], [8]. Those techniques are essentially an implementation method of the function g.

Fig. 2. Example of a double array for Fig. 1.

Fig. 3. Example of a trie and a xorshift array for key set K.

The double array is an especially excellent technique as the

implementation method of the trie, and a lot of improvement

techniques of a double array are proposed [9], [10]. A double

array is composed of two array BASE and CHECK with the

index corresponding to nodes of the trie. And the function

g(s,a)=t is implemented as follows:

[function g(s, a)]

Input: s is the parent node. a is a label.

Output: t is the next (child) node or fail.

begin

 t := BASE[s] + CODE(a);

 if CHECK[t]=s then return t;

 otherwise return fail;

end;

where CODE is numeral value for labels.

That is, the next node t is calculated as the distance from a

base position to the label (the sum of the CODE for the label a

and the BASE position for the node s), and it is CHECKed

whether the transition s to t is defined.

Fig. 2 shows the double array representation of the trie of

Fig. 1. Blank elements in the figure are unused elements.

When the key “bye#” is retrieved, g(1, „b‟)=3 is confirmed by

BASE[1]+CODE(„b‟) = 1+2 = 3 and CHECK[3] = 1. In the

same manner, g(3, „y‟)=8, g(8, „e‟)=13 and g(13, „#‟)=21 are

confirmed as follows:

BASE[3]+CODE(„y‟) = 3+5 = 8, CHECK[8] = 3;

BASE[8]+CODE(„e‟) = 10+3 = 13, CHECK[13] = 8;

BASE[13]+CODE(„#‟) = 20+1 = 21, CHECK[21] = 13;

Because the memory size becomes wasteful when unused

elements increase, it is important how to decide base positions

to the construction of a double array.

III. NOVEL IMPLEMENTATION METHOD USING XORSHIFT

This paper proposes the implementation method of a trie by

a new approach. The array corresponding to nodes is basically

prepared as well as a double array. The idea of the

randomized algorithm is used to calculate the next node.

A. Xorshift

The Xorshift is one of pseudorandom number generators

proposed by Marsaglia [11]. An extremely uniform random

numbers are generated only with the combination of simple

calculations such as the bitwise xor (exclusive or) and the bit

shift operation at high speed. Moreover, the same random

number sequence is generated from the same seed as well as

The Mersenne Twister [12]. That is, there is one of generators

based on linear recurrences.

One concrete Xorshift operation is a xor of a bit vector x

and the shifted copy of x either to left or to right. This

operation is defined as the following function xos.

[function xos(x, b)]

Input: x is a bit vector. b is shift bits.

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

230

begin

 if b >= 0 then return x ^ (x << b);

 if b < 0 then return x ^ (x >> -b);

end;

In order to generate the next random number, Xorshift

calculates xos three times with changing the value of b. Let

B=(b1, b2, b3) be the triplet as the combination of these b. The

function to enhance the function xos to B is defined as

XOS(x,B) = xos(xos(xos(x, b1), b2), b3). Therefore, the best

combination of b is important.

B. Xorshift Array

A basic strategy of the proposal technique is to decide the

next node t at random in function g. However, it should be

only t against the node s and label a. Then, Xorshift is used to

implement the function g.

When implementing, the array PARITY corresponding to

nodes of a trie is prepared. The implementation of the

function g is shown below:

[function g(s, a)]

Input: s is the parent node. a is a label.

Output: t is the next (child) node or fail.

begin

 x := (s << W) | CODE(a);

 y := XOS(x, B);

 t := y >> W;

 p := y & (2
w
-1);

 if PARITY[t]=p then return t;

 otherwise return fail;

end;

where W is the minimum number of bits in which all labels are

expressible.

That is, the bit vector x that is combined the node s with the

numeral value of the label a is given. The bit vector x is

regarded as a seed, and the next random value y is generated

by Xorshift. The value y is divided into the next node t and the

parity p. Finally, the definition of the transition is confirmed

by comparing the value of PARITY[t] with the parity p.

Now, consider a problem that the collision occurs to t.

Because XOS is the bijective function, the value y is uniquely

decided to x if B is fixed. However, the next node t that is a

part of the value y is not necessarily unique. Then, it deals

with the collision by operating Xorshift again when the

collision occurs. In other words, it means that the next random

number is selected. Therefore, the array COLLISION to store

what number random value is selected is prepared. The final

version of the function g in the proposal method is

implemented as follows:

[function g(s, a)]

Input: s is the parent node. a is a label.

Output: t is the next (child) node or fail.

begin

 c := 1;

 x := (s << W) | CODE(a);

 repeat

 y := XOS(x, B);

 t := y >> W;

 p := y & (2
w
-1);

 if PARITY[t]=p and COLLISION[t]=c

 then return t;

 x := y;

 c := c+1;

 until c > C;

 return fail;

end;

where C shows the upper bound of the loop frequency.

The PARITY and the COLLISION frequency are

examined at the confirmation of the next node. When it is not

equal, the next random numbers are examined. It becomes a

failure when not found even if this is repeated to the collision

frequency upper bound.

The proposal method will be called the xorshift array. Fig.

3 shows the trie and the xorshift array representation for key

set K. The node number is described by the hexadecimal

number for easiness. Moreover, parameters are W=4, C=5 and

B=(3,-5,1), respectively. For example, consider a key “bye#”.

g(0x0, „b‟)=0x3 is confirmed by (0x0 << 4) | CODE(„b‟) =

0x02, XOS(0x02, (3,-5,1)) = 0x36, PARITY[0x3]=0x6 and

COLLISION[0x3]=1. In the same manner, g(0x3, „y‟) = 0xb

and g(0xb, „e‟) = 0x16 are confirmed. For g(0x16, „#‟)=0x1c,

by (0x16 << 4) | CODE(„#‟) = 0x161, XOS(0x161, (3,-5,1)) =

0xbe, then the next node and parity become 0xb and 0xe

respectively. However, because PARITY[0xb] is not equal to

0xe, the next random number is generated by XOS(0xbe,

(3,-5,1)) =0x1cc. Finally, the next node t=0x1c is confirmed

by PARITY[0x1c]=0xc and COLLISION[0x1c]=2.

The xorshift array is composed of two arrays named

COLLISION and PARITY as well as a double array.

However, because the xorshift array can construct the size of

one element with 8 bits at most while a double array is roughly

the 32-bit integer type, the efficiency improvement of the

memory size can be expected.

IV. EXPERIMENTAL OBSEVATION

For experimental observations, Entry words of Wordnet,

IPAdic, English and Japanese Wikipedia are used for the key

set. The numbers of words are 147,306, 217,550, 1,518,205

and 11,519,354, respectively. The xorshift array is compared

with a double array and a level-order unary degree sequence

(LOUDS) [8], [13]. These methods were implemented with

C++. The PC environment used to experiment is Quad-Core

Intel Xeon 2 x 2.4 GHz. Table I shows parameters of the

xorshift array. The maximum collision frequency C and the

triplet B were decided to minimize C of each key set.

The experimental results to the retrieval speed and the

memory size are shown in Table II and Table III respectively.

As the implementation method of a trie, LOUDS is the most

compact method, and about half size of the xorshift array.

However, the retrieval speed is a weak point, LOUDS is about

seven times slower than the xorshift array. In the comparison

with a double array, the retrieval speed is about two times

faster than the xorshift array. But the memory size is about 3

times, and the xorshift array is more compact. From this result,

it can be said that the xorshift array promotes efficiency of a

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

231

trade-off of memory size and the speed well.

TABLE I: PARAMETERS OF THE XORSHIFT ARRAY

Parameters WordNet IPAdic
Japanese

Wiki
English Wiki

W 8

C 23 42 93 43

B (26,-5,6) (15,-16,12) (5,-11,7) (7,-30,1)

TABLE II: EXPERIMENTAL RESULTS FOR RETRIEVAL SPEED

 WordNet IPAdic
Japanese

Wiki

English

Wiki

Retrieval speed (μs / key)

LOUDS 2.171 2.045 7.571 11.065

Double Array 0.139 0.133 0.655 0.786

Xorshift Array 0.302 0.308 1.780 1.757

ratio for Speed

to LOUDS 0.139 0.151 0.235 0.159

to Double Array 2.173 2.316 2.718 2.235

TABLE III: EXPERIMENTAL RESULTS FOR MEMORY SIZE

 WordNet IPAdic
Japanese

Wiki

English

Wiki

Memory Size (byte)

LOUDS 1,109,855 1,314,822 22,843,366 150,717,827

Double Array 7,526,800 9,203,384 141,119,280 948,367,360

Xorshift Array 2,244,616 2,244,616 35,913,736 287,309,832

ratio for Size

to LOUDS 2.022 1.707 1.572 1.906

to Double Array 0.298 0.244 0.254 0.303

V. CONCLUSION

This paper proposed the novel implementation method of a

trie by using the technique of Xorshift that was the

pseudorandom numbers generator. The effectiveness of the

proposal technique was confirmed by the experiment.

The future works is to discover an appropriate triplet B that

decreases the collision frequency, and to reduce in an unused

element.

REFERENCES

[1] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,

pp. 490–500, 1960.

[2] L. Yang, L. Xu, and Z. Shi, “An enhanced dynamic hash TRIE

algorithm for lexicon search,” Enterprise Information Systems, vol. 6,

no. 4, pp. 419-432, 2012.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques, and Tools (2Nd Edition), Addison-Wesley

Longman Publishing Co., Inc., 2006.

[4] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to

bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.

333-340, 1975.

[5] J. Aoe, “An efficient digital search algorithm by using a double-array

structure,” IEEE Transactions on Software Engineering, vol. 15, no. 9,

pp. 1066–1077, 1989.

[6] K. Morita, E.-S. Atlam, M. Fuketa, K. Tsuda, and J. Aoe, “Fast and

compact updating algorithms of a double-array structure,” Information

Sciences, vol. 159, no. 1-2, pp. 53-67, 2004.

[7] S. Yata, M. Oono, K. Morita, M. Fuketa, and J. Aoe, “A compact static

double-array keeping character codes,” Information Processing &

Management, vol. 43, no. 1, pp. 237-247, 2007.

[8] G. Jacobson, “Space-efficient static trees and graphs,” IEEE

Symposium on Foundations of Computer Science, 1989, pp.549-554.

[9] M. Fuketa, H. Kitagawa, T. Ogawa, K. Morita, and J. Aoe,

“Compression of double array structures for fixed length keywords,”

Information Processing & Management, vol. 50, no. 5, pp. 796-806,

2014.

[10] S. Kanda, M. Fuketa, K. Morita, and J. Aoe, “A compression method of

double-array structures using linear functions,” Knowledge and

Information Systems, vol. 48, no.1, pp. 55-80, 2016.

[11] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software, vol. 8,

no. 14, pp. 1-6, 2003.

[12] M. Matsumoto and T. Nishimura, “Mersenne twister: A

623-dimensionally equidistributed uniform pseudo-random number

generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30,

1998.

[13] O. Delpratt, N. Rahman, and R. Raman, “Engineering the louds

succinct tree representation,” in Proc. WEA 2006, 2006, pp. 134-145.

Kazuhiro Morita received the B.Sc., M.Sc. and Ph.D.

degrees in information science and intelligent systems

from Tokushima University, Japan, in 1995, 1997 and

2000, respectively. He had been a research assistant

from 2000 to 2006 in information science and

intelligent systems, Tokushima University, Japan. He is

currently an associate professor in the Department of

Information Sci. and Intelligent Systems, Tokushima

University, Japan. His research interests are sentence retrieval from huge text

databases, double-array structures and binary search tree.

Shunsuke Kanda received the B.Sc. and M.Sc.

degrees in information science and intelligent systems

from Tokushima University, Japan, in 2014 and 2016,

respectively. He is currently a Ph.D. student at

Tokushima University. He is a student member of the

Information Processing Society in Japan. His research

interests are data structures for string processing and

indexing.

Masao Fuketa received the B.Sc., M.Sc. and Ph.D.

degrees in information science and intelligent systems

from Tokushima University, Japan, in 1993, 1995 and

1998, respectively. He had been a research assistant

and an associate professor from 1998 to 2000 and from

2000 to 2015 in information science and intelligent

systems, Tokushima University, Japan, respectively.

He is currently a professor in the Department of

Information Science and Intelligent Systems, Tokushima University, Japan.

He is a member of the Information Processing Society in Japan and the

Association for Natural Language Processing of Japan. His research interests

are information retrieval and natural language processing.

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

232

