



Abstract—Double-Array is a method widely used for

handling sets of strings. While the method can conduct fast

retrieval, there are not application examples for Full-Text

Search. Compact directed acyclic word graph (CDAWG) is a

data structure preserving some features of directed acyclic

word graph (DAWG), and requires less space than DAWG.

When using CDAWG for Full-Text Search, it can make a graph

to conduct fast retrieval not depending on a text size. A method

that represents DAWG using Double-Array has been proposed.

Therefore, we propose a new method using Double-Array

CDAWG for high speed Full-Text Search. Experimental results

show the effectiveness of the proposed method.

Index Terms—CDAWG, double-array, full-text search,

genome search.

I. INTRODUCTION

Techniques that search need data are required for

extensively increasing data. Full-Text Search is one of the

techniques. Full-Text Search is a technique for searching

substrings from a full-text database. For example, Full-Text

Search is used for web searches and genome searches. While

compressed suffix array (CSA) [1]-[3] excels in existing

methods [4], the retrieval time depends on a text size.

Therefore, CSA is not suitable for large scale documents in

retrieval time. By contrast, a suffix compact directed acyclic

word graph (CDAWG) implements Full-Text Search using a

graph which handles all suffixes of a text. CDAWG [5], [6] is

a data structure for a more compact representation of directed

acyclic word graph (DAWG) [7]. The suffix CDAWG has an

advantage that can conduct fast retrieval not depending on a

text size in Full-Text Search. However, a size of the graph is

larger than an array size of CSA.

In this paper, we propose high speed Full-Text Search

using Double-Array [8]. A trie [9] is a data structure for

handling sets of strings. Double-Array can conduct fast

retrieval in the trie. Additionally, Double-Array can also

represent DAWG [10]. However, there is not a method that

represents CDAWG using Double-Array. Hence, we propose

Double-Array representing suffix CDAWG and applies it for

Manuscript received November 14, 2016; revised December 30, 2016.

Yuma Fujita, Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa are
with the Department of Information Science and Intelligent Systems, Faculty

of Engineering, Tokushima University, 2-1 Minamijosanjima-cho,

Tokushima-shi, Tokushima 770-8506, Japan.
Yoshiaki Ichihashi was with the Department of Information Science and

Intelligent Systems, Faculty of Engineering, Tokushima University. He is

now with Toshiba Solutions Corporation, 72-34 Horikawa-cho, Saiwai-ku,

Kawasaki-shi, Kanagawa, 212-8585, Japan (e-mail: yuma@jo-studio.com).

high speed Full-Text Search.

II. FULL-TEXT SEARCH AND DOUBLE-ARRAY

A. Outline of Full-Text Search

In text retrieval, Full-Text Search refers to techniques for

searching substrings from a full-text database. When dealing

with a large number of documents, Full-Text Index that is a

popular technique, divides the documents into two tasks:

indexing and searching. The indexing scans texts all of the

documents and builds a list of search terms. In the searching,

the index is referenced to obtain a specific query. In Full-Text

Index, there are methods using all suffixes of the full-text to

search a query fully and fast. For example, the methods

include a suffix trie, a suffix tree, a suffix DAWG, and a

suffix CDAWG.

A suffix trie, a suffix tree, a suffix DAWG, and a suffix

CDAWG for a finite string w are denoted as Trie(w), Tree(w),

DAWG(w), and CDAWG(w), respectively. Trie(w) is a data

structure to represent every suffix of w in a trie. The trie is an

ordered tree data structure used to store strings. There are two

operations, compaction and minimization, to reduce trie

nodes. Operation compaction compacts longest paths

consisting of nodes having one child. Operation minimization

identifies isomorphic subtrees. Operations compaction and

minimization to Trie(w) lead to Tree(w) and DAWG(w),

respectively. CDAWG(w) is built from either compaction to

DAWG(w) or minimization to Tree(w).

Fig. 1 shows Tree(w) , DAWG(w) , and CDAWG(w) by

setting w “gtagtaaac”. A special end marker symbol „$‟ is

used at the end of strings in the examples. Figs.1 (a) and (b)

show that there is not any difference between the amounts of

nodes in the Tree(w) and the DAWG(w). It is hard to choose

which operation is an effective technique for a finite string.

Fig. 1 (c) shows the number of nodes in the CDAWG(w) is the

smallest of the 3 methods because the CDAWG(w) is given

by the trie(w) with compaction and minimization. Therefore,

CDAWG(w) is an efficient data structure in the Full-Text

Search.

B. Outline of Double-Array

Double-Array uses two one-dimensional arrays, named

BASE and CHECK, to represent trie nodes. Elements

BASE[s] and CHECK[s] correspond to node s. The following

equations represent an arc from node s to node t with

character c.

𝑡 = BASE 𝑠 + 𝑐 and CHECK 𝑡 = 𝑐. (1)

The position of the destination node t is calculated by the

sum of the offset BASE[s] and the numerical code of

character c. The character c is stored in CHECK[t]. In

Full-Text Search Using Double-Array CDAWG

Yuma Fujita, Yoshiaki Ichihashi, Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

237doi: 10.18178/ijfcc.2016.5.6.478

different nodes s and s‟, if BASE[s] and BASE[s‟] are the

same, these are traversed to the same node t. Accordingly, all

BASE values need to be constructed as different values.

Equation (1) does not allow of a transition with a string or

over 2 characters.

 Meanwhile, a DAWG is a data structure to identify

isomorphic subtrees in a trie. Since, there is a

possibility that some nodes have the same destination

node in a DAWG, Double-Array cannot represent an

original DAWG. Yata et al. presented a method that

is a designed DAWG for Double-Array [10].

Fig. 1. Three methods for w.

Fig. 2 shows the designed DAWG(w). Values of {„$‟, „a‟,

„c‟, „g‟, „t‟} are denoted {0, 1, 2, 3, 4} in Equation (1),

respectively. To use Double-Array, there are a few more the

nodes than the original DAWG(w) of Fig. 1 (b). In the

traversal from nodes 4 and 15 to node 16, Equation (1) is

satisfied because their arc labels are the same.

III. PROPOSED METHOD

As described in Section II, CDAWG(w) is an efficient data

structure in Full-Text Search. We propose a new method that

is a suffix CDAWG using Double-Array for high speed

Full-Text Search. In some cases, an arc label is string in a

CDAWG. It is necessary to represent the string labels for

applying Double-Array to CDAWG representation. Fig. 1 (c)

shows that there are two types of the arc strings including the

special end marker symbol „$‟ or not, named terminal string

and internal string, respectively. The proposed method has

representations for them. Sections 3.1 and 3.2 show how to

represent terminal strings and internal strings, respectively.

A. TAIL

General Double-Array implementation stores each suffix,

which corresponds to only a registered string in a trie, to an

array TAIL in order to reduce the number of nodes. The

common suffixes are merged. The terminal strings become

common suffixes in a text. Therefore, TAIL is suitable for

storing terminal strings. Fig. 3 shows CDAWG(w) in Fig.1 (c)

is designed for Double-Array. The CDAWG requires less

nodes than the designed DAWG of Fig. 2. Additionally, Fig.

3. shows TAIL represents terminal strings in the CDAWG(w).

The seven terminal strings are integrated into the TAIL in Fig.

3.

Fig. 2. Designed DAWG(w).

B. Representation of Internal Strings

This subsection discusses representation of internal strings.

The proposed method divides an internal string into the first

character and the rest. The first character and the rest of a

string label to node s are stored in CHECK[s] and a new array

called REMAIN, respectively. Furthermore, we prepare two

bit arrays, named B and S, for referring to REMAIN from

CHECK. B[s] is set to 1 when the arc label to node s is string.

S[i] is set to 1 when REMAIN[i] corresponds to the initial

position of the rest. The following operations [11] are used to

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

238

refer to REMAIN from CHECK.

 P.rank(i) returns the number of occurrences of 1 in P[0,

i).

 P.select(i) returns the position of the i + 1-th occurrence

of 1 in P.

 S.select(B.rank(s)) calculates the initiation position

from node s.

Fig. 4 shows CHECK and REMAIN for CDAWG(w) in Fig.

3. Consider the traversal from node 0 to node 3 with “gta” in

Fig. 3. The first character and the rest are „g‟ and “ta”,

respectively. First, the first character is given by CHECK[3]

 „g‟. There is the rest by B[3] 1. The initiation position

from node 3 is 0 by S.select(B.rank(3)). Thus, the first

character of the rest „t‟ is obtained by REMAIN[0]. S[1] 0

indicates that it is necessary to search REMAIN[1]. Similarly,

the second character is obtained by REMAIN[1] „a‟. From

S[2] 1, the internal string from node 3 is “gta”.

IV. EVALUATION

A. Experimental Details

We verified the effectiveness of the proposed method. As

described in Section I, CSA excels in existing methods [4].

Fig. 3. CDAWG(w) in Fig. 1 is designed for Double-Array with TAIL.

Fig. 4. CHECK and REMAIN for CDAWG(w) in Fig. 2.

For this reason, we used CSA provided from csalib100810

[12] as a comparative method. CSA and the proposed method

were implemented with C and C++, respectively.

Experiments for retrieval speed and index size were executed

on Windows10 Pro based on Intel (R) Core (TM) i7-4785T

CPU@2.20GHz (RAM : 16GB). The experiments used

50MB of the DNA data and 50MB of the ENGLISH data

from Pizza&Chili Corpus [13]. We extracted 100,000

characters from the beginning of them as full text documents.

We prepared 100,000 queries extracted from the random

positions of the documents each. The queries have four

pattern lengths of 10, 30, 60, and 90 characters. The retrieval

times were measured for the 100,000 queries. Each test was

averaged on 10 runs. The options of CSA were set to

“-P3:512 –I:128:256” for the DNA data and “-P4:512

–I:128:256” for the ENGLISH data.

B. Results and Discussion

Table I shows the retrieval time for each document. When

the query-length is 10 characters in the ENGLISH data, the

proposed method can conduct the retrieval 201 times faster

than CSA. When query-length is 90 characters, the proposed

method can conduct the retrieval 1400 times faster than CSA.

As can be seen from the result, the length of a query doesn‟t

affect the retrieval time in the proposed method.

Table II shows the index size for each document. The

index sizes of the proposed method are 21 and 9 times larger

than those of CSA in the DNA data and ENGLISH data,

respectively. However, the proposed method excels in

trade-off between the retrieval time and the index size. When

query-length is 10 characters in the retrieval time for the

DNA data, the proposed method can conduct the retrieval

124 times faster than CSA even though the result is the

smallest difference in Table I. From these results, the

proposed method is efficient for high speed

Full-Text-Search.

TABLE I: RETRIEVAL TIME FOR EACH DOCUMENT

TABLE II: INDEX SIZE FOR EACH DOCUMENT

V. CONCLUSION

In this paper, we have proposed Full-Text Search using

Double-Array CDAWG. As described in Section 4, the

proposed method can conduct the retrieval much faster than

CSA. Future studies will reduce the index sizes, compare the

proposed method with other methods for Full-Text Search,

and conduct experiments for longer documents.

REFERENCES

[1] R. Grossi and J. Vitter, “Compressed suffix arrays and suffix trees with

applications to text indexing and string matching,” in Proc. the 32nd

ACM Symposium on Theory of Computing, pp. 397–406, 2000.
[2] K. Sadakane, “Compressed text databases with efficient query

algorithms based on the compressed suffix array,” in Proc. the 11th

International Symposium on Algorithms and Computation, vol. 1969,
pp. 410–421, 2000.

[3] H. W. Huo et al., “A practical implementation of compressed suffix

arrays with applications to self-indexing,” in Proc. the Data
Compression Conference, pp. 292–301, 2014.

[4] W. K. Hon et al., “Practical aspects of compressed suffix arrays and

fm-index in searching dna sequences,” in Proc. the 6th Workshop on
Algorithm Engineering and Experiments, pp. 31–38, 2004.

10 30 60 90

CSA 3.476 11.295 22.681 33.837

new 0.028 0.031 0.034 0.036

CSA 6.244 20.244 40.725 58.742

new 0.031 0.036 0.039 0.042

query-length
Retrieval time (s)

DNA

ENGLISH

CSA 30

new 615

CSA 50

new 445

DNA

ENGLISH

Size (KB) Index

0 1 2

t a a

S : 1 0 1
REMAIN

0 1 2 3 4 5 ...

a c g t a ...

B : 0 0 0 1 1 0 ...
CHECK

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

239

[5] M. Crochemore and R. Vérin, “On compact directed acyclic word

graphs,” Structures in Logic and Computer Science, pp. 192–211,

Springer, Verlag, 1997.
[6] S. Inenaga et al., “Construction of the CDAWG for a trie,” in Proc. the

Prague Stringology Conference ’01, pp. 37–48, 2001.

[7] A. V. Aho et al., Data Structures and Algorithms, Addison Wesley,
1983.

[8] J. Aoe, “An efficient digital search algorithm by using a double-array

structure,” IEEE Transactions on Software Engineering, vol. 15, no. 9,
pp. 1066–1077, 1989.

[9] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,

pp. 490–499, 1960.
[10] S. Yata et al., “Fast string matching with space-efficient word graphs,”

in Proc. the 4th International Conference on Innovations in

Information Technology, pp. 79–83, 2008.
[11] R. González et al., “Practical implementation of rank and select

queries,” in Proc. the 4th Workshop on Experimental and Efficient

Algorithms, pp. 27 38, 2005.
[12] K. Sadakane. (2010). csalib100810. [Online]. Available:

http://researchmap.jp/sada/csalib/

[13] Pizza&Chili Corpus. (2005). [Online]. Available:
http://pizzachili.dcc.uchil e.cl/

Yuma Fujita received B.Sc. degrees in information
science and intelligent systems from Tokushima

University, Japan, in 2016. He is currently a M.Sc.

student at Tokushima University. His research
interests are double-array structures.

Yoshiaki Ichihashi received B.Sc. and M.Sc.
degrees in information science and intelligent

systems from Tokushima University, Japan, in 2014

and 2016, respectively. He currently works for
Toshiba Solutions Corporation.

Shunsuke Kanda received B.Sc. and M.Sc. degrees

in information science and intelligent systems from

Tokushima University, Japan, in 2014 and 2016,
respectively. He is currently a Ph.D. student at

Tokushima University. He is a student member of the

Information Processing Society in Japan. His
research interests are data structures for string

processing and indexing.

Kazuhiro Morita received B.Sc., M.Sc., and Ph.D.

degrees in information science and intelligent

systems from Tokushima University, Japan, in 1995,
1997, and 2000, respectively. He had been a research

assistant from 2000 to 2006 in information science

and intelligent systems, Tokushima University,
Japan. He is currently an associate professor in the

Department of Information Science and Intelligent

Systems, Tokushima University, Japan. His research
interests are sentence retrieval from huge text databases, double-array

structures and binary search tree.

Masao Fuketa received B.Sc., M.Sc., and Ph.D.

degrees in information science and intelligent

systems from Tokushima University, Japan, in 1993,
1995, and 1998, respectively. He had been a research

assistant and an associate professor from 1998 to

2000 and from 2000 to 2015 in information science
and intelligent systems, Tokushima University,

Japan. He is currently a professor in the Department

of Information Science and Intelligent Systems,

Tokushima University, Japan. He is a member of the Information Processing

Society in Japan and the Association for Natural Language Processing of

Japan. His research interests are information retrieval and natural language
processing.

International Journal of Future Computer and Communication, Vol. 5, No. 6, December 2016

240

