
  

 
Abstract—Occlusion is a common problem encountered in 

various tracking applications. This paper addresses occlusion 
within the context of real-time tracking. Contributions of the 
paper are two-fold. Firstly, the paper studies the occlusion 
problem within the context of tracking-by-detection. Secondly, 
a 3D approach that allows for tracking-by-detection algorithms 
to be extended towards effective occlusion handling is put 
forward. The proposed approach achieves an efficient 
incorporation of depth features into the circulant tracking 
framework, thereby achieving rapid object detection, tracking 
and robustification. Finally, a patch-based modeling strategy 
for depth features, coupled with a robust occlusion estimator is 
proposed. The resulting scheme allows for the tracker to 
achieve occlusion detection, tracker recovery and a significant 
alleviation of the drift problem associated with 
tracking-by-detection state-of-the-art. Experimental results on 
benchmark sequences demonstrate the effectiveness and 
robustness of the proposed scheme. The superiority of the 
scheme is further established in comparison experiments with 
state-of-the-art. 
 

Index Terms—Circulant tracking, occlusion-handling, robust 
tracking, 3D tracking.  
 

I. INTRODUCTION 
Various machine vision algorithms and systems apply 

visual tracking as a fundamental and crucial step, the result of 
which becomes the foundation for realizing high-level and 
complex systems. The applications of visual tracking are 
therefore not limited exclusively to machine vision as seen in 
biomedical imaging [1], [2], video security systems [3] and 
vision-based traffic monitoring [4], but further extend into 
more complex and highly integrated systems including but 
not limited to natural interaction [5], visual servoing [6] and 
anomaly detection [7]. The design of efficient and robust 
tracking algorithms continues to remain an ongoing effort 
due to the various challenges associated with the research 
area. Regardless of the application domain, visual tracking 
presents multiple challenges that need to be explicitly 
handled in order to realize efficient algorithm design. These 
challenges include illumination variations, occlusion, target 
deformation, pose variations, background clutter, in-plane 
rotation, but to mention a few.  
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In an attempt to tackle these challenges and realize robust 
visual object tracking, various approaches have resorted to 
domain-specific solutions that constrain the tracking problem 
to specific objects such as human limbs [5], hands [8] and 
vehicles [9]. While such approaches have achieved high 
efficiencies as well as remarkable tracking speeds, they fail to 
extend this success rate to arbitrary targets due to their 
immense dependence upon offline target modeling, a task 
that becomes practically unachievable when handling 
arbitrary objects. The need for a new tracking paradigm, one 
that is capable of capturing the various scene and object 
dynamics could not be exaggerated. Within this 
tracking-by-detection paradigm [10], contrary to offline 
model-based schemes, the tracker is initialized with the 
object location and state within the first frame of the video 
sequence. Upon successful initialization, the tracking task is 
defined as the successful estimation of the target location and 
state within subsequent frames until termination of the video 
sequence. This approach to tracking can therefore be 
regarded as an iterative detection operation, which is 
performed on a per-frame basis. This task quickly highlights 
the need for efficient online target modeling, online training 
and online-the-fly classifier update strategies. Generally 
speaking, tracking-by-detection algorithms have either 
approached the problem through target modeling [11], [12], 
motion modeling [12] or target appearance representation. 
Some approaches also attempt to achieve integration of 
multiple components into a single tracking framework [10]. 
In most tracking-by-detection schemes, object detection and 
tracking is treated as a binary discriminatory problem and this 
has motivated the application of various discriminative 
classification schemes towards the realization of solutions. 
Such detection schemes have proven to be simple but 
remarkably efficient and some significant contributions are 
presented in [11], [13]-[18]. It is crucial to point out that 
while all these approaches may collectively fall into 
tracking-by-detection, each of the approaches exclusively 
addresses the problem either as a modeling task, learning task 
or parameter and model update task. Some widely utilized 
learning schemes include Support Vector Machines [19], 
Structured Support Vector Machines [15], Booting [20] and 
Bayes Classification [21]. It has been established that local 
appearance modeling schemes have the capability of 
robustifying trackers against partial appearance changes [11], 
[22]. Such schemes are similar to the patch-based object 
modeling scheme presented here in the paper. However, the 
proposed scheme applies robust depth features in the 
realization of patch-based modeling, rather than adopting 
unstable and highly sensitive colour or intensity features as 
previous works have attempted. Dense sampling [15], [17] 
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which has offered a radical approach to target detection, has 
been proven to outperform sparse sampling which fails to 
handle rapid target motion and background clutter [23]. This 
distinguishing condition is attributed to the capability of 
dense sampling schemes to adaptively scale the search 
domain on-demand to keep up with various motion 
characteristics. 

Most real-time systems require tracking to keep up with 
real-time application demands. In satisfying the real-time 
demands of trackers, a majority of efforts have focused on 
applying 2-dimensional machine vision schemes that harness 
multiple features and apply learning strategies that are only 
capable of conceptualizing and interpreting 2-dimensional 
information. While such systems have indeed been 
light-weight and sufficient in achieving real-time results, a 
majority of them are left prone to noise corruption and fail to 
explicitly handle occlusion; a common drawback in most 
state-of-the-art trackers. A typical example is seen in the 
Circulant Structure Kernel Tracker (CSK) [18], which is 
capable of achieving remarkably fast and efficient tracking 
results without trading off kernel simplicity; a crucial 
requirement in maintaining tracking speed for real-time 
systems. Despite its speed and efficiency, the CSK tracker is 
left prone to corruption resulting from occlusion and this 
severely hampers its performance in most applications, 
causing it to drift in most partial occlusion situations, without 
the possibility of recovery. In most real-time applications, 
especially in robotics applications, scene dynamics could be 
unconstrained and there is the need for trackers that are 
capable of handling drift, regardless of sequence length. Thus 
the motivation of the work in this paper is established. Depth 
features have been extensively exploited in machine vision as 
a means of robustification while guaranteeing sustained 
efficiencies in the presence of noise. To the best of our 
knowledge however, efforts to harness this depth robustness 
within the tracking paradigm are very limited and lacking. 3D 
and depth imaging devices have become more abundant and 
affordable in recent years and the potential of efficiently 
incorporating depth into the tracking framework is 
significant and merits further research. 

In addressing this problem, this paper proposes an 
occlusion robustification strategy for state-of-the-art via 
efficient depth incorporation and occlusion estimation. In the 
proposed scheme, depth features are efficiently incorporated 
into the CSK tracker without significantly trading off kernel 
simplicity and tracking speed. This incorporation is achieved 
through feature-warping and feedback strategies between 
depth and RGB spaces coupled with an intermediary stage 
between object detection and model update; a scheme that 
addresses the naïve parameter update in the CSK tracker. 
Furthermore, in guaranteeing robustness in this new RGBD 
tracker, local patch-based object modeling is proposed within 
the depth space. This patch-based local modeling is proven to 
be sufficient in handling partial occlusion as well as object 
deformation. Object deformation and extensive work on the 
RGBD feedback strategy as well as the proposed solution to 
naïve parameter updates in the CSK however fall outside the 
scope of this paper. Brief introductions will however be 
provided for clearer proofs and demonstrations. This paper 
focuses on the efficient depth-based object modeling 

problem within the proposed RGBD circulant tracker, by 
treating the tracking task as an object modeling problem. 
Experimental results attained on various challenging 
scenarios demonstrate the robustness of the proposed scheme 
to occlusion, leading to drift-alleviation while significantly 
maintaining the tracking speed characteristic of circulant 
structure kernels. The remainder of the paper is thus 
organized. Related work is presented in the Section II. The 
proposed RGBD tracking scheme is theoretically presented 
and discussed comprehensively in the Section III. Section IV 
covers experimental verification and benchmarking results 
with state-of-the-art. The paper concludes in Section V and 
future work is proposed. 

 

II. RELATED WORK 
In order to achieve robust tracking performance in both 

tracking-by-detection and offline model-based trackers, 
considerable effort has been exerted and a number of tracking 
methods proposed. Earlier approaches have constrained the 
tracking problem by utilizing fixed object models [24], [25]. 
Such approaches address tracking by assuming that object 
appearance remains fixed across all frames constituting the 
video sequence and hence, the appearance model extracted 
from the first frame therefore remains viable for object 
detection in subsequent frames. While this assumption may 
hold true in some applications, the majority of scenarios 
come riddled with various scene and object dynamics and 
greatly challenge such approaches and render them 
inefficient for robust long-term tracking. Drawing from the 
drawbacks of these earlier approaches, relatively more robust 
tracking schemes have attempted to capture and model all 
possible variations of the target object offline, prior to tracker 
initialization. While such offline model-based schemes [10], 
[26] considerably alleviate the model rigidity problem 
associated with earlier schemes, their robustness depends 
heavily on pre-modeled scene and object dynamics. However, 
in most real life applications, such dynamics may be 
uncontrolled and so varying in nature that, attempting to 
model and store each variation becomes a practically 
infeasible task, the difficulty of which linearly correlates with 
increasing video sequence lengths. Drawing from this, the 
state-of-the-art have treated the tracking task as an online 
learning problem in which target appearance is modeled and 
updated online by exploiting target information from 
previous frames. Furthermore, these tracking-by-detection 
schemes [10], [27] have treated the object tracking problem 
as a detection problem stretching across all frames of the 
video sequence and have excelled greatly in achieving 
efficiency in situations where the target object remains 
unknown prior to initialization. Unfortunately however, such 
tracking schemes have suffered from drift; a gradual 
adaptation of the tracker to non-targets within the scene. 
While online trackers suffer from various challenges 
including object appearance variations, illumination changes, 
deformations and pose variations [16], [23], most of these 
challenges inadvertently result in tracker drift, which remains 
a core problem in tracking-by-detection systems. 

In order to alleviate drift and robustify trackers, various 
schemes have been proposed. In [28], a method for ensuring 
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tracker stability and constraining its motion using initial 
object appearance is proposed. In a similar manner, the work 
in [29] attempts drift mitigation by treating all incoming 
training samples as unlabeled data in a semi-supervised 
learning manner. While such schemes may suffice in 
handling moderate variations within the target scene, large 
variations may still destabilize the tracker. By harnessing 
context information abundant within the target scene, the 
work in [16] explicitly defines and relies upon so-called 
distractors and supporters in ensuring that the tracker does 
not gradually adapt to other objects in place of the target. 
Here also, significant robustification against drift is achieved 
but the tracker still fails to maintain integrity when rapid 
appearance changes and articulated poses are encountered. 
Through implementation with multiple instance boosting and 
co-training respectively, the works in [30] and [31] offer 
some solution to the drift problem. While these methods 
attain some degree of drift alleviation, occasional drifts still 
occur and high tracking speeds are sometimes traded-off; a 
limitation to feasibility in real-time tracking applications. A 
model-adaptation strategy in presented in [32]. The proposed 
strategy is driven by a feature-matching scheme that is robust 
to tracker drift. Drift is further addressed in [33] with the 
proposal of another method capable of automatically 
estimating the degree of local (dis)order within a target object. 
All these approaches fall within 2-dimensional tracking, 
leading to a lack of sufficient feature-level robustness, which 
may propagate throughout the tracking system. 

Within the context of object tracking, some previous 
attempts have been made in attempting to achieve robustness 
through 3-dimensional frameworks. A 3D-based principal 
axis stereo tracker is proposed in [34]. A multi-target 
approach is proposed in [35] in which depth features are 
relied upon in verifying candidate objects selected via object 
detection. Some domain-specific 3D trackers are seen in [36], 
[37]. While such approaches succeed in harnessing depth 
robustness towards realizing some degree of drift alleviation, 
they perform sub-optimally in outdoor scenes where 
complicated illumination variations may occur. Furthermore, 
their domain specificity to human targets limits their 
adaptation and application potential to arbitrary target 
tracking. 

 

III. OVERVIEW OF PROPOSED ALGORITHM 
This section presents the proposed scheme in detail. 

Drawing from the proven robustness of depth features to 
occlusion, the proposed algorithm adopts a 3D approach to 
tracking which effectively combines and exploits both RGB 
and depth features within a single tracking framework. 
Within this framework, the CSK tracker is adopted as a core 
tracker due to its lightweight and simple kernel structure, 
allowing it to sustain tracking speeds well beyond most 
state-of-the-art trackers. The simple kernel structure and 
interface associated with the circulant tracker allows for 
straight-forward extensions to be realized with minimal 
trade-offs. This motivates its selection for demonstrating the 
proposed scheme.  Upon tracker initialization with the target 
coordinates within the first frame of a video sequence, a 

simple handshake process achieves a synchronization of 
target coordinates in both RGB and depth space. As 
experimental results will show, this hand-shake offers 
significant advantages in tracking speed and simplicity, 
compared with some earlier approaches that attempt to 
execute parallel trackers within both RGB and depth space 
[38]. Upon successful initialization in the first frame, 
circulant tracking begins and candidate training samples are 
extracted towards classifier training. Simultaneously, a local 
patch-based appearance modeling of the target object is 
conducted within depth space. Due to a core limitation in 
Time-of-Flight (ToF) sensing however, depth pre-processing 
and a patching up of depth holes is required before any high 
level operations can successfully exploit features within the 
depth stream acquired via the Kinect’s ToF sensors. Here in 
this paper, depth-based Gaussian Mixture Modeling (GMM) 
[39] is adopted in the realization of depth sequence 
optimization. Following depth optimization, patch-based 
modeling is then applied to the optimized depth sequence. At 
this stage, a robust occlusion estimator which exploits the 
patch-based model obtained form depth space, conducts 
occlusion detection and adaptive model updates that aim to 
effectively capture the true feature representation of the 
target in both non-occlusion and occlusion states. By means 
of this adaptive-modeling, occlusion recovery becomes 
feasible in subsequent frames of the video sequence. The 
robust occlusion estimator precedes classifier training in 
order to alleviate the problem of naïve classifier learning in 
occlusion scenarios, thereby ensuring tracker integrity before, 
during and after occlusions. This 3D occlusion-robust 
tracking scheme iterates over all frames until termination of 
the video sequence. The proposed algorithm is graphically 
depicted in the Fig. 1.  

A. Depth-Based GMM Optimization 
The proposed occlusion-robust tracker presented in the 

paper exploits depth features in the realization of a 3D 
tracking framework, a strategy that allows the tracker to 
harness the robustness of depth features.  

 

 
Fig. 1. Functional components of the proposed tracker. 

 
While 3D sensing is achievable through various 

techniques, the ToF technique [40] offers significant 
advantages within the tracking paradigm due to its compact 
design and ability to realize 3-dimensional scene 
reconstruction without the need for baselines and 
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multi-camera systems. Despite the obvious advantages 
associated with this 3D sensing scheme, depth holes or 
otherwise referred to as depth shadows, remain a core 
drawback [41]. The Fig. 2 graphically illustrates this problem 
which leads to ambiguities within the depth spectrum, and 
without effective preprocessing of this noisy depth sequence, 
tracking efficiency and classifier stability are put at risk. 
Within real-time applications, multiple foreground objects 
may exist within the scene and this produces multimodal 
characteristics that need to be effectively handled within the 
acquired depth sequence prior to tracking.  

 

 
Fig. 2. Depth shadows remain a core drawback in ToF sensing techniques. 
Depth shadows are represented by red pixels in (a) while (b) illustrates the 

corresponding RGB image. 
 

In the proposed tracking scheme, the Gaussian Mixture 
Model (GMM) is subverted in achieving pre-processing and 
optimization of the raw depth sequence acquired via the ToF 
sensor. The depth-based GMM considers the distribution of 
each pixel within the depth sequence towards the 
establishment of a reliable mixture model which defines the 
pixel variations over multiple frames. This modeling scheme 
is capable of distinguishing between foreground and 
background objects by relying on the variance and weights as 
distinguishing features. The algorithm operates as follows; 
Firstly, the Gaussian models are explicitly defined upon 
tracker initialization and the Yilmaz distance is computed. 
Secondly, each pixel within the sequence is independently 
processed and compared with the most current best model. If 
a match is established, the pixel is then classified as 
belonging to the model and model update is performed. 
However, if a pixel is determined to diverge from the model, 
a new GMM model is defined for this divergent pixel and 
parameters are reinitialized, causing the old unreliable model 
to become discarded. Finally, the best background model is 
selected towards realization of foreground segmentation. 

Assuming that the features of each pixel within the depth 
sequence are expressed in a K Gaussian model, then after a 
new frame is acquired, the GMM is updated and the current 
pixel under consideration is matched with the GMM. If a 
match is attained, then the pixel is treated as the background, 
otherwise, the pixel is considered as the foreground. By 
representing the pixel feature as Xt , the probability 
distribution function of the Gaussian function could therefore 
be expressed by (1). 

p(Xt )  i,t (Xt,i,t,i,t )
i1

K

                   (1) 

where (i, t) represents an estimation of the weight of the 

i th Gaussian function at a time t . i,t  and i,t represent 

the mean and variance of the i th Gaussian within the 
mixture at a time t  where   is the Gaussian probability 
density function. This density function can in turn be 
expressed by (2) below. 

 

(Xt,i,t,i,t ) 
1

(2 )
n
2 i,t

1
2

e
1

2
(Xti,t )T i,t

1(Xti,t )

                 (2) 

 
At the depth-based GMM optimization stage of the 

algorithm, the first frame of the depth sequence is applied in 
computing the frame difference iteratively. This yields a 
background update strategy that allows for the background 
depth values to be used in filling up holes present within 
incoming frames. This depth preprocessing and optimization 
scheme proves sufficient in addressing ambiguities and 
boosting the features within the depth sequence, a crucial 
step in ensuring tracker stability and integrity. 

B. Adaptive Circulant Structure Kernel Tracking 
The Circulant Tracker which was originally proposed in 

[18] is a renowned light-weight and highly efficient tracker 
with the capability of attaining the highest tracking speeds 
amongst the state-of-the-art [23]. This remarkable 
performance is attributed to the tracker’s ability to exploit 
circulance in the structure attained when all periodic local 
patches are selected for classifier training. Despite its 
groundbreaking performance, the CSK tracker suffers from 
two core drawbacks. The first drawback is associated with 
the trackers naïve classifier training and parameter update 
strategy which predisposes the classifier to drift as depicted 
in the Fig. 3, while the second drawback is associated with 
the classifiers inability to detect and therefore effectively 
handle occlusions along with other significant object changes. 
The occlusion drawback is addressed with the patch-based 
modeling and occlusion estimator presented in the following 
section. However, the naïve classifier training and parameter 
update drawback is addressed here in this section. 

In its simplest form, the CSK tracker applies a basic target 
model x̂  with a classifier coefficient A. A linear 
interpolation strategy is then applied in updating the classifier 
parameters as follows in (3). 

 
 p  (1 ) p1                               (3) 

 

 
Fig. 3. The CSK tracker attains remarkable speeds but highly prone to drift. 

 
where γ represents the learning rate parameter and p is the 
index of the current frame. The problem associated with such 
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a basic learning scheme is two-fold. Firstly, the linear 
interpolation scheme fails to capture previous appearances of 
the object and hence, vital object features become discarded 
over time [42]. Additionally, this straight-forward 
interpolation constrains the learning rate to a fixed value, 
thereby trading off the flexibility required in allowing the 
tracker to adapt to the scene dynamics encountered in 
real-world scenarios. The parameter update strategy is 
therefore redefined as follows. A fixed weight of k  0 is 

set for each k th frame and this produces a cost function as 
illustrated in (4). 

 

 
k (m,n (xm,n

k ), wk  yk (m, n)
2

 wk, wk )k1

p

            (4) 

 
The learning rate parameter offers a means of adjusting the 

weights of the frames. This in turn yields an extended 
classifier parameter update strategy, which can be expressed 
by (5). 

 
N

p  (1 )N
p1 Y pUx

p                       (5a) 
 

D
p  (1 )D

p1 Ux
pUx

p (Ux
p )               (5b) 

 
In this manner, the target appearance model can be 

expressed by (6).  
 

x̂ p  (1 )x̂ p1 x p                            (6) 
 

This extended update scheme offers a means of exploiting 
target appearance over all frames without explicitly storing 
all past models. Furthermore, this strategy overcomes the 
rigidity of the original CSK tracker by allowing the tracker to 
harness information within the problem domain towards 
effective and adaptive classifier learning. 

C. Patch-Based Modeling and Occlusion Estimation 
Appearance modeling has been considered as not only a 

core component of tracker design but also a crucial 
mechanism with which tracker robustification can be 
achieved. This section proposes a highly adaptive appearance 
modeling strategy realized within depth space. In realizing 
this goal, multiple non-overlapping local patches are 
segmented from each of the depth frames that constitute the 
target video sequence. In order to avoid redundancies, we 
assume that the bounding box captures the true location of 
the target within each frame and therefore designates the 
region of interest from which local patches are extracted. The 
problem is therefore formulated as follows; Having obtained 
target location designated by bounding box, BB, of width W 
and height H, divide the bounding box BB such that 
B B  ( W ) ( H )  where   and   are the adjustable 
scale factors. The Fig. 4 below graphically depicts this 
strategy. 

While existing 3D tracking schemes have been proposed 
to harness depth features towards robust tracking, feature 

extraction in such schemes has been carried out in a holistic 
manner which only exploits the overall appearance 
representation of the target within a single depth frame 
without explicitly capturing and modeling local depth feature 
variations of the target. This strategy renders the depth model 
of the target highly unreliable in partial occlusion situations, 
which may only manifest within sub-regions of the depth 
frame. We therefore propose to explicitly extract depth 
features from all local patches that constitute the bounding 
box. While various depth feature extraction schemes exist, 
including but not limited to Local Ternary Patterns (LPT) and 
Histogram of Oriented Vectors (HONV) [43], we adopt 
depth histograms as representative features of each local 
patch. This simple feature representation allows for the true 
nature and performance of the proposed tracking scheme to 
be observed in experimental results. 

 

 
Fig. 4. A graphical illustration of (a) local patch-based target modeling 
strategy in depth space coupled with (b) Dense Sampling in RGB space 

(represented by blue overlapping sub-windows). 
 

This patch-based target representation operates in unison 
with the circulant tracker by offering a feedback mechanism 
with which the CSK intuitively detects and efficiently 
handles occlusions. As depicted in the Fig. 4, while 
patch-based target modeling is performed in depth space 
towards occlusion estimation, dense sampling is carried out 
in RGB space towards classifier training in a circulant 
manner. Dense sampling allows for the efficient exploitation 
of redundancy within training data. This concept is 
formulated in the (7). Given a single one-dimensional image, 
x , which can be expressed as an n1 vector, the training 

samples acquired through dense sampling can be expressed 
as: 

 
xi  pix,i  0,..., n1                      (7) 

 
where p represents the permutation matrix which cyclically 
shifts the vectors by a single element. In an intuitive manner, 
all samples become possible translated versions of x  in an 
ideal case. This yields the circulance required for features to 
be evaluated rapidly within all sub-windows via the Fast 
Fourier Transform (FFT). The interested reader is referred to 
[18] for detailed theoretical proofs and further reading on 
circulant tracking. 

The final stage in the proposed tracking framework 
consists of the robust occlusion detection, estimation and 
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recovery. The robust occlusion detection and recovery 
exploits the robust depth features and the local patch-based 
depth modeling and operates as follows. Given a specific 
patch in depth space, if its depth variation between 
consecutive depth frames within the sequence exceeds a 
preset threshold, the local patch is considered as unstable. 
Otherwise, we treat the patch as stable. An unstable patch is 
treated as a local region within the target region, which may 
be undergoing occlusion or rapid appearance changes, and 
therefore the goal is to adaptively update the overall target 
model by discarding all unstable patches while retaining 
stable ones. In this way, the classifier avoids naïve parameter 
updates and refrains from learning corrupted models which 
will ultimately lead to tracker drift.  We therefore seek to 
represent the target with all stable patches, Nsp . In 

determining patch stability, depth histogram intersection is 
relied upon in computing the degree of variation between two 
consecutive patches. A single element M (x, y) within the 
likelihood map denoted as Mi (, ), is derived by computing 
the depth histogram intersection distance between a 
candidate patch centered at (x, y) and the i th patch. The 
various elements are finally fused together to generate a 
likelihood map. The robust occlusion estimator is then 
formulated by (8) as: 

 
(x*, y* )  argmax(x,y) S(x, y)                     (8) 

 
In the (8), S(x, y) represents the correlation coefficient 

obtained within the sorted set of Mi (x, y) | i 1, 2,..., Nsp . 

Building upon the robust occlusion estimation strategy, 
occlusion is recovered as follows. Upon detecting occlusion, 
the target model remains fixed at local regions with unstable 
patches.  This allows for model integrity to be guaranteed 
during occlusion. Then, for all subsequent frames, repeat this 
adaptive model update until the minimum feature distance 
drops below the preset threshold for all unstable local 
patches. 

 

IV. EXPERIMENTAL EVALUATION AND DISCUSSION 
This section presents experimental evaluation results of 

the proposed tracking scheme as well as comparison results 
with state-of-the-art. While the proposed tracking approach 
is aimed at real-time applications such as robotics, real-time 
computer-based experimental are adopted towards 
evaluation since the scope of this paper is constrained to the 
problem domain rather than the computational and 
implementation platform. Furthermore, the deployment 
platform upon which the algorithm is realized should have 
little to no impact on the overall performance and robustness 
of the scheme. 

A. Experimental Setup 
In both actual tests and benchmarking experiments carried 

out to evaluate the performance of the proposed tracking 
scheme with state-of-the-art, two adopted metrics are relied 
upon. The first metric applied is the success rate (SR), which 

is formulated in (9) as: 
 

( )
( )

G T

G T

area BBR BBRSR
area BBR BBR





                             (9) 

 
In (9), GBBR  denotes the bounding box region 

established by the ground truth while TBBR  represents the 
bounding box region obtained by the tracker. Similar to the 
scheme applied in [44], the obtained SR is compared to a 
present threshold and if the SR exceeds this threshold, the 
track is considered successful and if not, registered as a failed 
track. The second metric adopted in the benchmarking 
experiments is the Center Location Error (CLE), which 
defines the Euclidean distance between the center of the 
obtained bounding box and that of the ground truth. 

In an ideal case, benchmarking of a tracking approach, 
which is realized though tracking-by-detection, would be 
required to compare performance with state-of-the-art 
including TLD [17], CSK [18], STRUCK [15] and MIL [14]. 
However, an obvious challenge arises which lies in the fact 
that most state-of-the-art trackers are not explicitly designed 
to operate on 3-dimensional feature spaces and hence a direct 
comparison of the proposed occlusion-robust tracker with 
such state-of-the-art would be an ill-formulated problem. The 
Mean Shift tracker [38], and the Sparse Flow Tracker [45], 
which have been well established against other 
state-of-the-art are selected for benchmarking. Furthermore, 
these trackers have the capability of being extended to 
operate on RGBD sequences, which allows for fairness to be 
guaranteed in benchmarking. Furthermore, the original CSK 
algorithm is included in benchmarking to operate only on the 
RGB sequences that make up the benchmarking sequences. 
The details of the platform for computer-based experiments 
is as follows: 
1) Computing platform: 2.8 GHz Intel Core i7  
2) Memory: 8 GB RAM @1067 MHz) 
3) Data Acquisition Scheme: Kinect Sensor@ 30FPS 

In facilitating the actual and benchmark experiments, 
RGBD video sequences are captured and recorded with 
varying forms and degrees of complexity. While the 
proposed tracking scheme is explicitly designed to detect and 
effectively handle partial occlusions within a circulant 
tracking framework, the benchmarking sequences are 
recorded with varying forms of challenge in order to establish 
the impact of these various real-time challenges on the 
overall tracker performance. Table I presents details of the 
recorded sequences. 

 
TABLE I: BENCHMARK SEQUENCES AND THEIR ASSOCIATED CHALLENGES 
Sequence Associated Challenges 
1. Magazine Partial Occlusion, Full Occlusion, Fast Motion 

2. Mug Partial Occlusion, Random Motion, Illumination 
Changes 

3. Notebook In-plane-rotation, Partial Occlusion 
4. Palm Out-of-view, Random Motion, Partial Occlusion 

 

B. Experimental Results 
Fairness in comparison experiments is guaranteed by 

ensuring that all trackers are spatio-temporarily initialized. 
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From the results depicted in the Fig. 5, all trackers are able to 
maintain some degree of stability in initial frames of each 
sequence. Intuitively, performance begins to vary with 
increase in sequence length. The CSK tracker, which 
operates only on RGB sequences exhibits the fastest 
performance which could be attributed to its capability to 
exploit circulance towards fast and efficient feature 
extraction and hence rapid iterative detection across frames. 
As the experimental results show, this simple approach to 
tracking suffers immensely when various complexities are 
introduced into the sequence. While partial occlusion leads to 
some degree of tracker drift, sustained occlusion of the target 
causes the tracker to become completely adapted to the 
occluding object and the impact of this instability only 
becomes compounded with an increase in sequence length. 
This drawback is attributed to the inability of the tracker to 
detect instances of occlusion, which in turn leads to a gradual 
degradation of the tracker in both partial and full occlusion 
situations. Over all sequences, this remains the area in which 
the proposed tracking scheme outperforms CSK. By 
decomposing the tracking problem and introducing a local 
patch-based appearance modeling scheme within an RGBD 
tracking framework, the proposed tracking scheme is capable 
of efficiently detecting target changes which could be as a 
result of occlusion, target deformation, rotation but to 
mention a few. Through implementation with a robust 
occlusion estimator, instances of occlusion can be detected 
and recovered on a per frame basis enabling the tracker to 
maintain stability even over long video sequences. As 
depicted in the experimental results, while CSK maintains a 
higher tracking speed, the proposed scheme is capable of 
avoiding tracker drift even in scenarios where occlusion is 
coupled with rapid target motion. This highlights the 
feasibility of the proposed scheme in real-time applications. 
While the most stable tracking results are obtained by the 
proposed tracking scheme, the Mean Shift tracker attains the 
most unstable performance, being slightly out-performed by 
the Sparse Flow tracker.  

The Sparse Flow tracker adopted in this paper adopts a 
pyramidal Kanade-Lucas Tomasi (KLT) core in realizing 
feature tracking within the bounding box region. 
Experimental results show that the tracker is highly prone to 
drift since it estimates target motion in relation to the 
previous frames. 

 

 

 

 

 
Fig. 5. Visual tracking results achieved on (a) Magazine (b) Mug (c) 

Notebook (d) Palm sequences. Red: Proposed Tracking Scheme, Blue: CSK, 
Cyan: Mean Shift tracker, Green: Sparse Flow Tracker. 

 
This estimation scheme means that over time, the tracker 

can be expected to have drifted from the true target position. 
While drift has not yet corrupted the tracker, tracking results 
are smoother than the Mean Shift tracker but not as fast as 
CSK and not as robust as the proposed scheme. The tracker is 
capable of handling minor occlusions but fails to recover 
after significant occlusions and target loss. The Mean Shift 
tracker which was adopted utilizes a fixed-size rectangular 
kernel which computes the likelihood of each pixel within the 
frame on a per-frame basis. This tracker attains a high 
tracking speed but tracking efficiency relies immensely upon 
the degree of visual distinctiveness between foreground and 
background pixels. Furthermore, tracker performance 
degrades in scenarios where foreground and background 
pixels may be visually distinctive but are not largely 
composed of one colour. The experimental results presented 
in the Table II demonstrate the high robustness of the 
proposed tracking scheme. 

In terms of stability, the proposed tracking scheme 
outperforms state-of-the-art and achieves the highest 
precision and success rate over all sequences. The average 
error rate of the tracker is significantly smaller than 
state-of-the-art although the CSK outperforms in the 
notebook sequence. 

 
TABLE II: PROPOSED TRACKING SCHEME VS. STATE-OF-THE-ART. SUCCESS 

RATE (SR) AND CENTER LOCATION ERROR (SLE) 

Sequence/Frames
CSK 
 
SR/CLE 

Mean 
Shift 
SR/CLE 

Sparse 
Flow 
SR/CLE 

Proposed 
 
SR/CLE 

Magazine/300 17.2/33.7 12.3/38.5 14.8/37.3 28.0/32.1 
Mug/450 19.7/25.9 13.8/36.1 15.5/35.0 33.2/23.8 
Notebook/400 26.5/18.3 24.2/23.5 25.0/21.7 31.8/19.3 
Palm/400 28.2/12.2 22.6/27.6 24.9/27.0 37.2/9.5 

 
The stable performance of the proposed tracker is 

attributed to the fact that apart from being robust to 
illumination variations due to its RGBD tracking approach, 
the scheme is further able to detect occlusion instances 
through implementation with patch-based local appearance 
modeling in depth space. This allows for selective and 
adaptive classifier training to be achieved and hence 
classifier integrity guaranteed. Furthermore, by holding off 
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on model updates in regions of model instability, occlusion 
recovery is feasible when the target reemerges from 
occlusion as seen in mug #0115 and magazine #0107.  

 

V. CONCLUSION 
Occlusion is a predominant problem encountered by 

tracking-by-detection algorithms and systems. The 
destabilizing impact of occlusion on tracking is not limited to 
classical algorithms but extends to the state-of-the-art as well. 
In tracking-by-detection algorithms where tracking is treated 
as an iterative detection task stretching across all frames of a 
video sequence, the impacts of occlusion may include, but 
are not limited to tracker drift and complete tracker loss.  This 
paper presents a tracker robustification scheme, which 
effectively incorporates local patch-based target appearance 
modeling and robust occlusion estimation and recovery into 
an RGBD tracking framework. The local patch-based target 
modeling allows for adaptive object modeling to be realized 
within depth space, a scheme that allows for model 
degradation to be mitigated in instances of occlusion. By 
harnessing this adaptive model update, a robust occlusion 
estimator is realized with the capability to detect occlusion on 
a per-frame basis and hence, allow for the tracker to be 
recovered when the object emerges from occlusion. 

The proposed tracking scheme is implemented using CSK 
as a core tracker due to its lightweight and simple kernel 
interface. The robustness of the scheme to partial occlusions 
as well as its capability to recover in instances of full 
occlusion is verified through computer-based experiments 
realized with the Kinect sensor. Comparison experiments 
with state-of-the-art demonstrate the superior performance of 
the proposed scheme in terms of tracker robustness. 
Furthermore, due to the efficient incorporation of 
GMM-optimized depth features with RGB features into a 
single RGBD tracking framework, the tracker performance is 
not impeded upon by background clutter and illumination 
variations.  

Future work will study the impacts of target deformation 
and in-plane rotation on the proposed tracking scheme, as 
well as extensions to robustify tracking against these 
challenges. Additionally, while computer-based 
experimental verification and benchmarking has been 
sufficiently carried out here in this paper, future work will 
cover experiments that simulate robot-based scenarios using 
the TurtleBot presented in Fig. 6 as an experimental platform. 

 

 
Fig. 6. The TurtleBot platform facilitates robot-based experimental 

evaluation of the proposed tracker. 
 

Such robot-based experiments could include target 

tracking-and-following as well as target 
tracking-and-evasion scenarios. 
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