



Abstract—To implement virtualized service-edge-router

functions on carrier networks using general-purpose servers, it

is necessary to improve forwarding performance. The required

forwarding performance of a service-edge-router reached more

than 100-Gbps in bandwidth on carrier networks.

In this paper, we propose a distributed architecture that

involves reconfigurable hardware accelerators with high-level

synthesis technology for virtualized service-edge functions to

satisfy migration time constraints and improve forwarding

performance. The proposed architecture prepares several

circuit files for the hardware accelerators according to the

utilizations of the network functions in advance and selects a

suitable circuit file at the time of migration, instead of

generating circuit files for the accelerators every time.

The evaluation of the proposed architecture showed that

migration time can be almost the same as the time on

configurations without hardware accelerators, and forwarding

performance can be on the order of 100-Gbps when a

general-purpose server exhibits 10-Gbps forwarding

performance.

Index Terms—Virtualized service-edge router, hardware

accelerator, field-programmable gate array, network function

virtualization.

I. INTRODUCTION

The forwarding performance of virtualized network

functions has recently improved. For example, 10-Gbps or

more forwarding performance of a packet-forwarding

function based on 1 million OpenFlow rules can be achieved

using a general-purpose server [1]. To connect such

equipment to a carrier network, 100-Gbps or more

forwarding performance is required for edge-router

equipment placed on the edge of the carrier network.

A service-edge function is a function on the carrier

networks. The service-edge functions are placed on the edge

of carrier Internet-Protocol (IP) networks and provide several

network services on carrier networks. To provide network

services, a service-edge function generally can provide many

packet-processing functions, such as IP multicast, tunnel

encapsulation, or session control.

Network-oriented processors have been widely used to

ensure the forwarding performance of a service-edge

function. Toward network function virtualization (NFV),

implementation of a service-edge function on servers that use

general-purpose central processing units (CPUs) has been

Manuscript received December 30, 2016; revised March 30, 2017.

The authors are with the NTT Network Service Systems Labs, Nippon

Telegraph and Telephone Corporation, 3-9-11, Midori-cho Musashino-shi,

Tokyo, Japan (e-mail: nishiyama.s@lab.ntt.co.jp,

kaneko.hitoshi@lab.ntt.co.jp, kudo.ichiro@lab.ntt.co.jp).

studied.

There are several methods of improving forwarding

performance on general-purpose servers. One such method is

software-acceleration such as Intel data plane development

kit (DPDK) [2], [3]. Furthermore, hardware-acceleration

methods that use alternative reconfigurable hardware devices,

such as a field-programmable gate array (FPGA), have been

extensively studied [4]-[7].

High-level synthesis (HLS) is a technology to efficiently

implement functions on an FPGA. The HLS compilers

generate register transfer level (RTL) logics that work on the

FPGA from high-level programming languages such as

C-language. In HLS, the compiler automatically generates

the timing design necessary for RTL.

The achievable performance of the RTL generated by a

HLS compiler depends on the compiler's ability. Recent HLS

technology can implement packet-processing functions

exceeding 100-Gbps performance by automatically

designing a pipeline on the compiler. We investigated

methods that enable the same function to be operated using

both a general-purpose CPU and FPGA accelerator, using

HLS.

In a previous study, we describe guidelines on how to

deploy service-edge functions when the same function can be

executed using a CPU and FPGA [8]. Since the resources of

an FPGA are finite, it is impossible to execute processing on

the FPGA for all packets. Therefore, it is important to design

functions that operate on an FPGA to maximize transfer

performance.

In the virtualization network function, virtual machine

(VM) migration in a short time between several machines is

expected [9]. If the function deployment at migration can be

rearranged freely, it will be possible to maximize transfer

performance considering the FPGA resources. However, for

rearrangement of the function deployment for an FPGA, a

circuit file of the FPGA is necessary for each function

deployment. If FPGA circuit files are generated for every

migration, migration cannot be completed within a realistic

time.

In this paper, we propose an architecture to develop a

service-edge function that combines a CPU and FPGA and

enables over 100-bps processing during inter-chassis

migration. We also evaluate the migration time and transfer

performance with our architecture.

II. IMPLEMENTATION OF SERVICE EDGE FUNCTION

The next generation network (NGN) is an integrated

network that can provide multimedia services such as

Distributed Packet Processing Architecture with

Reconfigurable Hardware Accelerators for 100Gbps

Forwarding Performance on Virtualized Edge Router

Satoshi Nishiyama, Hitoshi Kaneko, and Ichiro Kudo

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

37doi: 10.18178/ijfcc.2017.6.2.485

Internet and telephone based on IP technology. The Telecoms

and Internet converged Services and protocols for Advanced

Network (TISPAN) has prepared key documents on NGN

specifications [10].

A service-edge function is classified into C-plane and

U-plane processing functions in the NGN. The C-Plane

processing functions execute control functions such as the

access relay function and process-control packets. The

U-plane processing functions execute transfer functions such

as resource control enforcement function (RCEF), and

process high-speed packet forwarding with flow-control,

encapsulation, and so on.

The U-plane processing functions of a service-edge

function consists of a combination of multiple header

identifications and multiple actions such as filtering and

policing. Note that processing functions according to the type

of service subscribed by the user are provided for each user

on service-edge functions.

There are two types of configurations for developing these

functions, i.e., a centralized deployment configuration

represented by servers and a distributed deployment

configuration represented by carrier-grade routers (Fig. 1). In

the centralized deployment configuration, the CPU and

dynamic random access memories (DRAMs) execute both

C-plane and U-plane processing. In the distributed

configuration, the CPU and the DRAMs execute C-plane and

U-plane processing with network processors.

Fig. 1. Centralized and distributed deployment configurations.

In the distributed deployment configuration, it is possible

to execute U-plane processing by distributed network

processors to improve forwarding performance. However,

carrier-grade routers use dedicated network processors for

the routers, so it is difficult to migrate functions between

routers that use different network processors.

Therefore, we discuss methods of combining FPGA

accelerators with a general-purpose server to implement the

distributed deployment configuration using general-purpose

devices in this paper.

III. FPGA ACCELERATOR CONFIGURATION

In this section, we describe the configuration for

virtualized service-edge functions with a CPU and FPGAs. In

the method of combining different devices, it is necessary to

consider how to distribute the processing.

There are two types of task-distribution methods for

distributing processing with FPGAs and a CPU: the CPU

distributes tasks and FPGAs distribute tasks. The former is

used for image processing and video encoding, and OpenCL

is a conventional method [11], [12]. The latter has been used

conventionally for separating the control and data plains in

routers and has been demonstrated by OpenFlow [13] in

recent years.

The former method has a bottleneck in distribution

processing by the CPU so it is difficult to improve

packet-transfer performance. In this paper, we examine the

configuration on the latter method (Fig. 2).

Fig. 2. Distribution configuration for packet processing.

A packet that has arrived from network interfaces is first

input to the distribution-function unit (Dispatcher) in the

FPGA. The Dispatcher has a forwarding table to identify

packet-header information, such as a destination IP address

and a port number, and transfers the packet to the CPU or

FPGA according to the result of identification with the

lookup table. Then, U-plane processes, such as encapsulation

and rate-limit, are executed on the packet (Processing

Packets). Finally, the packet is output from the network

interfaces.

In this paper, it is assumed that the lookup table is assigned

for each network service. The capacity of lookup tables

becomes increasingly necessary as the number of users that

are provided network services increases.

IV. VIRTUALIZED SERVICE EDGE ON DISTRIBUTED SYSTEM

There are many types of FPGA-accelerator products, and

the capacities of the FPGAs are different. The lookup-table

capacities for each network service on an FPGA can be

maximized by generating a circuit file of the FPGA by taking

into account the desired network requirements and FPGA

capacity.

Let us consider VM migration carried out between

general-purpose servers equipped with accelerators having

different FPGA capacities. The VM-migration procedure is

as follows (Fig. 3).

1) Exchange configuration information between servers.

2) Transfer the VM image from the source server to the

destination servers. This VM image includes information

of the lookup table. The circuit image stored in the FPGA

is not transferred.

3) Generate a circuit image so that the size of the circuit fits

the capacity of the FPGA, write the circuit image, and

transfer lookup-table information to the FPGA.

4) Switch the route from the source server to the destination

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

38

server.

Fig. 3. Distribution configuration for packet processing.

Let us also consider maximizing forwarding performance

in this configuration. Assuming that the packet-forwarding

performance of the CPU is Tc (bps), packet-forwarding

performance of the FPGA is Tf (bps), and ratio of the traffic

processed by the FPGA to the input traffic is 𝛽 . If 𝑇f is

sufficiently larger than 𝑇c, the forwarding performance of the

entire system 𝑇a is modeled as follows.

𝑇a = 𝑇c/(1 − 𝛽) (1)

For example, if the FPGA can handle 9,000 users in the

FPGA against a total of 10,000 users and the traffic

bandwidth of each user is even, 𝛽 = 0.9 and 𝑇a = 10𝑇c. This

means that the forwarding performance with accelerators is

10 times better compared with the case without FPGA

accelerators.

To improve forwarding performance, it is preferable to

ensure the lookup-table capacity in the FPGA to maximize 𝛽.

The lookup-table capacity is limited by the amount of circuit

resources on the FPGA. Therefore, to maximize forwarding

performance, it is necessary to generate an FPGA circuit in

which the lookup-table capacity fits the capacity of the

FPGA.

As mentioned above, a service-edge function consists of

various network-service functions and has a lookup table for

each network service. To generate an FPGA circuit having a

lookup-table capacity optimized to each FPGA that has

various resource capacities, HLS and circuit generation

according to each FPGA are necessary for every combination

of FPGA and lookup table. Therefore, it is difficult to ensure

migration time to be within several minutes while improving

forwarding performance when circuit generation is required

for every migration.

V. PROPOSED ARCHITECTURE

In this section, we propose an architecture that involves a

FPGA circuit-file server that can manage multiple

circuit-files for an FPGA to improve forwarding performance

and ensure short migration time. The configuration of the

architecture is shown in Fig. 4.

A method of the VM migration on this configuration is as

follows.

1) Exchange configuration information between servers.

2) Notify the configuration-management server of the FPGA

type and lookup-table information.

3) The configuration-management server has multiple

circuit images and selects a circuit-file from the FPGA

capacity and required lookup-table size.

4) Transfer the circuit file of FPGA from the file server to

the destination server.

5) Transfer the VM image from the source server to the

destination servers. This VM image includes information

of the lookup table.

6) Write the circuit file to the FPGA of the destination server

and register the lookup-table information from the CPU to

the FPGA.

7) Switch the route from the source server to the destination

server.

The file management server prepares several circuit files

for the hardware accelerators according to the utilizations of

the network functions in advance and selects a suitable circuit

file at the time of migration. The utilization of the network

functions tends to the number of users that uses network

services.

Fig. 4. Configuration of proposed architecture.

With this method, the number of FPGA circuit files stored

in the file-management server limits the optimization of

forwarding performance. One way to optimize performance

involves generating and storing FPGA circuit files for all

lookup tables on the file server in advance. However, the

capacity of the file server is limited, so all circuit files cannot

be stored. Therefore, it is required that the file server prepares

several circuit files corresponding to several lookup-table

capacities and selects a circuit-file that optimizes forwarding

performance.

Define the value 𝑠 as the number of network-service types

provided by the service-edge function, 𝑐 as the capacity of

the FPGA circuit resource, 𝑟𝑖 (𝑖 = 1, … , 𝑠) as the FPGA

resource consumption per user by service 𝑖, 𝑁𝑖 (𝑖 = 1, … , 𝑠)

as the number of users that subscribe to service 𝑖 , and

𝑛𝑖 (𝑖 = 1, … , 𝑠) as the number of users that can be

configured to the lookup table on the FPGA. The restriction

of FPGA capacity is expressed as follows.

𝑐 > ∑ (𝑟𝑖𝑛𝑖)
𝑠
𝑖=1 (2)

Also, assuming that the user traffic bandwidth 𝛾𝑖 is

constant for each service 𝑖 and 𝛽 is determined by the ratio of

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

39

the number of subscribers 𝑁𝑖 to that processed by the FPGA

accelerator 𝑛𝑖, traffic offload ratio 𝛽 is expressed as follows.

𝛽 = ∑ 𝛾𝑖 min(𝑛𝑖 , 𝑁𝑖) 𝑠
𝑖=1 ∑ 𝛾𝑖𝑁𝑖

𝑠
𝑖=1⁄ (3)

In step 3 of this method, a circuit file, which maximizes β

in Eq. (3), is selected from previously prepared circuit files.

To prepare circuit files that previously maximized 𝛽 for any

number of subscribed users, the lookup-table capacities of the

circuit files are required to satisfy the max-min condition,

max
𝑛

 min
𝑁

 𝑓(𝑛, 𝑁) s. t. c > ∑(𝑟𝑖𝑛𝑖,𝑗)

𝑠

𝑖=1

, 𝑔(𝑁1, … , 𝑁𝑚) > 0

𝑓(𝑛, 𝑁): = max
𝑗

𝛽(𝑛𝑗 , 𝑁),

where 𝑚 is the number of previously prepared circuit files,

 𝑛𝑖,𝑗 > 0 (𝑖 = 1, … , 𝑠 and 𝑗 = 1, … , 𝑚) is lookup-table

capacity, the number of service 𝑖 users that can be configured

to the circuit file 𝑗, 𝑔(𝑁1, … , 𝑁𝑚) > 0 is a function defining

the domain of the number of users 𝑁𝑖 of each service, and

𝑛𝑗 ∶= [𝑛1,1 ⋯ 𝑛(s,1)]
T

𝑛 ∶= [(𝑛1)T ⋯ (𝑛𝑚)T]T

𝑁 ∶= [𝑁1 ⋯ 𝑁𝑚]T.

VI. MIGRATION TIME AND FORWARDING PERFORMANCE

A. Migration Time Evaluation

In this section, we determine if migration including FPGA

accelerators is possible with a sufficiently small increase in

migration time compared with the migration time in the

configuration without accelerators with the proposed

architecture.

In the VM image synchronization between the CPU and

the DRAMs, if it is assumed that the bandwidth that can be

ensured between the servers is about 100 Mbps and the size

of the VM image is about 2 Gbytes, synchronization can be

expected to take several minutes [9]. The increase in

migration time compared to that in the configuration without

an FPGA accelerator is the time required for steps 3, 4, and 6

in the previous section. It is considered sufficiently practical

if this additional time is almost equivalent to the

synchronization time, i.e., several minutes.

In step 3, if the number of circuit files is sufficiently small,

from several to 10, the selection of the circuit file will be

completed within seconds, even if all circuit files are linearly

searched. In step 4, it can be assumed that the size of the

circuit file is about several hundred Mbytes at most, so the

transfer of the circuit file can be completed in ten seconds if

network bandwidth is ensured to be 100 Mbps. In step 6,

because the previously generated circuit files are prepared

with the proposed architecture, it is expected to be completed

within a minute as a writing time to the FPGA.

Therefore, the total time increase is several minutes, which

is considered within a practical range.

B. Forwarding Performance Evaluation

In this section, we evaluate the proposed architecture by

numerical simulation of the traffic offload ratio and

forwarding performance in respect of the number of FPGA

circuit files on the file management server. For use in

numerical examples, assume that the range of the number of

users N for each service is as follows.

𝑔(𝑁1, … , 𝑁𝑚) = 𝑘 − ∑(𝑎𝑖𝑁𝑖)

𝑠

𝑖=1

> 0

This expression is a condition in which the weighted sum

of the number of users of each service is less than a certain

value k.

Fig. 5 shows a numerical example of traffic offload ratio 𝛽

processed by the accelerator with the proposed architecture.

In this example, it is assumed that the number of service types

𝑠 ∈ {2,3,4} , and each service consumes the same circuit

resources and traffic bandwidth per user, 𝑟𝑖 = 𝑎𝑖 = 1, 𝛾𝑖 =
1, 𝑐 = 𝑘 = 1000. In this example, for any number of service

types, the traffic offload ratio β in the accelerator improves,

compared with only preparing a circuit file, with the

proposed architecture preparing multiple circuit files.

In the NGN architecture, the number of network services is

usually two or three, such as Internet access, voice and video

multicast. Therefore, the traffic offload ratio can be 0.7 or

more if the number of circuit files can be more than 10 files.

Fig. 5. Numerical example of traffic offload ratio 𝛽.

Forwarding performance is derived from Eq. (1) with 𝛽

obtained in Fig. 5. Fig. 6 shows the forwarding performance

derived when 𝑠 = 2. In the evaluation, it was assumed that

the transfer performance 𝑇𝑐 = 10 Gbps for a general-purpose

server alone. As a result, 100-Gbps forwarding performance

can be achieved with the proposed architecture if at least 8

circuit files are prepared when the number of network

services 𝑠 = 2.

Fig. 6. Numerical example of forwarding performance.

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

40

VII. CONCLUSION

In this paper, we proposed an architecture to improve

forwarding performance for a service-edge function on the

configuration using an FPGA as the accelerator of the

virtualization network function. High forwarding throughput

and short migration time are achieved by the proposed

architecture.

The proposed architecture prepares several circuit files

according to the utilizations of the network functions in

advance and selects a suitable circuit file at the time of

migration instead of generating circuits for the FPGA every

time. Numerical examples from our evaluation showed that

migration time of several minutes, which is almost the same

as the time on configurations without hardware accelerators,

and forwarding performance on the order of 100 Gbps are

possible when the performance of a general-purpose server is

10 Gbps. The implementation method for automation of

generating FPGA circuit files is future work.

REFERENCES

[1] Lagopus switch. [Online]. Available: https://lagopus.github.io/

[2] Intel. Data plane development kit. [Online]. Available: http://dpdk.org

[3] Y. Ohara et al., “Revealing the necessary conditions to achieve 80Gbps

high-speed PC router,” in Proc. the Asian Internet Engineering

Conference 2015, pp. 25-31, 2015.

[4] K. Blaiech et al., "Data plane acceleration for virtual switching in data

centers: NP-based approach," 2014 IEEE 3rd International Conference

on Cloud Networking, pp.108-113, 2014.

[5] J. F. Zazo et al., “A PCIe DMA engine to support the virtualization of

40 Gbps FPGA-accelerated network appliances,” ReConFigurable

Computing and FPGAs, pp.1-6, 2015.

[6] P. Paglierani et al., "High performance computing and network

function virtualization: A major challenge towards network

programmability,” IEEE International Black Sea Conference on

Communications and Networking, pp. 137-141, 2015.

[7] G. Brebner et al., "High-speed packet processing using reconfigurable

computing,” IEEE Micro, vol. 34, no. 1, pp. 8-18, 2014.

[8] S. Nishiyama, T. Osaka, H. Kaneko, and I. Kudo, “A study of

virtualized service edge functions using accelerators, netrosphere:

towards the transformation of carrier networks,” IEICE Technical

Report, vol. 115, no. 483, pp.335-340, 2016.

[9] K. Mochizuki, H. Yamazaki, and A. Misawa, “Bandwidth guaranteed

method to relocate virtual machines for edge cloud architecture,” in

Proc. APNOMS, TS8-3, Sep. 2013.

[10] ETSI, “NGN functional architecture V1.1.1,” ES 282 001, 2005.

[11] A. Munshi, “The opencl specification,” IEEE Hot Chips 21 Symposium

(HCS), 2009.

[12] J. Stone et al., “OpenCL: A parallel programming standard for

heterogeneous computing systems,” Computing in Science and

Engineering, vol. 12, pp. 66-73, 2010.

[13] N. McKeown et al., “OpenFlow: Enabling innovation in campus

networks,” ACM SIGCOMM Computer Communication Review, vol.

38, no. 2, pp. 69-74, 2008.

Satoshi Nishiyama is a research engineer in NTT

Network Service Systems Laboratories. He received

his B.E. and M.E. in system control engineering from

Tokyo Institute of Technology, Japan in 2007 and

2009. Since 2009, he has been working at NTT

corporation as a research engineer. He currently carries

out research and development of next generation

network and carrier network architecture.

Hitoshi Kaneko is a senior research engineer in NTT

Network Service Systems Laboratories. He received

his B.E. in electrical engineering in 1987 from Tokyo

Institute of Technology. He joined Software

Laboratories, NTT, in 1987, where he studied CHILL

programing language. He joined NTT Network Service

Systems Laboratories in 2001, where he studied edge

router architecture.

Ichiro kudo is a senior research engineer in NTT

Network Service Systems Laboratories. He received

his B.E. in electrical engineering in 1998 and his M.E.

in informatics in 2000 from Kyoto University. He

joined business communications headquarters, NTT

WEST, in 2000 and work on the construction of a IP

network between financial institutions. He is currently

investigating and developing network security

technology using the edge router, DPI, and security controller for the

next-generation NTT-NGN.

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

41

