

Abstract—There is a wide range of web-based applications,

which use a rich communication model such as Rich Internet
Applications, mobile apps, cloud-based systems, Internet of
Things based systems, etc.; however, a proper term to address
them all and a definition, which covers and explains the
common characteristics of them are missing. A definition of a
concept is important as the definition provides a precise
common understanding of the focused artifacts, which helps in
increasing the realization of these artifacts towards proper
utilization of them. We propose the umbrella term Rich Web-
based Application to address the aforementioned types of
applications, and also propose a definition for it, aligning to the
common architectural characteristics of these applications. In
addition, we deliver a set of taxonomies to classify the
techniques and technologies related to the development of Rich
Web-based Applications, in the direction of improving the
understanding of the proper utilization of them. In future, we
expect to introduce an architectural style for these Rich Web-
based Applications, based on the proposed definition.

Index Terms—Definition, delta communication, development

techniques and technologies, rich internet application,
taxonomy, web-based application.

I. INTRODUCTION
The concept of the service of the web was introduced in

the early 90s [1], and it became popular, allowing the
features of other types of network-based services such as
email and file sharing, to be delivered via the service of the
web. Nowadays, the client-server based distributed systems
– commonly known as “web applications” – are mainly built
exploiting the service of the web and this domain is
evolving and expanding rapidly, introducing new breeds of
systems with a variety of features, which use dedicated
Techniques and Technologies (TTs) to develop them.

It is not easy to understand both the common and specific
characteristics of these systems, and still, there are no proper
definitions available to explain them too. The definitions
and taxonomies of the concepts are important as they
provide a precise common understanding of the focused
subject, which helps in increasing the realization of the
concept towards proper utilization of it. We have studied the
systems, which utilize the service of the web, in depth, and

Manuscript received February 15, 2018; March 27, 2018.
Nalaka R. Dissanayake is with the Sri Lanka Institute of Information

Technology, New Kandy Road, Malabe, Sri Lanka (e-mail:
nalakadmnr@gmail.com).

G. K. A. Dias is with University of Colombo School of Computing,
Colombo 7, Sri Lanka (e-mail: gkad@ucsc.cmb.ac.lk).

have introduced the concept of web-based application and a
definition for it, also discussing their development TTs [2].
The concept of web-based applications is detailed in Section
II.A.

In our ongoing research, we narrowed down our study,
focusing on the web-based applications, which utilize a rich
communication model, explained in Section II.B. The
systems in this focused domain are commonly known as
Rich Internet Applications (RIAs); the characteristics of
them are discussed in Section II.C.

Continuing the study, we noted that there are varieties of
systems such as mobile apps, cloud-based systems, and
Internet of Things (IoT) based systems, which share some
common characteristics with the RIAs. Our ongoing
research is focusing on introducing an abstract architectural
style for these systems; thus, we required a common basis to
address all these systems. While doing an in-depth literature
survey we understood that still the common architectural
characteristics of these systems have not been understood,
and also a proper definition is not available.

In this paper – in Section III – we propose an umbrella
term “Rich Web-based Application” (RiWA), to address a
wide range of web-based applications, which use the rich
communication model, commonly used by the RIAs. Then
we propose a definition for the RiWA by extending the
definition of the web-based application, aligning to the
identified common architectural characters of the RiWAs.
Based on the proposed definition, we present taxonomies for
the development TTs of the RiWAs in Section IV, towards
improving the understanding of the proper utilization of
them.

We expect to continue our research in the direction of
introducing an architectural style for the RiWAs, based on
the proposed definition in this paper, which can help in
realizing a wide range of systems covered by the proposed
umbrella term “Rich Web-based Application”.

A. Methodology
An intensive literature survey was conducted, focusing on

the 1) web, internet, and related concepts like protocols, 2)
web applications, RIAs, and related concepts like the rich
communication model, 3) other types of web-based
applications, which utilize the rich communication model,
like mobile apps, etc., and 4) the development TTs of these
systems. The search was executed online using Google
Scholar search engine.

Towards experiencing the findings of the literature survey
and gaining empirical evidence, a series of experiments
were conducted. These experiments were focusing on

Rich Web-based Applications: An Umbrella Term with a
Definition and Taxonomies for Development Techniques

and Technologies

Nalaka R. Dissanayake and G. K. A. Dias

International Journal of Future Computer and Communication, Vol. 7, No. 1, March 2018

14doi: 10.18178/ijfcc.2018.7.1.513

identifying and understanding the common architectural
characteristics of the web-based applications, which utilize
the rich communication model and their development TTs.
These experiments were prototype based and continued in
incremental development. The facts identified during the
literature survey were examined in the early iterations, then
new facts were identified, and they were tested in later
iterations. Solutions for the identified issues in early
iterations were continuously tested and refined in later
iterations. The new concepts such as web-based applications,
Delta Communication (DC), Rich Web-based Applications
(RiWA) were constructed inductively, to assist the
discussions of the ongoing research, in the direction of
introducing an architectural style for the rich applications,
which are based on the concept of the web.

Various TTs – as discussed in Section IV – were used to
develop the prototypes for testing different types of
applications as well as their development TTs. Early
prototypes were mainly browser-based applications,
developed using HTML, JavaScript (JS), and PHP. The
derived concepts, such as Simple Pull Delta Communication
(SPDC) [3], were tested later using different server-side TTs
like JAVA and .NET, and also tested for different other
types of applications like mobile apps.

II. BACKGROUND
This section discusses the basics of three main concepts,

which lay the foundation for the rest of the paper.

A. Web-based Applications [2]
The term “web application” usually denotes a range of

applications, which run in a web browser. In present, the use
of the service of the web has expanded its limits, affecting
the generic web applications to grow beyond the web
browser. However, still the architecture of these systems are
based on the client-server style, using the request-respond
model over HTTP; thus, they can be grouped into a single
domain, which is called Web-based Applications [2].

Web-based Application is defined as “a system, with
application component(s) in client-side [client-
component(s)], which communicate(s) with application
component(s) in a web server [server-component(s)], for
processing data. They utilize the service of the web, based
on the client-server architecture, request-response model,
standard HTTP, and other related techniques and
technologies” [2]. Combination of the components of a
standalone desktop application [client-component(s)] and
components, which run in a web server [server-
component(s)] is called as a standalone web-based
application, which can be extended into a multi-tier web-
based application, by adding external layers such as
database layer, etc. [2].

Web-based applications can be mainly classified into two
groups, based on the type of the client-components, as
browser-based web-based applications and non-browser-
based web-based applications [2]. The limitations of the
web-based application can be seen as 1) poor Graphical
User Interfaces (GUIs), 2) slow responses due to the work-
wait pattern, 3) low user experience caused by the
aforementioned limitations, 4) lack of management,

maintenance, and modification, and 5) communication
limitations [2]. Overcoming these limitations of web-based
applications, a new breed of applications named Rich
Internet Applications (RIAs) had been introduced, which
use a rich communication model. The RIAs introduced a
new era for the web, named Web2; and they have become
increasingly important and popular. The rich communication
model and other characteristics of the RIAs are discussed in
the next two sections.

B. Delta Communication [3]
The rich communication model of the RIAs is called

Delta Communication (DC), with three main characteristics:
1) capability of processing in background, which helps in
partial page rendering, 2) faster communication than the
communication used in web-based application, which leads
to improving the responsiveness by eliminating the work-
wait pattern, and 3) support for development of the features
in both synchronous and asynchronous processing [3].

DC can be seen as the power of the RIAs and it is defined
as “the rich communication model used by the rich features
of the RIAs, for client-component(s) to communicate with the
server-component(s), to exchange only the needful dataset –
for a particular feature executed at the time – which is
smaller, compared to the size of the request/response of
traditional communication. Since the size of the dataset
communicated is smaller, the communication completes
faster, eliminating the work-wait pattern. The processing of
the response is done by the client-components in the
background, therefore the page refreshes are eliminated and
replaced by partial page rendering to update the content of
the GUI with the results of the response. The user experience
can be determined by the implementation of the feature, in
either blocking (synchronous) or non-blocking
(asynchronous) modes” [3].

The basic model of the DC is called Simple Pull Delta
Communication (SPDC) model, which is defined as “the
basic abstract Delta-Communication technique, based on
the data-pull mode. It describes the simplest form of data-
pull Delta-Communication, based on the request-response
model; and this technique is technology independent” [3].
The JavaScript (JS) implementation of the SPDC – which is
called the “JavaScript-based Simple Pull Delta-
Communication” (JS-SPDC) – is the simplest
implementation of the SPDC, which is commonly known as
Asynchronous Javascript And XML (AJAX) [3].

C. Rich Internet Applications
The term “Rich Internet Application” had been first used

by Jeremy Allaire at Macromedia, in 2002; introducing their
new technology named “Macromedia Flash MX”, which is a
client-side application development platform with dedicated
TTs [4]. As per Jeremy, the RIAs are supposed to have
“media-rich power of the traditional desktop with the
deployment and content-rich nature of Web applications”
[4].

The client-side application in RIAs is called a rich-client,
which is a thick-client. Jeremy suggests that the rich client
development technologies should provide “an efficient,
high-performance runtime for executing code, content, and
communications; Integrate content, communications, and
application interfaces into a common environment; Provide

International Journal of Future Computer and Communication, Vol. 7, No. 1, March 2018

15

powerful and extensible object models for interactivity;
Enable rapid application development through components
and re-use; Enable the use of Web and data services
provided by application servers; Embrace connected and
disconnected clients; and Enable easy deployment on
multiple platforms and devices”, which Macromedia Flash
MX attempted to address and enable [4].

The development approach of Flash is plugin-based and
supports both browser-based and non-browser-based modes
of client-components. Instead of discussing the Flash in
depth, this paper tends to look into the other RIA
development approaches, as discussed below.

1) Approaches for developing rich internet applications
There are three approaches for RIA engineering 1)

proprietary plugin based approach; 2) Open source JS based
approach, and 3) the least known browser-based approach
[5]. Section IV details these approaches, specifying the
development TTs used in them. The JS based approach has
become popular while the other two approaches have faded
away. Therefore, the features of the RIAs are mainly
discussed in the context of JS based RIAs.

2) Features of RIAs
Lawton [6] explains RIAs as applications, which run

online and have many of the features and functionalities of
desktop applications. He continues the explanation showing
that the RIAs have overcome problems with traditional Web
applications – such as slow performance and limited
interactivity – with their responsive UIs and interactive
capabilities, which make the Internet-based programs easier
to be used and more functional.

As per Koch et al. [7], RIAs are Web applications,
augmented with desktop features, which use mechanisms of
advanced communications for data handling, to execute
operations on the client-side, minimizing the server requests.
They mention that the rich look-and-feel, better
responsiveness, performance, and accessibility of RIAs
enthuse both the users and the software engineers; and
improve user interaction facilities like drag-and-drop,
multimedia presentations, while avoiding unnecessary page
reloading.

Busch and Koch [8] also deliver a similar impression
saying that the RIAs are Web applications, which provide
look-and-feel similar to desktop applications, thus different
from the earlier generation of Web applications. RIAs
provide a variety of interactive GUI elements, the possibility
of both on-line and off-line use of the application, and the
transparent usage of the computing power of the client,
server, and the network. Busch and Koch keep explaining
that the RIAs are capable of processing data in both server
and client, and the data exchange takes place in an
asynchronous way so that the client stays responsive while
continuously recalculating or updating parts of the UI, till
the communication is being processed.

Furthermore, Busch and Koch [8] extend the explanation
saying that the RIAs are complex Web applications based on
thick-client architecture. On one side, the client processes
and manages data, reducing the communication; and on the
other side, most of the needed communication is done via
DC; as the result of both these facts, the network traffic is
reduced. They say that these facts also allow additional GUI

features, increasing the usability and the interaction
possibilities of the users.

3) Analysis of the feature of the RIAs
Taking the explanations of the experts into consideration,

and based on the empirical evidence gained through the
experiments, we would analyze all the features of the RIAs
discussed above, into 3 main facts: 1) rich GUIs, enabled by
the advancement of client-side development, which can
bring desktop applications like GUIs and features; 2) DC,
which allows communicating only the needful, smaller set
of data, faster and asynchronously; and 3) the enhanced user
experience, enabled by the cumulative effect of
aforementioned two facts, which are delivered via advanced
and rich features [6]-[9]. Based on these characteristics, the
following section proposes and defines the concept of Rich
Web-based Applications.

III. DEFINING THE RICH WEB-BASED APPLICATIONS
Even though there are numerous researches that have

been done in the past ten years in the domain of RIAs, still a
standard definition for RIAs has not been articulated [10].
After surveying these researches in the domain, Casteleyn et
al. [10] have captured the essence of RIAs and have
introduced a definition: “RIAs are Web applications that
aim to provide the features and functionality of traditional
desktop applications, thereby offering a richer, more
satisfying user experience compared to traditional Web 1.0
applications. Therefore, RIAs must: (i) strive for better
responsiveness, (ii) improve interaction capabilities, and (iii)
provide a richer user interface.”

While studying a variety of web-based applications and
RIAs, we noted that the scope of the traditional RIA
development is mainly limited to the Web browser in client-
side (open source JS based approach is explicitly used for
the browser); yet the server-side is still somewhat similar to
traditional Web applications, other than requiring some
additional dedicated components to handle DC. The above
definition for RIAs by Casteleyn et al. [10] is also in favor
of that.

We further noted that the scope of the RIAs can also be
expanded beyond the browser – in client-side – similar to
the concept of Web-based applications [2], as discussed in
the Section II.A. For an example, there can be mobile Apps,
which use DC, and they are not running in a web browser.
This observation turned our focus into a new domain, which
comprises of a variety of types of applications, which
exhibits the characteristics discussed in the Section II.C.3.
We surveyed for a proper term to address all these systems
in the focused domain and identified that these types of
applications are separately addressed and discussed,
regardless of their common characteristics.

It was difficult to continue the discussions in our ongoing
research without having a common basis to address the
different types of applications in the focused domain.
Considering the common features of these applications,
which utilize DC, we propose the umbrella term “Rich Web-
based Applications” (RiWAs) – to address all the types of
applications, in and out of the browser – which exhibits the
main characteristics of the RIAs as discussed in section

International Journal of Future Computer and Communication, Vol. 7, No. 1, March 2018

16

II.C.3. After a careful study of the architectural
characteristics of these systems, we propose the following
definition for the term “Rich Web-based Applications”,
which is based on the definition of the web-based
applications [2].

Rich Web-based Application is a system, with application

component(s) in client-side [client-component(s)], which
communicate(s) with application component(s) in a Web server [server-
component(s)], for processing data.

Rich Web-based Applications are based on the Client-Server
architecture. The client-components of Rich Web-based Applications
contain rich Graphical User Interfaces and advanced processing
capabilities. For communication, other than standard HTTP, Delta-
Communication techniques and technologies are used for faster
communication, in both data-pull and data-push modes, which can be
implemented in either synchronous or asynchronous mode. Rich
Graphical User Interfaces of Rich Web-based Applications together with
faster Delta-Communication provide an enhanced and rich user
experience.

RiWAs can be explained in another perspective as

RiWAs are the systems, which combine the power of the
rich GUIs and DC TTs of RIAs with the Web-based
applications. The scope of the RiWAs is wider than
traditional Web-based applications in DC aspect; and wider
than standard RIAs in types of client-components and their
integration aspects. Furthermore, aligning to the types of
Web-based applications based on the size [2], RiWAs can
also be grouped as standalone RiWAs and multi-tier RiWAs.

The need for the introduction of this new domain RiWA
and referring to it in this research is to address wider
technological development possibilities, which are not likely
covered generally by the term RIA under the domain of
Web-based applications. The RiWAs can be seen as a hybrid
concept of Web-based applications and RIAs; and RiWAs
can gain benefits from the non-browser-based client-
components, more than Web-based systems, as discussed in
the following section.

IV. TECHNIQUES AND TECHNOLOGIES FOR THE
DEVELOPMENT OF THE RIWAS

Towards the TTs independency of an architectural style
for RiWAs – which is the main focus of our ongoing
research – it is essential to have an adequate understanding of
the development TTs of the RiWAs and their proper
utilization. This knowledge will also help in demonstrating
how the intended style can be adopted in RiWAs
development. An in-depth discussion of the features and
characteristics of different types of RiWAs and their
development TTs is intentionally avoided in this paper.
Instead, this section analyses the RiWAs development TTs,
classifies them, and presents taxonomies in the direction of
structured understanding of their usage. We expect that these
taxonomies will help to realize the functionalities of the
components of the intended architectural style.

As Meliá et al. [11] say that the real challenge in SE is
selecting the right and suitable TTs for the project from
existing alternatives, and creating the optimal solution to
satisfy the user requirements. Adequate understanding of the
TTs used in the development of RiWAs may provide
sufficient assistance in the effort of designing the proposed
architectural style for RiWAs to be TTs independent.

To gain a structural knowledge of the TTs, classifications
and taxonomies for them are presented in this section. This
knowledge will also assist in the decision making of
selecting proper TTs for the development of RiWAs, and
hassle-less adoption of them, via the conceptual realization
provided by the taxonomies.

Toffetti et al. [12] have presented an analysis of TTs and
design methodologies for RIAs. Their TTs analysis is based
on the available development approaches and
technologies/platforms. They also discuss the level of
abstraction of the technologies and also the supportive tools.

We classify the TTs of RiWAs into 4 categories,
according to the architectural elements and aligning to the
given definition of the RiWA: 1) the client-components, 2)
the server-components, 3) connector elements, and 4) data
elements. When developing RiWAs, decision making of
selecting suitable and compatible TTs in all these elements is
required.

We intend to keep the taxonomies abstract, leaving the
leaf nodes to represent a specific type of Technique or
Technology, instead of explicitly naming the available
matching TTs. However, in the discussions, we have stated
some examples towards giving a better understanding of the
category. In-depth discussions of the specifications of these
TTs are intentionally kept out of the scope of this paper.
Instead, the intention is to classify them and introduce a
taxonomy for a better understanding of their utilization.

A. TTs for the Client-Components of RiWAs
The client-components of RiWAs are similar to the client-

components of Web-based applications [2]. Additionally,
they should incorporate DC handing components, thus the
ability of DC development is needed for the client-
components development TTs. Fig. 1 illustrates the
taxonomy for the client-components development TTs of
RiWAs. It should be noted that when the client-side
development of RiWAs is considered, it includes not only
the application component development but also the
Views/GUI development.

Fig. 1. Taxonomy for client-component(s) development TTs of RiWAs.

1) TTs for the Browser-based Client-Components of
RiWAs
There are several approaches for the browser-based

RiWAs, inherited from RIAs. The first approach, which is
the proprietary plugin based approach, uses the technologies
such as Adobe (former Macromedia) Flash/Flex [13], JAVA
Applets, or MS Silverlight [5]. These technologies are
enriched with utensils for developing desktop applications
like rich GUIs. For the client-components developed using

International Journal of Future Computer and Communication, Vol. 7, No. 1, March 2018

17

these TTs, there are additional requirements for installing
and maintaining browser plug-ins or runtimes. It was the
main reason for users to dislike the applications developed
using this approach. The demand for this approach was
reduced, after the introduction of AJAX and the evolvement
of related JS-based TTs.

The second approach uses the JS-based TTs for the client-
components [5]. This approach uses standard browser-based
development languages: HTML and CSS for GUIs, and JS
for behavior/processing development. With the introduction
of HTML version 5, along with CSS version 3, the
capabilities of JS-based client-components were increased.
At present, JS has become powerful as the de facto
application development language of HTML, and the JS-
based TTs have become the default for the browser-based
RiWAs. With compatible supplementary
frameworks/libraries like Bootstrap [14] for GUI
development, jQuery [15] and AngularJS [16] for client-
component development, comprehensive enhanced features
can be developed.

The third approach is the least publicized, which is known
as the browser-based approach [5]. XUL language from
Mozilla foundation can be given as an example of this
approach. This approach and related TTs are not considered
in this paper since it is not a widely used approach.

2) TTs for the non-browser-based client-components of
RiWAs
The standard desktop application development TTs like

JAVA or .Net and related libraries/frameworks can be
utilized for non-browser-based client-components
development. For DC development, these frameworks may
contain their own tools or some third-party
frameworks/libraries can be incorporated.

The TTs discussed under the proprietary plugin based
approach (in Section IV.1.a) also have the capability of
developing non-browser-based client-components, which
are executed on dedicated runtimes; for example, Flash/Flex
[13] use the Flash player or Adobe AIR runtimes. They are
usually augmented with rich tools for developing
communication connectors to utilize the service of Web.

Nowadays, the mobile apps also communicate with server-
components thus, they can be seen as the client-components
of RiWAs. Popular mobile development frameworks like
Android and IOS encompass communication development
tools into their packages.

Additionally, even devices in IoT based systems can be
exploited as client components of RiWAs. Therefore, related
TTs like Arduino Programming Language [17] for Arduino
devices, Python for Raspberry Pi devices [18], and related
frameworks/libraries/protocols like MQTT [19] [20] can
also be listed under the non-browser-based client-
component development TTs.

B. TTs for the Server-Components of RiWAs
The server-components of RiWAs are similar to the Web-

based applications [2]. Additionally, in server-side, they
need dedicated component(s) for handling DC. Fig. 2
illustrates the taxonomy for the server-component(s)
development TTs of RiWAs.

The “Web application” node, represents the standard
server-side development TTs such as PHP, JAVA, ASP.Net,

Python, etc. and related frameworks/Libraries like
CodeIgniter for PHP [21], Struts for JAVA [22], etc.

Fig. 2. Taxonomy for Server-component(s) development TTs of RiWAs.

The Web services use dedicated TTs such as SOAP [23],
REST [24], and frameworks/libraries like JAX-WS [25] and
JAX-RS [26] for JAVA, Slim for PHP [27], etc. The
behavior of the web services is different from the Web
applications in the context of service exposure to other
components via Application Program Interfaces (API).

The Enterprise Service Bus (ESB) in Service Oriented
Architecture (SOA) [28] or similar concepts can be used to
extend the standalone RiWAs into multi-tire RiWAs using
dedicated TTs. The concept of cloud computing [29] can
also be related to these TTs, where the cloud-based systems
provide a platform to deliver a service oriented
functionalities. The concepts of Web services, SOA, and
cloud computing incorporate wide and self-contained
domains, which the deep discussions are intentionally
avoided in this paper.

In the given taxonomy for the server-component(s) of
RiWAs, all the types of TTs are supposed to be contained
with DC implementation tools.

C. TTs for the Connector Elements of RiWAs
Connector development TTs can be seen as the core of

RiWAs development TTs. In addition to the connector of
Web-based applications, the connectors in RiWAs
incorporate DC, where both the client and server should
contain components for handling DC. For the
communication in RiWAs, union of the communication
development TTs of traditional Web-based systems and the
DC development TTs is accepted.

Fig. 3. Taxonomy for communication development TTs of RiWAs.

Fig. 3 illustrates the taxonomy for the TTs for the
communication in connectors of RiWAs. In this taxonomy,

International Journal of Future Computer and Communication, Vol. 7, No. 1, March 2018

18

we included the DC TTs identified via a deep literature
survey.

If the client-component is non-browser-based, regular
HTTP communication may not be required. Instead, all the
communication could be accomplished using DC. For
browser-based client-components, there is an approach of
developing all the features in a single Web page, called
single page paradigm. In such applications, other than the
initial request for the Web page – which contains all the
client-components – for rest of the communication, only DC
can be used. For other standard RiWAs, a combination of
regular HTTP requests – via HTML hyperlinks, JS
redirections, or forms submission – and DC can be utilized,
according to the requirements and the delivery of the
features aligning to the system design.

After the introduction of AJAX/XHR [30] (SPDC [3]),
the concept of the DC had been applied in some other TTs
for both data pull and push modes, and each TT is
associated with its own set of pros and cons [31]. These DC
TTs can be mainly classified under data-pull and data-push
modes.

The main limitation of the SPDC technique is that it
supports only data-pull mode, therefore it does not suit for
real-time data communication as in publisher-subscriber
model or any other data-push concepts [31]. Several
techniques had been introduced to simulate data-push using
SPDC; some of them – like long-polling and streaming [32]
– use the same XHR object as SPDC, thus also called
reverse-AJAX. Later, a true data-push protocol named
Server Sent Events (SSE) [33] was introduced, which is
unidirectional, from the server to the client; however it did
not become much popular. An advanced bi-directional DC
protocol named WebSocket (WS) was introduced in 2011
[34], which supports both data pull and push modes, and it
gained the attraction of the Web engineers.

A communication connector has two ends, usually one
end in the client-side and the other end in the server.
Therefore, once DC TT(s) is/are selected for a RiWA,
compatibility of both the client and server TTs towards
developing the selected DC TT(s) should be assured. For
XHR [35] based TTs like SPDC/AJAX, Polling, and Long
polling, a framework like jQuery [15] provides enough
utilities for the browser-based client-side components,
where standard server-side TTs like JAVA or PHP natively
provides sufficient support. For much advanced WS,
dedicated frameworks/libraries like socket.io [36] for
browser-based JS clients, Ratchet [37] for PHP, spring [38]
for JAVA, and Tornado [39] for python can be used.

D. TTs for the Data Element
Fig. 4 shows the taxonomy for the TTs used to prepare the

data for communication – mainly for DC.

Fig. 4. Taxonomy for communication data TTs of RiWAs.

The URL-based technique represents the techniques like
query string [40], [41] and REST API [42], [24]. Plain text

can be considered as a word, sentence, paragraph, or even an
essay, written in natural language. Markup/Wrapped node
denotes the data wrapped by any markup language like
XML [43] or even HTML or wrapped by other TTs like
JSON [44]. The File node covers a range of file types and
formats, including text, image, audio, video files.

When selecting a TT to prepare data for DC, not only the
suitability of the TT for the target data type but also the final
size of the prepared data also matters. The size of the data
directly affects the communication speed, which is an
important fact towards improving the user experience of
RiWAs. Furthermore, the size of the data may affect some
other aspects like network bandwidth. Therefore, careful
understanding of the requirements is recommended in the
direction of selecting TT(s) for the data element of the
RiWAs.

V. CONCLUSION AND FUTURE WORK
This paper has introduced the umbrella term “Rich Web-

based Application (RiWA)”, which covers a variety of types
of Web-based applications, such as RIA, mobile apps,
cloud-based systems, Internet of Things based systems, etc.,
which share similar fundamental characteristics: 1) rich
GUIs, 2) DC, and increased user experience. The paper also
provides a definition for the RiWAs considering the
similarities of the architectural characteristics of these
applications; this definition extends the definition of the
Web-based Applications. Additionally, aligning to the given
definition for RiWAs, taxonomies to classify the
development TTs of the RiWAs are introduced, towards
improving the realization of utilization of these TTs.

Our ongoing research focuses on introducing an
architectural style for the RiWAs, bearing the given
definition in mind. We expect to make this style
independent from the development TTs, thus, abstract,
exploiting the realization provided by the taxonomies
introduced by this paper.

REFERENCES
[1] CERN, Ten years public domain for the original web software, April

30, 1993.
[2] N. R. Dissanayake and G. Dias, "Web-based Applications: Extending

the General Perspective of the Service of Web," in Proc. 10th
International Research Conference of KDU (KDU-IRC 2017) on
Changing Dynamics in the Global Environment: Challenges and
Opportunities, Rathmalana, Sri Lanka, 2017.

[3] N. R. Dissanayake and G. Dias, "Delta communication: The power of
the rich internet applications," International Journal of Future
Computer and Communication, vol. 6, no. 2, pp. 31-36, 2017.

[4] J. Allaire, "Macromedia flash MX — A next-generation rich client,"
Macromedia, San Francisco, 2002.

[5] J. Farrell and G. S. Nezlek, "Rich internet applications the next stage
of application development," in Proc. the ITI 2007 29th Int. Conf. on
Information Technology Interfaces, Cavtat, Croatia, 2007.

[6] G. Lawton, "New ways to build rich internet applications," Computer,
vol. 41, no. 8, pp. 10-12, August 2008.

[7] N. Koch, M. Pigerl, G. Zhang, and T. Morozova, "Patterns for the
model-based development of RIAs," Springer ICWE, Heidelberg,
2009.

[8] M. Busch and N. Koch, "Rich internet applications - state-of-the-art,"
Ludwig-Maximilians-Universitat, Munchen, 2009.

[9] A. Mesbah and A. v. Deursen, "An architectural style for AJAX," in
The Working IEEE/IFIP Conference Software Architecture, Mumbai,
2007.

[10] S. Casteleyn, I. Garrigo's, and J.-N. Mazo´n, "Ten years of rich
internet applications: A systematic mapping study, and beyond," ACM
Transactions on the Web, vol. 8, no. 3, pp. 1-46, 2014.

International Journal of Future Computer and Communication, Vol. 7, No. 1, March 2018

19

[11] S. Meliá, J. Gómez, S. Pérez, and O. Díaz, "Architectural and
technological variability in rich internet applications," IEEE Internet
Computing, pp. 24-32, May/June 2010.

[12] G. Toffetti, S. Comai, J. C. Preciado, and M. Linaje, "State-of-the art
and trends in the systematic development of rich internet
applications," Journal of Web Engineering, vol. 10, no. 1, pp. 70-86,
2011.

[13] Adobe. (2018). Adobe Flex. [Online]. Available:
https://www.adobe.com/products/flex.html

[14] Bootstrap. (2018). Bootstrap. [Online]. Available:
https://getbootstrap.com/

[15] jQuery. (2018). The jQuery Foundation. [Online]. Available:
https://jquery.com/

[16] AngulaJS. (2018). [Online]. Available: https://angularjs.org/.
[Accessed 20 01 2018].

[17] Arduino. (2018). Language Reference. [Online]. Available:
https://www.arduino.cc/reference/en/

[18] R. P. Foundation, "Python," Raspberry PI Foundation, 2018.
[19] MQTT. (2018). [Online]. Available: http://mqtt.org/
[20] Eclipse. (2018). Go Client. [Online]. Available:

http://www.eclipse.org/paho/clients/golang/
[21] I. EllisLab. (2018). EllisLab CodeIgniter. [Online]. Available:

https://ellislab.com/codeigniter
[22] Apache, "Apache struts," The Apache Software Foundation, 2018.
[23] W3C, SOAP Version 1.2 Part 1: Messaging Framework, Second

Edition, 2007.
[24] R. T. Fielding, "Architectural styles and the design of network-based

software architectures," University of California, Irvine, 2000.
[25] Oracle. (2013). Building Web Services with JAX-WS. [Online].

Available: https://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html
[26] Oracle. (2013). Building RESTful Web Services with JAX-RS.

[Online]. Available:
https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html

[27] Slim. (2018). [Online]. Available: https://www.slimframework.com/
[28] M. T. Schmidt, B. Hutchison, P. Lambros and R. Phippen, "The

Enterprise Service Bus: Making service-oriented architecture real,"
Ibm Systems Journal, vol. 44, no. 5, pp. 781-797, 2005.

[29] A. Taivalsaari and T. Mikkonen, "Objects in the cloud may be closer
than they appear towards a taxonomy of web-based software," in Proc.
13th IEEE International Symposium on Web Systems Evolution
(WSE), Williamsburg, 2011.

[30] J. J. Garrett, "Ajax: A new approach to web applications," Adaptive
Path, February 18, 2005.

[31] N. R. Dissanayake and G. Dias, "A comparison of delta-
communication technologies and techniques," in Proc. 10th
International Research Conference of KDU (KDU-IRC 2017) on
Changing Dynamics in the Global Environment: Challenges and
Opportunities, Rathmalana, Sri Lanka, 2017.

[32] M. Carbou, "Reverse ajax, Part 1: Introduction to comet," IBM, 2011.
[33] I. Hickson. (February 3, 2015). Server-Sent Events. [Online].

Available: http://www.w3.org/TR/eventsource/
[34] I. Fette, "The websocket protocol," Internet Engineering Task Force,

2011.
[35] W3C. (January 30, 2014). XMLHttpRequest Level 1. [Online].

Available: http://www.w3.org/TR/2014/WD-XMLHttpRequest-
20140130/

[36] socket.io. (2018). [Online]. Available: https://socket.io/
[37] Ratchet. (2018). Ratchet WebSockets for PHP. [Online]. Available:

http://socketo.me/
[38] Spring, Pivotal Software, 2018
[39] Tornado. (2018). [Online]. Available:

http://www.tornadoweb.org/en/stable/
[40] Wikipedia. (2017). Query string. [Online]. Available:

https://en.wikipedia.org/wiki/Query_string

[41] M. Belshe, Bitgo, R. Peon, I. Google, E. M. Thomson, and Mozilla,
"Hypertext transfer protocol version 2 (HTTP/2)," Internet
Engineering Task Force (IETF), 2015.

[42] RESTfulAPI.net, REST Resource Naming Guide, 2018.
[43] W3C, "Extensible Markup Language (XML) 1.0, Fifth Edition, Nov

26, 2008.
[44] E. T. Bray, "The JavaScript Object Notation (JSON) data interchange

format," Internet Engineering Task Force (IETF), 2014.

Nalaka R. Dissanayake was born in Anuradhapura,
a sacred city in Sri Lanka, in 1982. He received the
B.Sc. degree in information technology from Sri
Lanka Institute of Information Technology, in 2007
and the M.Phil. degree from University of Colombo
School of Computing, in 2017.

From 2007 to 2017, he was working as a student
instructor, instructor, assistant lecturer, and a

software designer in various institutes. He is currently working as a senior
lecturer at Sri Lanka Institute of Information Technology, Malabe, Sri
Lanka. He is the author of over 30 peer-reviewed conference papers and 3
journal papers. His research interests include software architectures, design
patterns, web engineering, and Rich Internet Applications. He has
contributed to the domain of web engineering by introducing architectural
styles, design pattern, and terms and definitions for some concepts.

Mr. Dissanayake won the first place in the international competition:
InnoServe 2016 in Taipei, Taiwan, which he worked as the mentor. Mr.
Dissanayake co-authored the publication titled “Annotation based Offload
Automation Approach for Cyber Foraging Frameworks”, in the 9th
International Research Conference of KDU, Rathmalana, Sri Lanka,
September 8-9, 2016, which won the best poster, and also co-authored the
publication titled “Towards ICT based Solution for Stuttering”, in the 10th
International Research Conference of KDU, Rathmalana, Sri Lanka, August
3-4, 2017, which won the best poster.

G. K. A. Dias received the bachelor of science
degree in 1982 from the University of Colombo,
Postgraduate Diploma in Computer Studies in 1986
from University of Essex UK and MPhil by research
in 1995 from the University of Cardiff. He is a
member of the Association for Computing
Machinery (ACM) and Member of the Computer
Society of Sri Lanka. He is also a member of the

Modelling and simulation research group of the University of Colombo
School of Computing (UCSC).

He is an author of one book and a co-author of 4 books, and more than
30 publications. His research interest includes Computer-aided software
engineering, modeling and simulation and Computer-aided education. He is
currently a Grade 1 senior lecturer and served as the head of the
Communication and Media Technologies Department of the UCSC for 5
years (2010-2015). He has also served as the MPhil Coordinator of UCSC
for 5 years (2010-2015).

Mr. Dias co-authored a Publication titled “Developing a Tourist
Arrivals Forecasting System for Sri Lanka, in the Ruhuna International
Science and Technology Conference, Matara, Sri Lanka: Jan 2015, which
won the best poster presentation award. Mr. Dias was in-charge of the K-8
Flight Simulator project jointly done with CRD Ministry of Defense,
which won the Bronze award at the NBQSA 2015 (National Best Quality
Software Award) under Education & Training category.
.

International Journal of Future Computer and Communication, Vol. 7, No. 1, March 2018

20

