
  

 

Abstract—The existing methods for identification of 

a ( , , )1n n m convolutional code are not applicable in the cases 

of high bit error rates or need a large amount of computation. 

To overcome the limitations, a novel blind identification method 

is proposed. First, based on the parity check equation set, the 

parity check vector of a convolutional code is estimated by using 

the proposed recursive algorithm. Second, due to the 

orthogonality between the parity check matrix and the 

generator matrix, a set of polynomial generator bases are 

obtained. Finally, the canonical generator matrix is 

reconstructed by using the polynomial generator bases. 

Experimental results show the method is effective. The method 

has high robustness to bit errors. It does not need to search for 

the parity check vector exhaustively, and therefore its 

computational complexity is much lower than that of the 

existing method. 

 
Index Terms—Convolutional code, blind identification, parity 

check matrix, robustness. 

 

I. INTRODUCTION 

In order to enhance the reliability of communication, 

convolutional codes are widely used in communication 

systems [1]. A ( , 1, )n n m convolutional code has the high 

code rate and is frequently used in practice [2]. In the fields of 

information interception and cognitive radio, the blind 

identification of a ( , 1, )n n m convolutional code is a key 

technology for non-corporative sides. 

Filiol firstly proposes an algebraic identification method. 

The method is only applicable in the situation without noise 

[3]. Marazin proposes an identification method based on 

matrix analysis [4]. In this method, the parity check vector is 

estimated by converting the received bit matrix into a lower 

triangular matrix, and the parity check matrix is identified 

according to the estimation result. However, only estimating 

the parity check matrix is not sufficient for the identification 

of a ( , 1, )n n m convolutional code. The reconstruction of the 

generator matrix of a ( , 1, )n n m convolutional code is not 

discussed in [4]. Additionally, this method has low robustness 

to bit errors and is not useful in the non-corporative situation. 

In [5], matrix analysis and Walsh-Hadamard transform (WHT) 

are combined. The codeword length and constraint length are 

estimated by using matrix analysis first. Then the parity check 

matrix and generator matrix are reconstructed by WHT. Since 
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the robustness of this method is limited by that of matrix 

analysis, it also cannot be applied under high error bit rates. 

Moreover, the generator matrix obtained by the method is not 

optimal. To satisfy the identification request in the cases of 

high bit error rates, a method based on exhaustively search is 

proposed in [6]. Since the parity check vector and the 

codeword length need to be searched for exhaustively. The 

computational complexity of the method increases 

exponentially along with the increase of the codeword and 

constraint lengths.  

As above analysis, the existing identification methods are 

not suitable in the situations of high error bit rates or need a 

large amount of computation. In order to solve these 

limitations, a novel identification method is proposed in the 

paper. First, the parity check vector of 

a ( , 1, )n n m convolutional code is estimated by the proposed 

recursive algorithm and consequently the parity check matrix 

is obtained. Then due to the orthogonality between the parity 

check matrix and the generator matrix, a linear equation set is 

established. The polynomial generator bases are estimated by 

solving the equation set recursively. Finally, according to the 

property of a canonical generator matrix, some polynomial 

generator bases are selected to reconstruct the generator 

matrix. 

The rest of this paper is organized as follows. In Section II, 

the mathematical model for identification is elaborated. In 

Section III, a recursive algorithm for estimating the parity 

check vector is proposed. In Section IV, the polynomial 

generator bases are estimated and the canonical generator 

matrix is reconstructed. The computational complexity is 

analyzed and simulation results are shown in Section V. 

Conclusions are given in Section VI. 

 

II. MATHEMATICAL MODEL 

A ( , 1, )n n m convolutional encoder can be described by 

a ( 1)n n  polynomial generator matrix ( )DG . 

Correspondingly, there exists a 1 n  parity check 

matrix ( )DH which is orthogonal to ( )DG [7], i.e., 

T( ) ( ) 0.D D G H                                (1) 

Suppose the information sequence is ( )m D , the encoded 

sequence ( )c D can be expressed as 

( ) ( ) ( ).c D m D D G                             (2) 

Combining (1) and (2), the following equation is obtained. 

T( ) ( ) 0c D D H                              (3) 
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According to (3), a parity check equation set can be 

established. The solution of the equation set is the parity 

check vector h which is consisted by coefficients of 

polynomials in ( )DH . Therefore, ( )DH can be estimated by 

solving the parity check equation set. Furthermore, ( )DG can 

be reconstructed using the orthogonality 

between ( )DG and ( )DH . 

 

III. RECURSIVE ALGORITHM FOR ESTIMATION OF THE PARITY 

CHECK VECTOR 

A. Principle of Recursive Algorithm 

The parity check equation set derived from (3) is shown as 

(4). 
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The solution of the equation set is the parity check vector. 

In this subsection, we propose a recursive algorithm for the 

estimation of the parity check vector. 

Let Ĥ denote the matrix consisting of the values of 

elements having been estimated in the parity check vector 

and h denote the vector of undetermined elements. The 

length of the parity check vector is ( 1)n m . The steps of the 

recursive algorithm is as follows. 

(1) Initialize ˆ H and T

1 2 ( 1)[ , , , ]n mh h h 
 h , 

where denotes a blank matrix. 

(2) For simplicity, only the general j -th recursion of the 

algorithm is elaborated in this step. Assume the matrix A is 
composed of the columns of the received bit matrix 
corresponding to the elements having been estimated in h , 

and the matrix B is composed of the columns of the received 
bit matrix corresponding to the unknown elements in h ; then 

the parity check equation set shown in (4) can be expressed as 

ˆ . 0Bh AH =                           (5) 

Find the sparsest row of B in which the number of 1 

elements is the smallest. If the i -th row is the sparsest row and 

the 1 elements are the coefficients of the 

unknowns
1 2
, , ,

pk k kh h h respectively, then according to 

the i -th equation, the modulo 2 summation value of the 

elements
1 2
, , ,

pk k kh h h is obtained, i.e., 

1 2

ˆ .
pk k k ih h h    a H               (6) 

where ia is the i -th row of A . From (6), we can get all the 

possible values of the vector
1 2

Tˆ ˆ ˆ[ , , , ]
pk k kh h h . The 

matrix Ĥ is expanded according to these vectors, and the 

elements
1 2
, , ,

pk k kh h h in h are deleted. The j -th recursion is 

finished. 

If there are errors in the received bit sequence, it is 

probable to obtain an incorrect summation value of 

1 2
, , ,

pk k kh h h by only one parity check equation. Since the 

number of correct equations is larger than that of incorrect 

equations in practice, we use several parity check equations to 

determine the summation value in each recursion. Assume 

there are
eqN equations which have the same form as (6); the 

numbers of equations by which the summation value is 

estimated to be 1 or 0 are 1

eqN and 0

eqN respectively. Then, the 

summation value is determined according to the following 

rule. 

When
eq eqthN , 
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When eq eqN th , 

  
1 2

ˆ ˆ ˆ 0,1 .
pk k kh h h                       (8) 

where
eqth is the smallest number of parity check equations 

required for determining the summation value and (8) denotes 

that the summation is assigned two possible values, 0 and 1. 

The maximum probability
maxp of incorrect determination 

for the summation value under the threshold eqth is 
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Equation (10) denotes the error probability of a parity 

check equation, where is the bit error rate and w is the 

weight of the parity check vector. According to (9), we can 

calculate the threshold eqth from the assumed
maxp . The 

threshold eqth increases with the decrease of
maxp . 

The recursion in step (2) is carried out again until all 

elements of h are estimated. 

With the increase of the number of elements having been 

estimated, there are more and more rows which contain only 

one 1 element in the matrix B . Therefore, the unknown 

elements of h can be estimated one by one in this case. 

B. Correctness Verification of the Parity Check Vector 

Estimations 

Since there is only one parity check vector for the 

( , 1, )n n m convolutional code, we should choose the correct 

one from all the estimations. The received bit matrix is 

multiplied by an estimation ĥ of the parity check vector. 0 

elements in the output vector represent that the corresponding 
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equations hold and 1 elements represent that the equations do 

not hold. Define variables , ( 1,2, , )i i N  , where N is the 

number of parity check equations. If the i th equation hold, 

1i  ; otherwise, 1i   . The testing statistic is defined 

as
1

N

i

i




 . Let the hypothesis
1H denote the estimation of the 

parity check vector is correct and the hypothesis
0H denote 

the estimation is incorrect. The probability distributions 

of
1

N

i

i




 in the cases of hypotheses
1H and

0H are shown as 

follows [8]. 
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Assume the false-alarm probability is fp . Based on the 

constant false-alarm criterion, it is straightforward to obtain 

the detecting threshold  1 1 fth = N p  , 

where
2 21

( )
2

x
tx e dt






   . The estimation whose 

testing statistic is larger than the detecting threshold and the 

statistics of other estimations is recognized as the parity check 

vector. 

Establishing the parity check equation set require that the 

codeword length n and the constraint length m are known. If 

we do not have the prior knowledge of these parameters, we 

can assume the constraint length to be 16 which is large 

enough [6] and search for the codeword length from the 

smallest value. In practice, the intervals of the codeword 

length is 2 9n   [9]. When the estimated codeword length 

is correct, there are solutions, the statistic values of which are 

larger than the detecting threshold. In this situation, there may 

be not only one solution, and the solution which corresponds 

to the parity check matrix with the smallest degree is 

identified as the parity check vector. 

 

IV. RECONSTRUCTION OF THE CANONICAL GENERATOR 

MATRIX 

The parity check matrix ( )DH  can be obtained from the 

parity check vector h . Then according to (1), a linear equation 

set is established. Polynomial generator bases of 

the ( , 1, )n n m convolutional code can be estimated by 

solving the equation set. If the degree of ( )DH  is d , i.e., 

deg( ( ))D dH , the degree of the i th row 

of ( )DG is ( 1) ( 1)ie d i n       [10]. Therefore, we can 

establish ( 1)id e  linear equations 

with ( 1)( 1)im e  unknowns, which are the coefficients of a 

polynomial generator basis. Because the number of unknowns 

is larger than the number of equations, the linear equation set 

cannot be solved by conventional Gaussian elimination 

algorithm.  

Similarly, the equation set can be solved by our proposed 

recursive algorithm. But there are some differences in the 

recursion from that in Subsection A. First, due to all equations 

are correct, the summation value of unknowns can be 

determined by only one equation in each recursion. Second, if 

there are several sparsest rows of B  in which the positions of 

1 elements are identical, to make all equations hold, the dot 

products of the corresponding rows of A with any column of 

Ĥ  should be equal. Suppose the indices of these rows of B  

are
1 2, , , qi i i , then 

 
1 2

ˆ ˆ ˆ .
qi i i   a H a H = = a H                (12) 

If a column of Ĥ  does not satisfy (12), the column is 

deleted from Ĥ . The recursion is carried out until all 

unknowns are estimated. 

The optimal generator matrix should be canonical. After all 

polynomial generator bases having been estimated, some of 

them are selected to reconstruct the canonical generator 

matrix [6]. The definition and properties of a canonical 

generator matrix are elaborated in detail in [11]. However, 

there may exist not only one canonical generator matrix, and 

these canonical generator matrixes have the same error 

correction capability and encoding and decoding efficiency. 

As far as we know, there is no way to distinguish these 

canonical generator matrixes now. 

 

V. COMPUTATIONAL COMPLEXITY ANALYSIS AND 

SIMULATION EXPERIMENT  

A. Computational Complexity Analysis 

The computational complexity of the proposed method is 

intensive in estimating the parity check vector and verifying 

the correctness of the estimations. Define one operation is 

addition or multiplication between two elements in GF(2). If 

the codeword and constraint length is n and m respectively, 

the number of parity check equations is N and the number of 

the parity check vector estimations is n , the upper bound of 

the amount of computation for the estimation of the parity 

check vector is (2 2 3)N nm n n  operations. Actually, the 

upper bound is very relax. Verifying the correctness of the 

estimations needs (2 2 1)N nm n n  operations. Combining 

the amount of computation of these two parts, we drive the 

computational complexity of the proposed method 

is ( )O Nnmn . Under the same condition, the computational 

complexity of Cluzeau’s method is ( 1)( 2 )n mO Nnm  . 

Since ( 1)2n mn  , the computational complexity of our 

method is much lower than that of Cluzeau’s method. 

B. Verification of the Effectiveness of the Proposed 

Method 

The identification of the (4,3,2) convolutional code with 

the generator matrix  
2

2 2

p
2

01 1 1
( ) 1 1 1

1 1

D D D
D D D D D

D D D D D

   
    
   
 

G  is 

considered in this experiment. The number of parity check 
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equations is 4000. The false-alarm probability for detecting 

the parity check vector is 0.001. The differences between the 

statistic values of the estimations of the parity check vector 

and the detecting threshold are shown in Fig. 1. 

 

 
Fig. 1. Testing results of estimations of the parity check vector. 

 

As shown in Fig. 1, only one statistic value is larger than the 

detecting threshold. Therefore, the corresponding 

vector T[011111010111010 0101101011110] is 

regarded as the identification result of the parity check vector. 

According to the parity check vector, the parity check 

matrix

T
2 5

3 4 5 6

2 4 6

2 4 5 6

1
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H is obtained. 

Furthermore, all the polynomial generator bases is derived 

using ˆ ( )DH , and they 

are 2 2, , ,1D D D D D D     , 2 2,1 ,1 ,1D D D D     ,

21 ,1 ,0,1D D D    
, 2 2 21 ,1, ,D D D D D    

,

2 20,1 ,1,D D D D     , 2 2 21 , ,1,1D D D D D     
,

2 2 21 , ,1 ,0D D D D D      respectively. Any three 

polynomial generator bases can reconstruct a canonical 

generator matrix. 

C. Robustness Analysis of the Proposed Method 

 

 
Fig. 2. Correct estimation ratio for the parity check vector of the (2,3,2) 

convolutional code. 

 

The estimations of the parity check vectors of the (2,3,2) 

and (3,4,2) convolutional codes are considered respectively. 

The number of parity check equations is 4000. Assume the 

threshold eq 4th  in the recursive algorithm. Under different 

bit error rates, the correct estimation ratios of our recursive 

algorithm and the matrix analysis algorithm [9] for the parity 

check vectors of the two convolutional codes are shown in Fig. 

2 and Fig. 3. 

 

 
Fig. 3. Correct estimation ratio for the parity check vector of the (3,4,2) 

convolutional code. 

 

As illustrated in Fig. 2 and Fig. 3, the robustness of our 

recursive algorithm to bit errors is much better than that of the 

matrix analysis algorithm. Additionally, under the same bit 

error rate, the correct estimation ratio for the parity check 

vector of the (2,3,2) convolutional code is larger than that of 

the (3,4,2) convolutional code. The reason is that the length of 

the parity check vector of the (3,4,2) convolutional code is 

larger and so there are more unknowns to be estimated. 

 

VI. CONCLUSIONS 

A novel method for the blind identification of 

a ( , 1, )n n m convolutional code is proposed. First, the parity 

check vector of a ( , 1, )n n m convolutional code is estimated 

by the proposed recursive algorithm. Then, due to the 

orthogonality between the generator matrix and the parity 

check matrix, a set of polynomial generator bases are derived. 

Finally, the canonical generator matrix is reconstructed by 

using these generator bases. The method is applicable in the 

cases of high bit error rates. Since the parity check vector does 

not need to be searched for exhaustively, its computational 

complexity is much lower than that of Cluzeau’s method. 
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