



Abstract—The study of optimal offline cache replacement

policies has theoretical significance from which near-optimal

but practical cache replacement schemes can be sound

established. This paper has re-defined known offline cache

replacement policies for nonuniform objects and proposed

novel policies. All of them have been evaluated for their

optimalities and complexities. The results have showed that the

optimal policy has the highest time complexity whereas the

other policies are sub-optimal that have lower complexities.

Index Terms—Cache replacement, nonuniform objects,

optimal replacement, offline replacement.

I. INTRODUCTION

When cache space is found inadequate to make room for a

requested missing object, cache replacement takes place to

make a decision, either cached object eviction or the

requested object discard. The latter is referred to as optional

eviction (AKA bypassing [1]), which arises from a fact that

there is no benefit at all to cache missing objects requested

only once.

As the theoretical foundation of online solutions, offline [1]

cache replacement policies require the provision of the

complete sequence of future object requests to be searched

for an optimal state sequence, otherwise, ones need

nondeterministic machines to execute the policies to process

a real time request sequence by always choosing the right

choices of next cache states toward a final optimal one.

A. Performance Metric for Nonuniform Object Costs

Web cache replacement policies with mandatory eviction

have been extensively surveyed in [2], [3]. All of them aimed

to optimize hit rate by not evict small cached objects at first

for two reasons. Firstly as stated in our previous work [4],

fetching small objects through the Internet in the past was so

delayed that it was unacceptable for users to experience such

delays on every request. Secondly and partly supported by [5],

hit rate is an accustomed and popular metric because it could

reflect at the same time the shortened access latency and

saved transfer bandwidth of cache replacement policies for

uniform caches (e.g., CPU caches) in which objects have

identical size and read latency.

On the other hand, big objects have been being populated

on the Internet as substantiated by average bytes per web

page that increase year by year (by 13.66% from 2015 in

2016 and 36.13% KB from 2016 in 2017) [6]. Loading a

number of ever-growing big objects from remote servers

causes network congestion and subsequently access delays as

Manuscript received June 15, 2018; revised August 1, 2018.

The author is with Computer Science Department, Faculty of Science,

Kasetsart University, Bangkok, Thailand (e-mail: thepparit.b@ku.th).

well as huge data transfer charges [7] whereas fetching

remote small objects at present Internet speed is fast as if they

were available in user locality. In other words, the manifested

impact of nonuniform objects whose costs, such as object

sizes, downloading latencies, or data transfer monetary

charges (typically proportional to the object sizes [7]), has

been becoming so prevalent that modern web cache

replacement policies should optimize for. Hit rate is thus no

longer a reliable caching performance metric for nonuniform

objects. Instead, a more generic performance goal, which has

been used throughout this paper, is a cost-saving ratio (CSR).

Definition 1: CSR is defined as follows where n is the

number of objects in a cache, ci is the cost of fetching an

object i from its remote server by the cache, hi is the number

of times the valid copy of i is fetched from the cache to serve

requesting clients, and ri is the total number of requests to i.

CSR =
 𝑐𝑖ℎ𝑖
𝑛
𝑖=1

 𝑐𝑖𝑟𝑖
𝑛
𝑖=1

CSR also represents byte-hit ratio and delay-saving ratio

by substituting the object fetching cost’s value for object size

and object downloading latency, respectively. The byte-hit

ratio should be of interest when bandwidth is scarce whereas

the delay-saving ratio should be of interest when access

latency is restricted.

B. Overall Organization

This paper is discrete mathematical in nature instead of

empirical. The paper begins with the aforementioned

rationale for using the CSR rather than the hit rate as the

optimization goal of cache replacement policies for

nonuniform object costs. Section II re-defines an optimal

offline cache replacement policy for nonuniform objects to

support optional eviction to achieve the optimal cost-saving

goal. Section III presents related works, offline cache

replacement policies that were claimed to be optimal, along

with their sub-optimality and the complexity proofs. The time

complexity analysis enables the derivation of practical online

cache replacement policies. We have also proposed the novel

sub-optimal policies of lower or comparable complexities.

Finally, findings and our future plan are summarized in order.

II. OPTIMAL OFFLINE CACHE REPLACEMENT POLICY WITH

OPTIONAL EVICTION FOR NONUNIFORM OBJECTS

Hosseini−Khayat’s OPT [8] has been proved in terms of

CSR to be an optimal offline cache replacement policy with

mandatory eviction for nonuniform objects. He has also

proposed that the modification of the policy for optional

eviction is optimal based on the principle of optimality.

The Optimality and Complexity of Offline Cache

Replacement Policies for Nonuniform Objects

Thepparit Banditwattanawong

International Journal of Future Computer and Communication, Vol. 7, No. 3, September 2018

63doi: 10.18178/ijfcc.2018.7.3.522

Herein, we have re-defined the latter policy variant called

Hosseini−Khayat’s OPT∗ algorithm and restated its

optimality in Corollary 1.

Corollary 1: Hosseini−Khayat’s OPT∗ is an optimal

offline cache replacement policy for nonuniform objects.

To find the optimal multi-state cache replacement decision

of nonuniform objects for the sequence of m requests since

the first cache replacement decision occurs, possible cache

state transitions is represented as a weighted directed acyclic

graph G = (V, E) consists of a set of vertices V representing

cache states and a set of edges E denoting state transition due

to cache hit or miss. Each edge (v', v) ∈ E where v', v ∈ V,

connecting a vertex v' to its adjacent vertex v is assigned a

weight c(v', v) representing a nonuniform cost, either 0

(resulting from cache hit or optional eviction) or a missing

object fetching cost. Each vertex v is assigned an optimal cost

c(v), which is the total weight of the shortest weighted path

from a root vertex (representing a cache state where free

cache space is found smaller than a missing object size for the

first time) and represents the least accumulated cost of

fetching missing objects across consecutive cache states from

the root to the current one. Let organize G into m layers,

excluding a root layer; and let Vi, λ(v), Λ(v), and Γ(v) denote

the set of all vertices in layer i (0 ≤ i ≤ m where 0 is the root

layer, which contains a single vertex), the optimal parent of v,

the set of parents of v, and the set of all possible child vertices

of v, respectively. Hosseini – Khayat’s OPT
*
 is shown in

Table I, which is initially activated in state v ∈ V0 (i.e.,

available cache space is found insufficient for the first time).

The (v
*
, λ(v

*
), λ(λ(v

*
)), ..., v ∈ V0) is an optimal state sequence

in reverse chronological order, and the c(v
*
) is the least total

cost of missing-object fetching against the sequence of entire

m requests.

Proposition 1: Hosseini−Khayat’s OPT
*
 has the

worst-case running time bound of O(n
3m

).

TABLE I: HOSSEINI – KHAYAT’S OPT* ALGORITHM

algorithm: Hosseini−Khayat’s OPT*
begin

 c(v ∈ V0) ← 0

 i ← 0 /* current layer the algorithm is invoked for the first
time */
 while i ≤ m
 {

 for each v ∈ Vi
 {
 if i < m /* if true, generate all possible child vertices */

 Vi+1 ← Vi+1 ∪ Γ(v) ∪ v /*optional eviction causes ∪ v */

 if i ≠ 0

 c(v) ← minv∈Λ(v)(c(v') + c(v', v))
 }
 i ← i + 1
 }

 v∗ ← argminv∈Vm(c(v)) /* a final optimal state */

return (v∗, λ(v∗), λ(λ(v∗)), ..., v ∈ V0) and c(v∗)

Proof: The running time complexity of Hosseini−Khayat’s

OPT* is bound to the worst-case number of edges, |E| in G.

For each given cache state comprising n cached objects, since

zero or more cached objects might be evicted at once in all

possible combination to achieve the least cost, this produces

at maximum 1 (i.e., evict none from cache due to either cache

hit or optional eviction) +1 (for evicting all cached objects)

outgoing edges for n=1, 1 (for evicting none) +n (for evicting

all cached objects exclusively) +1 (for evicting all cached

objects) outgoing edges for n=2, or 1+n+1+
𝑛(𝑛−𝑙)

2

𝑛−2
𝑙=1 for n

≥ 3 equal to 2+n+
𝑛(𝑛−2)(𝑛+1)

4
 outgoing edges. Subsequently,

the worst-case number of incoming edges to all vertices in a

layer i ≥ 1 is (2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑖 . Thus, the worst-case |E|

is (2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑖𝑚

𝑖=1 , equal to

(2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
)𝑚+1−1

2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
−1

−1. Hence, Hosseini−Khayat’s OPT
*
 =

O(n
3m

).

III. SUB-OPTIMAL OFFLINE CACHE REPLACEMENT POLICIES

FOR NONUNIFORM OBJECTS

A. Breadth Limiting (BL)

BL replacement policy [8] approximated

Hosseini−Khayat’s OPT.

Definition 2: BL generates child vertices only for k

vertices in each nonroot layer that have the least costs rather

than for all vertices.

Proposition 2: BL has the worst-case running time of

O(mn
3log2 𝑛

3).

Proof : For each given cache state, since zero (due to cache

hit) or more cached objects might be evicted, this produces at

most 2+n+
𝑛(𝑛−2)(𝑛+1)

4
 outgoing edges for n ≥ 3. Thus,

maximum |V1| is equal to2+n+
𝑛(𝑛−2)(𝑛+1)

4
. However, BL

selects only k least cost child vertices that at the layer 1

requires |V1| log2|V1| sorting and the reading of k vertices,

hence equal to |V1| log2|V1| + k. Since |Vi≥2| = k|V1|, to reduce

|Vi=2| to k takes k|V1| log2(k|V1|) + k time units. Subsequently,

the worst-case work of BL is (|V1| log2|V1|+k)+((m−1)(k|V1|

log2(k|V1|)+k)). Hence, BL is O(mn
3log2 𝑛

3).

B. Periodic Elimination (PE)

PE replacement policy [8] approximated

Hosseini−Khayat’s OPT.

Definition 3: PE generates child vertices for only a vertex,

which has the least cost, in every T layers where T is an

elimination period.

Proposition 3: PE has the worst-case running time of

O(mn
3T

).

Proof : The running time complexity of PE is bound to the

worst-case |E| plus the least cost vertex searching. For each

given cache state, since zero or more cached objects might be

evicted, this produces at most 2+n+
𝑛(𝑛−2)(𝑛+1)

4
 outgoing

edges for n ≥ 3. Subsequently, |Vi≥1| = (2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑖 .

In every T layers, the least cost vertex is obtained by scanning

(2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑇 vertices. Thus, the worst-case |E|

plus scanning time is
𝑚

𝑇
((2 + 𝑛 +

𝑛(𝑛−2)(𝑛+1)

4
)𝑖𝑇

𝑖=1 +

(2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑇), equal to

𝑚

𝑇
((

(2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
)𝑇+1−1

2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
−1

−

1)+(2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑇)). Hence, PE = O(mn

3T
).

C. C0

Definition 4: Let 𝒰 be an object universe, O = {oj ∈ 𝒰 |oj

is a unique cacheable object for j = 1, 2, ...,N ∧ N is the total

International Journal of Future Computer and Communication, Vol. 7, No. 3, September 2018

64

number of oj}, pj be the probability (i.e., frequency) of oj to be

requested, cj be the cost of fetching oj from an original server

to a cache, and Vt ⊂ O be the set of objects in the cache at

time t. Suppose that cache replacement takes place at t, C0

replacement policy [9] (originally named OPT−C [10])

evicts oj iff (j = argmin(pjcj)) ∧ (oj ∈ Vt).

Theorem 1: C0 is a suboptimal offline cache replacement

policy for nonuniform objects.

Proof : We have conducted the proof by counterexample in

terms of CSRs as follows. Let P be the sequence of requests

to cacheable objects in {oj | cj = j ∧ cj is unique}. Let C be the

sequence of saved costs resulting from cache hits with respect

to P and based on an assumption that there is no update of oj

throughout the course of P. Given P = (o3, o2, o1, o2, o3)

where every oj has the identical size of 1 and the cache size of

2, C0 works in such a way that resulting in the following

cache states:

(∅, {o3}, {o3, o2}, {o3, o1}, {o3, o2}, {o3, o2})

Subsequently, C = (0,0,0,0,3) resulting in CSR =
3

11
.

Nonetheless, the optimal sequence of cache states is (∅, {o3},

{o3, o2}, {o3, o2}, {o3, o2}, {o3, o2}) that results in C =

(0,0,0,2,3) and CSR =
5

11
 . Consequently, we have shown

that “C0 is optimal for nonuniform objects” is false.

Proposition 4: C0 has the worst-case running time of

O(mnlog2 𝑛 + m
2
n).

Proof: For the 1
st
 cache replacement, each cached object in

{oi | i = 1, 2, ..., n} is searched throughout the remaining m −

1 requests to figure out pi and ci. Additionally when a single oi

eviction cannot make enough room for the first missing

object, {pici|i = 1, 2, ..., n} is sorted in n log2 n to evict at most

n oi in an ascending pici order, taking another n log2 n.

Therefore, the first cache replacement requires n(m−1) + n

log2 n + n log2 n work at maximum. Similarly, for the 2
nd

cache replacement, each oi is searched in the remaining m−2

requests, adding a new object into the sorted cache requires

log2 n, and at most n log2 n eviction takes place, and so forth.

Therefore, the maximum time required is (n(m−1) + n log2 n

+ n log2 n) + (n(m−2) + log2 n + n log2 n) +...+ (n + log2 n + n

log2 n) or (2n + (m−2)(n+1)) log2 n + n 𝑖𝑚−1
𝑖=1 equal to

(2n+(m−2)(n+1)) log2 n +
(𝑚−1)𝑚𝑛

2
. Hence, C0 = O(mnlog2 𝑛

+ m
2
n).

D. 𝐶0
∗

Definition 5: Let ot be a missing object requested at time t.

Suppose that cache replacement takes place at t, 𝐶0
∗

replacement policy [9] evicts oj iff (j = argmin(pjcj)) ∧ (oj ∈ Vt

∪ {ot}).

E. Theorem 2: 𝐶0
∗

Is a Suboptimal Offline Cache

Replacement Policy for Nonuniform Objects

Proof: Given P = (o4, o1, o1, o1, o1, o4, o1, o4, o1, o1, o1, o1)

where every oj has the identical size of 1 and a cache size is

equal to 1, 𝐶0
∗ can produce four possible sequences of cache

states as some to-be-requested objects hold the same

values of pjcj :

(∅, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o1}, {o1},

{o1}, {o1}),

(∅, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o1}, {o1}, {o1}, {o1},

{o1}, {o1}),

(∅, {o4}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1},

{o1}, {o1}),

or the worst state sequence:

(∅, {o4}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o4}, {o1}, {o1},

{o1}, {o1})

Of the last state sequence, C = (0,0,1,1,1,0,1,0,0,1,1,1)

resulting in CSR =
7

21
 even though the first sequence’s CSR

=
11

21
 and the second and the third sequences’ CSR =

8

21
.

Nonetheless, the optimal sequence of cache states is (∅, {o4},

{o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o1}, {o1}, {o1}, {o1})

that results in C = (0,0,0,0,4,0,4,0,1,1,1) and CSR =
11

21
.

Consequently, this counterexample has shown that “𝐶0
∗ is

optimal for nonuniform objects” is false. As a remark, 𝐶0
∗ will

produce an optimal state sequence only on a nondeterministic

machine, otherwise, 𝐶0
∗ (to run offline on deterministic

machines) has to ensure that optimal choices are always

chosen when encounters the identical pjcj values of different

oj.

Proposition 5: 𝐶0
∗ has the worst-case running time of

O(mnlog2 𝑛 + m
2
n).

Proof: For the 1
st
 cache replacement, each object in Vt ∪

{ot} is searched throughout the remaining m – 1 requests. As

|Vt| = n, the replacement imposes totally (n+1)(m−1)

comparisons plus n log2 n sorting plus n cached object

eviction at worst. Similarly, for the 2
nd

 cache replacement,

each object in Vt ∪ {ot} is searched in the remaining m−2

requests, adding a newly missing object, and at most n cached

object eviction takes place, and so forth. Therefore, total time

to resolve all of the requests is at most ((n + 1)(m− 1) +

nlog2n + n log2 n) + ((n+1)(m−2) + log2 n + n log2 n) + ... +

((n + 1) + log2 n + n log2 n) equal to (2n + (m−2)(n+1)) log2 n

+
(𝑚−1)𝑚(𝑛+1)

2
. Hence, 𝐶0

∗= O(mnlog2 𝑛 + m
2
n).

F. Mattson’s OPT

Mattson’s OPT replacement policy has long been known

to be optimal for uniform objects [11], [12]. It is also known

as longest forward distance policy [8].

Definition 6: Mattson’s OPT evicts oj ∈ Vt if oj has no

more request else if oj has next request furthest in time.

Theorem 3: Mattson’s OPT is a suboptimal offline cache

replacement policy for nonuniform objects.

Proof: Given P = (o3, o5, o4, o3, o5) where every oj has c

representing object size and a cache size is equal to 10,

Mattson’s OPT produces two following equivalent sequences

of cache states:

(∅, {o3}, {o3, o5}, {o3, o4}, {o3, o4}, {o3, o5}) or

(∅, {o3}, {o3, o5}, {o3, o4}, {o3, o4}, {o5, o4})

Thus, C = (0,0,0,3,0) resulting in CSR =
3

20
. However, the

optimal sequence of cache states is (∅, {o3}, {o3, o5}, {o4, o5},

{o3, o5}, {o3, o5}) that results in C = (0,0,0,0,5) and CSR =
5

20
.

This proof by counterexample has shown that “Mattson’s

OPT is optimal for nonuniform objects” is false.

Proposition 6: Mattson’s OPT has the worst-case running

time of O(mnlog2 𝑛 + m
2
n).

Proof: For the 1
st
 cache replacement, each object in Vt is

searched in the remaining request sequence at most for m−1

International Journal of Future Computer and Communication, Vol. 7, No. 3, September 2018

65

requests to determine its furthest distance in the sequence,

and sorted for n log2 n and evicted for n cached objects at

worst. Likewise, for the 2
nd

 cache replacement, each object in

Vt is searched in the remaining m − 2 requests, adding a

newly missing object, and at most n cached object eviction

takes place. Therefore, the maximum time required is (n(m−

1) + nlog2 n + n log2 n) + (n(m− 2) + log2 n + n log2 n) + ... +

(n + log2 n+n log2 n), equal to (2n+(m−2)(n+1)) log2

n+
(𝑚−1)𝑚𝑛

2
. Hence, Mattson’s OPT is O(mnlog2 𝑛 + m

2
n).

G. OPT
*

The first of our novel algorithms has extended Mattson’s

OPT mainly to allow optional eviction.

Definition 7: OPT
*
 evicts oj ∈ Vt ∪ {ot} if oj has no more

request else if oj has next request furthest in time.

Theorem 4: OPT
*
 is a suboptimal offline cache

replacement policy for nonuniform objects.

Proof: Given P = (o4, o1, o1, o1, o4) where every oj has the

identical size of 1 and a cache size is equal to 1, OPT*

produces the following sequence of cache states:

(∅, {o4}, {o1}, {o1}, {o1}, {o4})

It yields C = (0,0,1,1,0) resulting in CSR =
2

11
. However,

the optimal sequence of cache states is (∅, {o4}, {o4}, {o4},

{o4}, {o4}) that results in C = (0,0,0,0,4) and CSR =
4

11
. This

has shown that “OPT
*
 is optimal for nonuniform objects” is

false.

Proposition 7: OPT
*
 has the worst-case running time of

O(mnlog2 𝑛 + m
2
n).

Proof: For the 1
st
 cache replacement, each object in Vt ∪

{ot} is searched in the remaining request sequence at most for

m−1 requests to determine its furthest distance in the

sequence, and sorted for n log2 n and evicted for n cached

objects at worst. Likewise, for the 2
nd

 cache replacement,

each object in Vt ∪ {ot} is searched in the remaining m − 2

requests, adding a newly missing object, and at most n cached

object eviction takes place, and so forth. Therefore, total time

to resolve all of the requests is at most ((n + 1)(m− 1) +

nlog2n + n log2 n) + ((n+1)(m−2) + log2 n + nlog2n) +...+

((n+1) + log2 n + n log2 n) equal to (2n + (m−2)(n+1)) log2 n

+
(𝑚−1)𝑚(𝑛+1)

2
. Hence, OPT

*
is O(mnlog2 𝑛 + m

2
n).

H. Shortest Maximum Forward Distance (SMFD)

Our second proposed algorithm evicts from cache an

object having the soonest final request.

Definition 8: SMFD evicts oj ∈ Vt if oj has no more request

else if oj has the final request the soonest.

Theorem 5: SMFD is a suboptimal offline cache

replacement policy for nonuniform objects.

Proof: Given P = (o2, o5, o3, o5, o2) where c in oc represents

object size and a cache size is equal to 8, SMFD works in

such a way that resulting in the following cache states in

order:

(∅, {o2}, {o2, o5}, {o2, o3}, {o2, o5}, {o2, o5})

Subsequently, C = (0,0,0,0,2) resulting in CSR =
2

17
.

However, the optimal sequence of cache states is (∅, {o2},

{o2, o5}, {o3, o5}, {o3, o5}, {o2, o5}) or (∅, {o2}, {o2, o5}, {o3,

o5}, {o3, o5}, {o3, o2}) that result in the same C = (0,0,0,5,0)

and CSR =
5

17
. Consequently, we have shown that “SMFD is

optimal for nonuniform objects” is false.

Proposition 8: SMFD has the worst-case running time of

O(mnlog2 𝑛 + m
2
n).

Proof: For the 1
st
 cache replacement, each object in Vt is

searched in the remaining request sequence at most for m−1

requests to determine its shortest maximum forward distance

in the sequence, and sorted for n log2 n and evicted for n

cached objects at worst. Similarly, for the 2
nd

 cache

replacement, each object in Vt is searched in the remaining

m−2 requests, adding a newly missing object, and at most n

cached object eviction takes place. Therefore, the maximum

time required is (n(m−1) + n log2 n + n log2 n) + (n(m−2) +

log2 n + n log2 n) + ... + (n + log2 n + n log2 n), equal to (2n +

(m−2)(n+1))log2 n +
(𝑚−1)𝑚𝑛

2
. Hence, SMFD is O(mnlog2 𝑛 +

m
2
n).

I. SMFD
*

Our lastly proposed algorithm has extended SMFD to allow

optional eviction.

Definition 9: SMFD
*
 evicts oj ∈ Vt ∪ {ot} if oj has no more

request else if oj has the final request the soonest.

Theorem 6: SMFD
*
 is a suboptimal offline cache

replacement policy for nonuniform objects.

Proof: Given P = (o5, o2, o5, o2) where c in oj represents

object size and a cache size is equal to 5, SMFD
*
 produces the

following cache states, respectively:

(∅, {o5}, {o2}, {o2}, {o2})

Subsequently, C = (0,0,0,2) that is CSR =
2

14
. Nevertheless,

the optimal sequence of cache states is (∅, {o5}, {o5}, {o5},

{o2}) or (∅, {o5}, {o5}, {o5}, {o5}) that result in the same C =

(0,0,5,0) and CSR =
5

14
. Consequently, this counterexample

has shown that “SMFD
*
 is optimal for nonuniform objects” is

false.

Proposition 9: SMFD
*
 has the worst-case running time of

O(mnlog2 𝑛 + m
2
n).

Proof: For the 1
st
 cache replacement, each object in Vt ∪

{ot} is searched in the remaining request sequence at most for

m−1 requests to determine its shortest maximum forward

distance in the sequence, and sorted for n log2 n and evicted

for n cached objects at worst. Likewise, for the 2
nd

 cache

replacement, each object in Vt is searched in the remaining

m−2 requests, adding a newly missing object, and at most n

cached object eviction takes place, and so forth. Therefore,

total time to resolve all of the requests is at most ((n+1)(m−1)

+ n log2 n + n log2 n) + ((n+1)(m−2) + log2 n + nlog2n) +...+

((n+1) + log2 n + n log2 n) equal to (2n + (m−2)(n+1)) log2 n

+
(𝑚−1)𝑚(𝑛+1)

2
. Hence, SMFD

*
is O(mnlog2 𝑛 + m

2
n).

IV. CONCLUSION

This paper presents one optimal and eight suboptimal

offline cache replacement policies for nonuniform object

costs. OPT
*
, SMFD, and SMFD

*
 are our distinct

contributions. We have found that the optimality and

respective time complexity of all investigated policies could

be summarized below.

 Optimal offline cache replacement policy for

nonuniform objects

International Journal of Future Computer and Communication, Vol. 7, No. 3, September 2018

66

o Hosseini–Khayat’s OPT
*
 = O(n

3m
)

 Suboptimal offline cache replacement policies for

nonuniform objects

o BL = O(mn
3log2 𝑛

3)

o PE = O(mn
3T

)

o C0 = O(mnlog2 𝑛 + m
2
n)

o C0
∗ = O(mnlog2 𝑛 + m

2
n)

o Mattson’s OPT = O(mnlog2 𝑛 + m
2
n)

o OPT
*
 = O(mnlog2 𝑛 + m

2
n)

o SMFD = O(mnlog2 𝑛 + m
2
n)

o SMFD
*
 = O(mnlog2 𝑛 + m

2
n)

As n represents the number of objects in a cache, it is a

pitfall to interpret the above complexities that the smaller

cache size, the faster caching speed. Typically, a smaller

cache size yields faster cache replacement but more frequent

cache miss resolution. In other words, an overall caching

speed is bound to both cache size and miss rate.

REFERENCES

[1] M. Brehob, S. Wagner, E. Torng, and R. Enbody, “Optimal
replacement is np-hard for nonstandard caches,” IEEE Transactions on

Computers, vol. 53, no. 1, pp. 73–76, Jan 2004.

[2] S. Podlipnig and L. Bőszőrmenyi, “A survey of web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, Dec.

2003.
[3] A. Balamash and M. Krunz, “An overview of web caching replacement

algorithms,” Communications Surveys Tutorials, IEEE, vol. 6, no. 2,

pp. 44–56, 2004.
[4] T. Banditwattanawong, M. Masdisornchote, and P. Uthayopas,

“Multi-provider cloud computing network infrastructure optimization,”

Future Generation Computer Systems, vol. 55, pp. 116–128, 2016.
[5] J. Xu, Q. Hu, W.-C. Lee, and D. L. Lee, “Performance evaluation of an

optimal cache replacement policy for wireless data dissemination,”

IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 1,
pp. 125–139, Jan 2004.

[6] HTTP Archive. (15 September 2017) Interesting stats. [Online].

Available: http://httparchive.org/interesting.php

[7] Amazon.com, Inc. (24 October 2017) Amazon Web Services. [Online].
Available: https://aws.amazon.com/s3/pricing/

[8] S. Hosseini-Khayat, “On optimal replacement of nonuniform cache

objects,” IEEE Transactions on Computers, vol. 49, no. 8, pp. 769–778,
Aug 2000.

[9] O. Bahat and A. M. Makowski, “Optimal replacement policies for

nonuniform cache objects with optional eviction,” in Proc.
Twenty-Second Annual Joint Conference of the IEEE Computer and

Communications Societies (IEEE Cat. No.03CH37428, March 2003,

pp. 427–437 vol. 1.
[10] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”

Perform. Eval., vol. 46, no. 2-3, pp. 125–137, Oct. 2001.

[11] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,

pp. 78–117, 1970.

[12] P. Michaud, “Some mathematical facts about optimal cache
replacement,” ACM Trans. Archit. Code Optim., vol. 13, no. 4, pp.

50:1–50:19, Dec. 2016.

Thepparit Banditwattanawong received B.Eng. in

computer engineering from King Mongkut’s Institute of
Technology Ladkrabang, Thailand and M.Eng. in

computer science from Asian Institute of Technology,

Thailand. He obtained Ph.D. in Informatics from The
Graduate University for Advanced Studies, Japan.

He was a researcher at National Electronics and

Computer Technology Center (NECTEC) and a
specialist at Electronic Government Agency (EGA), Thailand. He joined the

Department of Computer Science at Mahidol International College as a full

time lecturer and later acted in a Ph.D.IT. program director position at
Sripatum University. He is currently a full time lecturer in the Department of

Computer Science and Ph.D.CS. program chairman at Kasetsart University,

Bangkok, Thailand.
 Assist. Prof. Dr. Thepparit received research grants from TRF and NRCT.

His main areas of research interests include cloud computing and distributed

computing. He professionally specializes in information security and data
networking as the certificate holders of CISSP, Cloud Essential, CCNA,

ITPE, etc.

International Journal of Future Computer and Communication, Vol. 7, No. 3, September 2018

67

