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Abstract—The study of optimal offline cache replacement 

policies has theoretical significance from which near-optimal 

but practical cache replacement schemes can be sound 

established. This paper has re-defined known offline cache 

replacement policies for nonuniform objects and proposed 

novel policies. All of them have been evaluated for their 

optimalities and complexities. The results have showed that the 

optimal policy has the highest time complexity whereas the 

other policies are sub-optimal that have lower complexities. 

 
Index Terms—Cache replacement, nonuniform objects, 

optimal replacement, offline replacement. 

 

I. INTRODUCTION 

When cache space is found inadequate to make room for a 

requested missing object, cache replacement takes place to 

make a decision, either cached object eviction or the 

requested object discard. The latter is referred to as optional 

eviction (AKA bypassing [1]), which arises from a fact that 

there is no benefit at all to cache missing objects requested 

only once.  

As the theoretical foundation of online solutions, offline [1] 

cache replacement policies require the provision of the 

complete sequence of future object requests to be searched 

for an optimal state sequence, otherwise, ones need 

nondeterministic machines to execute the policies to process 

a real time request sequence by always choosing the right 

choices of next cache states toward a final optimal one. 

A. Performance Metric for Nonuniform Object Costs 

Web cache replacement policies with mandatory eviction 

have been extensively surveyed in [2], [3]. All of them aimed 

to optimize hit rate by not evict small cached objects at first 

for two reasons. Firstly as stated in our previous work [4], 

fetching small objects through the Internet in the past was so 

delayed that it was unacceptable for users to experience such 

delays on every request. Secondly and partly supported by [5], 

hit rate is an accustomed and popular metric because it could 

reflect at the same time the shortened access latency and 

saved transfer bandwidth of cache replacement policies for 

uniform caches (e.g., CPU caches) in which objects have 

identical size and read latency. 

On the other hand, big objects have been being populated 

on the Internet as substantiated by average bytes per web 

page that increase year by year (by 13.66% from 2015 in 

2016 and 36.13% KB from 2016 in 2017) [6]. Loading a 

number of ever-growing big objects from remote servers 

causes network congestion and subsequently access delays as 
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well as huge data transfer charges [7] whereas fetching 

remote small objects at present Internet speed is fast as if they 

were available in user locality. In other words, the manifested 

impact of nonuniform objects whose costs, such as object 

sizes, downloading latencies, or data transfer monetary 

charges (typically proportional to the object sizes [7]), has 

been becoming so prevalent that modern web cache 

replacement policies should optimize for. Hit rate is thus no 

longer a reliable caching performance metric for nonuniform 

objects. Instead, a more generic performance goal, which has 

been used throughout this paper, is a cost-saving ratio (CSR). 

Definition 1: CSR is defined as follows where n is the 

number of objects in a cache, ci is the cost of fetching an 

object i from its remote server by the cache, hi is the number 

of times the valid copy of i is fetched from the cache to serve 

requesting clients, and ri is the total number of requests to i. 

CSR = 
 𝑐𝑖ℎ𝑖
𝑛
𝑖=1

 𝑐𝑖𝑟𝑖
𝑛
𝑖=1

 

CSR also represents byte-hit ratio and delay-saving ratio 

by substituting the object fetching cost’s value for object size 

and object downloading latency, respectively. The byte-hit 

ratio should be of interest when bandwidth is scarce whereas 

the delay-saving ratio should be of interest when access 

latency is restricted. 

B. Overall Organization 

This paper is discrete mathematical in nature instead of 

empirical. The paper begins with the aforementioned 

rationale for using the CSR rather than the hit rate as the 

optimization goal of cache replacement policies for 

nonuniform object costs. Section II re-defines an optimal 

offline cache replacement policy for nonuniform objects to 

support optional eviction to achieve the optimal cost-saving 

goal. Section III presents related works, offline cache 

replacement policies that were claimed to be optimal, along 

with their sub-optimality and the complexity proofs. The time 

complexity analysis enables the derivation of practical online 

cache replacement policies. We have also proposed the novel 

sub-optimal policies of lower or comparable complexities. 

Finally, findings and our future plan are summarized in order. 

 

II. OPTIMAL OFFLINE CACHE REPLACEMENT POLICY WITH 

OPTIONAL EVICTION FOR NONUNIFORM OBJECTS 

Hosseini−Khayat’s OPT [8] has been proved in terms of 

CSR to be an optimal offline cache replacement policy with 

mandatory eviction for nonuniform objects. He has also 

proposed that the modification of the policy for optional 

eviction is optimal based on the principle of optimality. 
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Herein, we have re-defined the latter policy variant called 

Hosseini−Khayat’s OPT∗ algorithm and restated its 

optimality in Corollary 1. 

Corollary 1: Hosseini−Khayat’s OPT∗ is an optimal 

offline cache replacement policy for nonuniform objects. 

To find the optimal multi-state cache replacement decision 

of nonuniform objects for the sequence of m requests since 

the first cache replacement decision occurs, possible cache 

state transitions is represented as a weighted directed acyclic 

graph G = (V, E) consists of a set of vertices V representing 

cache states and a set of edges E denoting state transition due 

to cache hit or miss. Each edge (v', v) ∈ E where v', v ∈ V, 

connecting a vertex v' to its adjacent vertex v is assigned a 

weight c(v', v) representing a nonuniform cost, either 0 

(resulting from cache hit or optional eviction) or a missing 

object fetching cost. Each vertex v is assigned an optimal cost 

c(v), which is the total weight of the shortest weighted path 

from a root vertex (representing a cache state where free 

cache space is found smaller than a missing object size for the 

first time) and represents the least accumulated cost of 

fetching missing objects across consecutive cache states from 

the root to the current one. Let organize G into m layers, 

excluding a root layer; and let Vi, λ(v), Λ(v), and Γ(v) denote 

the set of all vertices in layer i (0 ≤ i ≤ m where 0 is the root 

layer, which contains a single vertex), the optimal parent of v, 

the set of parents of v, and the set of all possible child vertices 

of v, respectively. Hosseini – Khayat’s OPT
*
 is shown in 

Table I, which is initially activated in state v ∈ V0 (i.e., 

available cache space is found insufficient for the first time). 

The (v
*
, λ(v

*
), λ(λ(v

*
)), ..., v ∈ V0) is an optimal state sequence 

in reverse chronological order, and the c(v
*
) is the least total 

cost of missing-object fetching against the sequence of entire 

m requests. 

Proposition 1: Hosseini−Khayat’s OPT
*
 has the 

worst-case running time bound of O(n
3m

). 

 
TABLE I: HOSSEINI – KHAYAT’S OPT* ALGORITHM 

algorithm: Hosseini−Khayat’s OPT* 
begin 

  c(v ∈ V0) ← 0 

  i ← 0 /* current layer the algorithm is invoked for the first 
time */  
  while i ≤ m 
  { 

      for each v ∈ Vi 
     { 
          if  i < m /* if true, generate all possible child vertices */ 

          Vi+1 ← Vi+1 ∪ Γ(v) ∪ v /*optional eviction causes ∪ v */  

       if i ≠ 0 

              c(v) ← minv∈Λ(v)(c(v') + c(v', v)) 
     } 
     i ← i + 1 
 }  

  v∗ ← argminv∈Vm(c(v)) /* a final optimal state */  

return (v∗, λ(v∗), λ(λ(v∗)), ..., v ∈ V0) and c(v∗) 

 

 

Proof: The running time complexity of Hosseini−Khayat’s 

OPT* is bound to the worst-case number of edges, |E| in G. 

For each given cache state comprising n cached objects, since 

zero or more cached objects might be evicted at once in all 

possible combination to achieve the least cost, this produces 

at maximum 1 (i.e., evict none from cache due to either cache 

hit or optional eviction) +1 (for evicting all cached objects) 

outgoing edges for n=1, 1 (for evicting none) +n (for evicting 

all cached objects exclusively) +1 (for evicting all cached 

objects) outgoing edges for n=2, or 1+n+1+ 
𝑛(𝑛−𝑙)

2

𝑛−2
𝑙=1  for n 

≥ 3 equal to 2+n+
𝑛(𝑛−2)(𝑛+1)

4
 outgoing edges. Subsequently, 

the worst-case number of incoming edges to all vertices in a 

layer i ≥ 1 is (2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑖 . Thus, the worst-case |E| 

is  (2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑖𝑚

𝑖=1 , equal to 

(2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
)𝑚+1−1

2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
−1

−1. Hence, Hosseini−Khayat’s OPT
*
 = 

O(n
3m

). 

 

III. SUB-OPTIMAL OFFLINE CACHE REPLACEMENT POLICIES 

FOR NONUNIFORM OBJECTS 

A.  Breadth Limiting (BL)  

BL replacement policy [8] approximated 

Hosseini−Khayat’s OPT. 

Definition 2: BL generates child vertices only for k 

vertices in each nonroot layer that have the least costs rather 

than for all vertices. 

Proposition 2: BL has the worst-case running time of 

O(mn
3log2 𝑛

3). 

Proof : For each given cache state, since zero (due to cache 

hit) or more cached objects might be evicted, this produces at 

most 2+n+
𝑛(𝑛−2)(𝑛+1)

4
 outgoing edges for n ≥ 3. Thus, 

maximum |V1| is equal to2+n+
𝑛(𝑛−2)(𝑛+1)

4
. However, BL 

selects only k least cost child vertices that at the layer 1 

requires |V1| log2|V1| sorting and the reading of k vertices, 

hence equal to |V1| log2|V1| + k. Since |Vi≥2| = k|V1|, to reduce 

|Vi=2| to k takes k|V1| log2(k|V1|) + k time units. Subsequently, 

the worst-case work of BL is (|V1| log2|V1|+k)+((m−1)(k|V1| 

log2(k|V1|)+k)). Hence, BL is O(mn
3log2 𝑛

3). 

B.  Periodic Elimination (PE) 

PE replacement policy [8] approximated 

Hosseini−Khayat’s OPT. 

Definition 3: PE generates child vertices for only a vertex, 

which has the least cost, in every T layers where T is an 

elimination period. 

Proposition 3: PE has the worst-case running time of 

O(mn
3T

 ). 

Proof : The running time complexity of PE is bound to the 

worst-case |E| plus the least cost vertex searching. For each 

given cache state, since zero or more cached objects might be 

evicted, this produces at most 2+n+
𝑛(𝑛−2)(𝑛+1)

4
 outgoing 

edges for n ≥ 3. Subsequently, |Vi≥1| = (2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑖 . 

In every T layers, the least cost vertex is obtained by scanning 

(2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑇  vertices. Thus, the worst-case |E| 

plus scanning time is 
𝑚

𝑇
(  (2 + 𝑛 +

𝑛(𝑛−2)(𝑛+1)

4
)𝑖𝑇

𝑖=1 +

(2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑇), equal to 

𝑚

𝑇
((

(2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
)𝑇+1−1

2+𝑛+
𝑛(𝑛−2)(𝑛+1)

4
−1

−

1)+(2 + 𝑛 +
𝑛(𝑛−2)(𝑛+1)

4
)𝑇)). Hence, PE = O(mn

3T
 ). 

C.  C0 

Definition 4: Let  𝒰 be an object universe, O = {oj ∈ 𝒰 |oj 

is a unique cacheable object for j = 1, 2, ...,N ∧ N is the total 
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number of oj}, pj be the probability (i.e., frequency) of oj to be 

requested, cj be the cost of fetching oj from an original server 

to a cache, and Vt ⊂ O be the set of objects in the cache at 

time t. Suppose that cache replacement takes place at t, C0 

replacement policy [9] (originally named OPT−C [10]) 

evicts oj iff (j = argmin(pjcj)) ∧ (oj ∈ Vt). 

Theorem 1: C0 is a suboptimal offline cache replacement 

policy for nonuniform objects. 

Proof : We have conducted the proof by counterexample in 

terms of CSRs as follows. Let P be the sequence of requests 

to cacheable objects in {oj | cj = j ∧ cj is unique}. Let C be the 

sequence of saved costs resulting from cache hits with respect 

to P and based on an assumption that there is no update of oj 

throughout the course of P. Given P = (o3, o2, o1, o2, o3) 

where every oj has the identical size of 1 and the cache size of 

2, C0 works in such a way that resulting in the following 

cache states: 

(∅, {o3}, {o3, o2}, {o3, o1}, {o3, o2}, {o3, o2}) 

Subsequently, C = (0,0,0,0,3) resulting in CSR = 
3

11
. 

Nonetheless, the optimal sequence of cache states is (∅, {o3}, 

{o3, o2}, {o3, o2}, {o3, o2}, {o3, o2}) that results in C = 

(0,0,0,2,3) and CSR = 
5

11
 . Consequently, we have shown 

that “C0 is optimal for nonuniform objects” is false. 

Proposition 4: C0 has the worst-case running time of 

O(mnlog2 𝑛 + m
2
n). 

Proof: For the 1
st
 cache replacement, each cached object in 

{oi | i = 1, 2, ..., n} is searched throughout the remaining m − 

1 requests to figure out pi and ci. Additionally when a single oi 

eviction cannot make enough room for the first missing 

object, {pici|i = 1, 2, ..., n} is sorted in n log2 n to evict at most 

n oi in an ascending pici order, taking another n log2 n. 

Therefore, the first cache replacement requires n(m−1) + n 

log2 n + n log2 n work at maximum. Similarly, for the 2
nd

 

cache replacement, each oi is searched in the remaining m−2 

requests, adding a new object into the sorted cache requires 

log2 n, and at most n log2 n eviction takes place, and so forth. 

Therefore, the maximum time required is (n(m−1) + n log2 n 

+ n log2 n) + (n(m−2) + log2 n + n log2 n) +...+ (n + log2 n + n 

log2 n) or (2n + (m−2)(n+1)) log2 n + n 𝑖𝑚−1
𝑖=1  equal to 

(2n+(m−2)(n+1)) log2 n + 
(𝑚−1)𝑚𝑛

2
. Hence, C0 = O(mnlog2 𝑛 

+ m
2
n). 

D.  𝐶0
∗ 

Definition 5: Let ot be a missing object requested at time t. 

Suppose that cache replacement takes place at t, 𝐶0
∗ 

replacement policy [9] evicts oj iff (j = argmin(pjcj)) ∧ (oj ∈ Vt 

∪ {ot}). 

E.  Theorem 2: 𝐶0
∗ 

Is a Suboptimal Offline Cache 

Replacement Policy for Nonuniform Objects 

Proof: Given P = (o4, o1, o1, o1, o1, o4, o1, o4, o1, o1, o1, o1) 

where every oj has the identical size of 1 and a cache size is 

equal to 1, 𝐶0
∗ can produce four possible sequences of cache 

states as some to-be-requested objects hold the same 

values of pjcj : 

(∅, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o1}, {o1}, 

{o1}, {o1}), 

(∅, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o1}, {o1}, {o1}, {o1}, 

{o1}, {o1}), 

(∅, {o4}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, 

{o1}, {o1}), 

or the worst state sequence: 

(∅, {o4}, {o1}, {o1}, {o1}, {o1}, {o1}, {o1}, {o4}, {o1}, {o1}, 

{o1}, {o1}) 

Of the last state sequence, C = (0,0,1,1,1,0,1,0,0,1,1,1) 

resulting in CSR = 
7

21
 even though the first sequence’s CSR 

=  
11

21
 and the second and the third sequences’ CSR =  

8

21
. 

Nonetheless, the optimal sequence of cache states is (∅, {o4}, 

{o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o4}, {o1}, {o1}, {o1}, {o1}) 

that results in C = (0,0,0,0,4,0,4,0,1,1,1) and CSR = 
11

21
. 

Consequently, this counterexample has shown that “𝐶0
∗  is 

optimal for nonuniform objects” is false. As a remark, 𝐶0
∗ will 

produce an optimal state sequence only on a nondeterministic 

machine, otherwise, 𝐶0
∗  (to run offline on deterministic 

machines) has to ensure that optimal choices are always 

chosen when encounters the identical pjcj values of different 

oj. 

Proposition 5: 𝐶0
∗  has the worst-case running time of 

O(mnlog2 𝑛 + m
2
n). 

Proof: For the 1
st
 cache replacement, each object in Vt ∪ 

{ot} is searched throughout the remaining m – 1 requests. As 

|Vt| = n, the replacement imposes totally (n+1)(m−1) 

comparisons plus n log2 n sorting plus n cached object 

eviction at worst. Similarly, for the 2
nd

 cache replacement, 

each object in Vt ∪ {ot} is searched in the remaining m−2 

requests, adding a newly missing object, and at most n cached 

object eviction takes place, and so forth. Therefore, total time 

to resolve all of the requests is at most ((n + 1)(m− 1) + 

nlog2n + n log2 n) + ((n+1)(m−2) + log2 n + n log2 n) + ... + 

((n + 1) + log2 n + n log2 n) equal to (2n + (m−2)(n+1)) log2 n 

+ 
(𝑚−1)𝑚(𝑛+1)

2
. Hence, 𝐶0

∗= O(mnlog2 𝑛 + m
2
n). 

F.  Mattson’s OPT 

Mattson’s OPT replacement policy has long been known 

to be optimal for uniform objects [11], [12]. It is also known 

as longest forward distance policy [8]. 

Definition 6: Mattson’s OPT evicts oj ∈ Vt if oj has no 

more request else if oj has next request furthest in time. 

Theorem 3: Mattson’s OPT is a suboptimal offline cache 

replacement policy for nonuniform objects. 

Proof: Given P = (o3, o5, o4, o3, o5) where every oj has c 

representing object size and a cache size is equal to 10, 

Mattson’s OPT produces two following equivalent sequences 

of cache states: 

(∅, {o3}, {o3, o5}, {o3, o4}, {o3, o4}, {o3, o5}) or 

(∅, {o3}, {o3, o5}, {o3, o4}, {o3, o4}, {o5, o4}) 

Thus, C = (0,0,0,3,0) resulting in CSR = 
3

20
. However, the 

optimal sequence of cache states is (∅, {o3}, {o3, o5}, {o4, o5}, 

{o3, o5}, {o3, o5}) that results in C = (0,0,0,0,5) and CSR = 
5

20
. 

This proof by counterexample has shown that “Mattson’s 

OPT is optimal for nonuniform objects” is false. 

Proposition 6: Mattson’s OPT has the worst-case running 

time of O(mnlog2 𝑛 + m
2
n). 

Proof: For the 1
st
 cache replacement, each object in Vt is 

searched in the remaining request sequence at most for m−1 
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requests to determine its furthest distance in the sequence, 

and sorted for n log2 n and evicted for n cached objects at 

worst. Likewise, for the 2
nd

 cache replacement, each object in 

Vt is searched in the remaining m − 2 requests, adding a 

newly missing object, and at most n cached object eviction 

takes place. Therefore, the maximum time required is (n(m− 

1) + nlog2 n + n log2 n) + (n(m− 2) + log2 n + n log2 n) + ... + 

(n + log2 n+n log2 n), equal to (2n+(m−2)(n+1)) log2 

n+
(𝑚−1)𝑚𝑛

2
. Hence, Mattson’s OPT is O(mnlog2 𝑛 + m

2
n). 

G.  OPT
*
 

The first of our novel algorithms has extended Mattson’s 

OPT mainly to allow optional eviction. 

Definition 7: OPT
*
 evicts oj ∈ Vt ∪ {ot} if oj has no more 

request else if oj has next request furthest in time. 

Theorem 4: OPT
*
 is a suboptimal offline cache 

replacement policy for nonuniform objects. 

Proof: Given P = (o4, o1, o1, o1, o4) where every oj has the 

identical size of 1 and a cache size is equal to 1, OPT* 

produces the following sequence of cache states: 

(∅, {o4}, {o1}, {o1}, {o1}, {o4}) 

It yields C = (0,0,1,1,0) resulting in CSR = 
2

11
. However, 

the optimal sequence of cache states is (∅, {o4}, {o4}, {o4}, 

{o4}, {o4}) that results in C = (0,0,0,0,4) and CSR = 
4

11
. This 

has shown that “OPT
*
 is optimal for nonuniform objects” is 

false. 

Proposition 7: OPT
*
 has the worst-case running time of 

O(mnlog2 𝑛 + m
2
n). 

Proof: For the 1
st
 cache replacement, each object in Vt ∪ 

{ot} is searched in the remaining request sequence at most for 

m−1 requests to determine its furthest distance in the 

sequence, and sorted for n log2 n and evicted for n cached 

objects at worst. Likewise, for the 2
nd

 cache replacement, 

each object in Vt ∪ {ot} is searched in the remaining m − 2 

requests, adding a newly missing object, and at most n cached 

object eviction takes place, and so forth. Therefore, total time 

to resolve all of the requests is at most ((n + 1)(m− 1) + 

nlog2n + n log2 n) + ((n+1)(m−2) + log2 n + nlog2n) +...+ 

((n+1) + log2 n + n log2 n) equal to (2n + (m−2)(n+1)) log2 n 

+ 
(𝑚−1)𝑚(𝑛+1)

2
. Hence, OPT

*
is O(mnlog2 𝑛 + m

2
n). 

H.  Shortest Maximum Forward Distance (SMFD) 

Our second proposed algorithm evicts from cache an 

object having the soonest final request. 

Definition 8: SMFD evicts oj ∈ Vt if oj has no more request 

else if oj has the final request the soonest. 

Theorem 5: SMFD is a suboptimal offline cache 

replacement policy for nonuniform objects. 

Proof: Given P = (o2, o5, o3, o5, o2) where c in oc represents 

object size and a cache size is equal to 8, SMFD works in 

such a way that resulting in the following cache states in 

order: 

(∅, {o2}, {o2, o5}, {o2, o3}, {o2, o5}, {o2, o5}) 

Subsequently, C = (0,0,0,0,2) resulting in CSR = 
2

17
. 

However, the optimal sequence of cache states is (∅, {o2}, 

{o2, o5}, {o3, o5}, {o3, o5}, {o2, o5}) or (∅, {o2}, {o2, o5}, {o3, 

o5}, {o3, o5}, {o3, o2}) that result in the same C = (0,0,0,5,0) 

and CSR = 
5

17
. Consequently, we have shown that “SMFD is 

optimal for nonuniform objects” is false. 

Proposition 8: SMFD has the worst-case running time of 

O(mnlog2 𝑛 + m
2
n). 

Proof: For the 1
st
 cache replacement, each object in Vt is 

searched in the remaining request sequence at most for m−1 

requests to determine its shortest maximum forward distance 

in the sequence, and sorted for n log2 n and evicted for n 

cached objects at worst. Similarly, for the 2
nd

 cache 

replacement, each object in Vt is searched in the remaining 

m−2 requests, adding a newly missing object, and at most n 

cached object eviction takes place. Therefore, the maximum 

time required is (n(m−1) + n log2 n + n log2 n) + (n(m−2) + 

log2 n + n log2 n) + ... + (n + log2 n + n log2 n), equal to (2n + 

(m−2)(n+1))log2 n +
(𝑚−1)𝑚𝑛

2
. Hence, SMFD is O(mnlog2 𝑛 + 

m
2
n). 

I. SMFD
*
 

Our lastly proposed algorithm has extended SMFD to allow 

optional eviction. 

Definition 9: SMFD
*
 evicts oj ∈ Vt ∪ {ot} if oj has no more 

request else if oj has the final request the soonest. 

Theorem 6: SMFD
*
 is a suboptimal offline cache 

replacement policy for nonuniform objects. 

Proof: Given P = (o5, o2, o5, o2) where c in oj represents 

object size and a cache size is equal to 5, SMFD
*
 produces the 

following cache states, respectively: 

(∅, {o5}, {o2}, {o2}, {o2}) 

Subsequently, C = (0,0,0,2) that is CSR = 
2

14
. Nevertheless, 

the optimal sequence of cache states is (∅, {o5}, {o5}, {o5}, 

{o2}) or (∅, {o5}, {o5}, {o5}, {o5}) that result in the same C = 

(0,0,5,0) and CSR = 
5

14
. Consequently, this counterexample 

has shown that “SMFD
*
 is optimal for nonuniform objects” is 

false. 

Proposition 9: SMFD
*
 has the worst-case running time of 

O(mnlog2 𝑛 + m
2
n). 

Proof: For the 1
st
 cache replacement, each object in Vt ∪ 

{ot} is searched in the remaining request sequence at most for 

m−1 requests to determine its shortest maximum forward 

distance in the sequence, and sorted for n log2 n and evicted 

for n cached objects at worst. Likewise, for the 2
nd

 cache 

replacement, each object in Vt is searched in the remaining 

m−2 requests, adding a newly missing object, and at most n 

cached object eviction takes place, and so forth. Therefore, 

total time to resolve all of the requests is at most ((n+1)(m−1) 

+ n log2 n + n log2 n) + ((n+1)(m−2) + log2 n + nlog2n) +...+ 

((n+1) + log2 n + n log2 n) equal to (2n + (m−2)(n+1)) log2 n 

+ 
(𝑚−1)𝑚(𝑛+1)

2
. Hence, SMFD

* 
is O(mnlog2 𝑛 + m

2
n). 

IV. CONCLUSION 

This paper presents one optimal and eight suboptimal 

offline cache replacement policies for nonuniform object 

costs. OPT
*
, SMFD, and SMFD

*
 are our distinct 

contributions. We have found that the optimality and 

respective time complexity of all investigated policies could 

be summarized below. 

 Optimal offline cache replacement policy for 

nonuniform objects 
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o Hosseini–Khayat’s OPT
*
 = O(n

3m
) 

 Suboptimal offline cache replacement policies for 

nonuniform objects 

 

o BL = O(mn
3log2 𝑛

3) 

o PE = O(mn
3T

 ) 

o C0 = O(mnlog2 𝑛 + m
2
n) 

o C0
∗ = O(mnlog2 𝑛 + m

2
n) 

o Mattson’s OPT = O(mnlog2 𝑛 + m
2
n) 

o OPT
*
 = O(mnlog2 𝑛 + m

2
n) 

o SMFD = O(mnlog2 𝑛 + m
2
n) 

o SMFD
*
 = O(mnlog2 𝑛 + m

2
n) 

 

As n represents the number of objects in a cache, it is a 

pitfall to interpret the above complexities that the smaller 

cache size, the faster caching speed. Typically, a smaller 

cache size yields faster cache replacement but more frequent 

cache miss resolution. In other words, an overall caching 

speed is bound to both cache size and miss rate.  
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