
 

  
Abstract—This article presents an innovative reconfigurable 

parametric model of a digital Spiking Neuron (SN). The model 
is based on the classical Leaky Integrate and Fire (LIF) model 
with some unique modifications, allowing neuron configuration 
using seven different leak modes and three activation functions 
with dynamic threshold setting. Efficient hardware 
implementation of the proposed spiking neuron significantly 
reduces the area and power cost. The SN model is 
implementable requiring only 700 ASIC 2-inputs gates and is 
denser than IBM SN which is composed of 1272 gates. The 
proposed spiking neuron model can be expanded to support a 
larger recurrent neural network and is efficiently applied to 
audio applications. Performance evaluation has been carried 
out through a simple voice activation system design using 1000 
SNs, demonstrating ultra-low power consumption of only 20uW 
and consuming an area of 0.03 mm2 using 28nm technology. 
Simulations of the proposed digital spiking neuron also 
demonstrate its ability to accurately replicate the behaviors of a 
biological neuron model.  
 

Index Terms—Spiking neuron, digital neuron, recurrent 
neural network, LIF model, LSTM, low power, voice activation.  
 

I. INTRODUCTION 
In a digital world where the information rate is growing 

increasingly, the demand for real-time non-linear machine 
learning methods capable of processing an extensive amount 
of data is high as ever [1]. Various kind of classical and 
spiking neural networks-based architectures have been 
recently proposed to support processing of vast streams of 
information in real time [2]. 

Internet of things (IOT) and mobile devices are penetrating 
our life rapidly and becoming dominant platforms [3]. 
Therefore, the necessity for low-power and 
high-performance embedded platforms is increasing [4]-[6]. 
Spiking neural networks (SNN) which are characterized by 
low-power consumption are able to substitute classical NN 
architectures and have the potential to achieve a higher level 
of energy efficiency [7]. S. Furber et al. [8] present the 
SpiNNaker manycore hardware architecture model and 
demonstrate the ability to integrate one billion of spiking 
neurons in real time. The work of F. Akopyan et al. [9] 
introduces a reconfigurable hardware architecture which 
aggregates one million spiking neurons using the TrueNorth 
platform.  

In similar to the recurrent neural network (RNN) and the 
long short time memory (LSTM) architecture, SN-based 
neural networks are supposed to be more efficient while 
processing a serial type of incoming data, utilizing the high 
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correlation between adjacent frames while applied to voice 
and video applications [10].  

This paper presents an innovative reconfigurable 
parametric model of a digital Spiking Neuron (SN). The 
proposed neuron model is based on the common Leaky 
Integrate-and-Fire (LIF) model [11] with some unique 
modifications, allowing a neuron configuration using seven 
different leak modes and three activation functions with 
dynamic threshold setting. The neuron is efficiently 
implemented in hardware demonstrating ultra-low power 
consumption.  

2] 
is designed to operate as a basic block in a continuous time 
recurrent neural network (CTRNN) [13]. 

This paper is organized as follows. Sec. II presents some 
background for different neurons types and compares the 
classical and spiking neurons. Sec. III describes the 
mathematical model of the proposed spiking neuron. The 
specifications of the neuron model are presented in Sec. IV 
and Sec. V conclude the paper. 

 

II. BACK GROUND  
This section briefly reviews the four types of neuron 

models: the classical, spiking, analog, and digital neuron 
models. From an architecture point of view, spiking neurons 
are very similar to classical neurons. The implementation of 
spiking neural networks (SNN) can be carried out using both 
analog and digital circuits. 

A classical neuron sums the weighted inputs performing 
multiplications and additions and using Lookup Table (LUT) 
to implement a sigmoidal-like activation function. Spiking 
neurons receive a sequence of spikes, distributed in time. 
Since spikes are actually binary values, the weighted inputs 
are accumulated directly into the neuron kernel with no need 
for hardware multipliers [7]. 

 

 
Fig. 1. Digital neuron architecture. 

 

A. Digital vs. Analog Neuron 
While an analog implementation requires less area (factor 

of 5) and consumes less power (factor of 20), the digital 

A New Digital Low Power Spiking Neuron 
Moshe Bensimon, Shlomo Greenberg, Yehuda Ben-Shimol, and Moshe Haiut 

24

International Journal of Future Computer and Communication, Vol. 8, No. 1, March 2019

doi: 10.18178/ijfcc.2019.8.1.534

The proposed spiking continuous time neuron (SCTN) [1



 

model is simply characterized and is more appropriate for 
large-scale circuits, VLSI and mass production [14]. Fig. 1 
illustrates a typical digital neuron implementation. Each 
incoming spike (across the axon) is sampled by a latch 
(synapse) and increments a digital counter (dendrite). Once 
the accumulated number of pulses crosses a given threshold 
(membrane potential) a pulse is provided in the neuron 
output. 

 

 
Fig. 2. Analog neuron architecture. 

 
Fig. 2 depicts a general analog interpretation of the neuron 

architecture. The dendrite potential is represented by a 
capacitor which is responsible for integrating the incoming 
pulses. A spike is triggered out by the analog comparator 
(soma), in case the capacitor voltage reaches a given 
threshold and the membrane potential is resetting to an initial 
value by discharging the capacitor [15]. 

B. Classical vs. Spiking Neuron  
A comprehensive comparison between classical and 

spiking neurons in term of silicon area and power 
consumption is given in [7]. Low energy consumption is 
believed to be an inherent feature of SNN while efficiently 
implemented in silicon. The authors present a comparative 
analysis, considering two levels: individual neuron and a full 
system level. For a fair comparison, it is assumed that a 
synaptic connection of a spiking neuron is equivalent to one 
input of a classical neuron, and the network structure for both 
neuron types are similar. Table 1 is derived from [7] to 
demonstrate the comparison results for the individual neuron 
in term of area and power consumption at 65nm. The power 
consumption for the full system comparison is given in Table 
2 for digital and analog architectures at 65nm and 28nm. 

 
TABLE I: CLASSICAL VS. SPIKING NEURON [7] 

Program Tech [nm] Area [mm2] Power[uW] 
Classical neuron [7] 65 18,643 8 

Spiking neuron [14] 65 538 4 

 
TABLE II: A FULL SYSTEM COMPARISON 

Program architecture Tech [nm] Benchmark 
energy, J 

Classical [16] Digital 65 10-8 

Spiking  
Analog [7] 65 10-7- 5.10-6 

Digital [4] 28 5.10-6 

 
A comparison of analog and digital implementations [7], 

[14], [17] shows that the analog design consumes only 2PJ 

while the digital design consumes 41PJ. Classical digital 
neurons consume of tens of pJ per one synapse activation 
while spiking neurons consume only a few PJ [7]. 

 

III. THE PROPOSED SPIKING NEURON MODEL 
The mathematical model of the suggested neuron offers a 

more complex representation comparing to the basic LIF 
model. First, we briefly describe the basic LIF model and 
then present the SNN model, followed by an examination of 
our neuron model. 

A. The Leaky Integrate and Fire Neuron Model 
The LIF model is a simple common spiking neuron model. 

In this model, the membrane potential depends on the 
incoming synaptic inputs that arrive from other neurons, each 
weighted by the respective synaptic strength. These inputs 
are modeled by a change in the membrane conductance, for 
which the summation of the synaptic input is nonlinear [11]. 
Since the membrane potential decays over time, the neuron is 
considered to be leaky. When the membrane potential crosses 
a predefined threshold Vth it is reset to an initial value Vreset, 
and an output spike is generated.  

The LIF mathematical model is described by (1). 
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where, V(t) is the membrane potential at time t, Si (t) is the 
binary synaptic inputs (stream of spikes), and Wij represents 
the corresponding inputs weights. The neuron leakage is 
described by the constant parameter jµ .  

B. The Neuron Mathematical Model 
Fig. 3 illustrates the mathematical model for the proposed 

SNN neuron. The proposed spiking neuron structure is 
composed of four main components: 1) an adder which 
performs the weighted input summation, 2) a leaky integrator 
with a time-constant that is controlled by a "memory" 
parameter α, 3) a random generator which is used to 
implement the sigmoid activation function, and 4) a 
comparator that checks if the membrane potential reaches the 
threshold. The spiking neuron fires a pulse in case the 
weighted input summed by the adder exceeds the current 
random value (threshold). Synapses weights are kept in an 
internal neuron dedicated memory. The membrane potential 
Y(t) is given by (2). 
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where α is the neuron leakage parameter representing the 
oblivion factor, and the bias (theta) is the neuron offset value. 
The weighted inputs (axons) are accumulated directly into 
the adder in an iterative process, while adding the membrane 
potential from the previous iteration. The leakage rate is 
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controlled by the α parameter. The membrane potential is 
represented by an internal Y register. A pseudo-random 
generator RNG is used to generate the activation function. In 
case the accumulated value (including a bias) in Y exceeds 
the current rate of RNG the neuron fires a pulse in its output. 
 

 
Fig. 3. The SN mathematical model. 

 

IV. THE NEURON SPECIFICATION AND PARAMETERS 
The innovative neuron is configurable, and its operation is 

controlled by several parameters, allowing to control and 
modify the neuron behavior. The neuron model provides 
seven different leak modes and three activation functions 
with dynamic threshold setting. The synapses weights for the 
neuron cells inputs, as well as the neuron parameters (α and θ ) 
are kept in an internal dedicated memory unit. A unique 
neuron leaky parameter α represents the oblivion factor 
which enables controlling the rate of “remembering” or 
“forgetting” of previous states of the neuron. Therefore, by 
changing α different behaviors of the neural cell over time 
may be obtained. The incoming signals can be tuned by two 
parameters which define the signal gain and delay. Thus, the 
neuron effectively supports processing of serial input data 
and can be efficiently applied to voice applications. The 
binary values the weighted inputs are accumulated directly 
into the neuron kernel with no need for hardware multipliers 
implementation. Moreover, the multiplication of the 
accumulated weighted inputs by α (Eq. 2) may be performed 
using only shift and subtract operations. Table 4 shows the 
neuron reconfigurable parameters. These parameters may be 
adjusted to control the neuron behavior and accurately 
replicate the behaviors of a biological neuron model.  

A. The Neuron Parameters 
1) Neuron Leakage Factor: The Leakage factor (LF) 

represents the integrator leakage rate and actually effects the 
neuron gain and delay. The LF parameter defines the constant 
α which multiplies the weighted inputs sum as indicated by 
Eq. (2). Since the multiplication is performed using shift 
operations LF is actually the number of right shifts that are 
applied to the value stored in the Y register that represents the 
membrane potential.  

2) Neuron Leakage Period: The leakage period (LP) 
defines the rate of integrator leakage operation and effects the 
neuron gain and delay. A value of zero represents a full rate, 
meaning that a leakage operation is executed every pulse 
cycle. A value of N defines a leakage operation once every 
N+1 pulse cycle. 

3) The Neuron Delay: Each neuron cell incorporates a 
leaking integrator with a time constant that is controlled by a 
predefined α parameter. The neuron may postpone incoming 
signals according to an expected leakage time constant, i.e. a 

delay which is given by (3). 

                          ( )                  2 1LF
PulseCycleT LP⋅ ⋅ +  (3) 

 
4) The Neuron Gain: The incoming pulses are 

accumulated in the neuron cell with respect to the expected 
gain. The expected gains for the Identity and Sigmoid 
activation function are given in Eq. (4). 
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B. The Neuron Activation Functions 
The neuron activation function defines the average spike 

rate at the neuron output as a function of the integrator value 
and the bias. The proposed neuron supports common three 
different types of activation functions: Identity, Binary and 
Sigmoid. 

Identity: This activation function is linear to the input and 
is based on a linearly distributed random number. 

Binary: This activation function produces an output pulse 
if and only if the neuron integrator value is positive. 

Sigmoid: This activation function is approximately a 
classical sigmoid function. It is based on the sum of eight 
linearly distributed random numbers. The probability density 
function of the sum of random numbers is approximately a 
Gaussian function [17].  

Table 3 shows some internal neuron parameters which are 
transparent to the user.  

 
TABLE III: THE NEURON VARIABLES 

Variables  Symbol Format 
Membrane potential Yj (t) Sign int 

Time step t Unsign int 

Input stream of spikes on ith  axon Mi (t) {0,1} 

 
TABLE IV: THE NEURON RECONFIGURABLE PARAMETERS 

Neuron Parameters Symbol Format 

Synapse value (ith  axon, jth  neuron) Sij {0,1} 

Synaptic weight wij Sign int 

Leakage factor LF Unsigned int 

Leakage period LP Unsigned int 

Activation function AF {0-Identity,1-Bina
ry,2-Sigmoid} 

Leakage timer LT Unsigned int 

Bias θ   Signed int 

Reset membrane potential V0  Sign int 

 

C. The Random Number Generator 
Efficient implementation of a random number generator 

(RNG) is used to produce the three different activation 
functions. This hardware implementation of a unique RNG 
module avoids the common use of LUT for storing the 
appropriate function. Therefore, the RNG implementation 
saves memory space, and reduce memory accesses and power 
consumption. Moreover, a better approximation of the 
activation functions is achieved.  
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V. THE NEURON OPERATION DESCRIPTION 
The neuron operation flow may be better understood from 

the pseudo code and the flow diagram as depicted in Fig. 4. 
The neuron operation is based on an iterative process. For 
each iteration the adder performs a weighted sum, which is 
provided to the leaky integrator. Then, the integrator output is 
added to a bias and compared against a random value that is 
generated by a random generator. Finally, an output spike is 
generated if the sum exceeds the current random value. The 
neuron cell “output level” may be defined linearly by the 
spike rate in its output.  

 
SN Operation Flow - Pseudocode 
1: m = Layer number 
2:  n = Number of neurons in layer (m-1) 
3: SUM = Y(t-1) 
4: For ii = 0: n  
5:  If FF (ii) ==1   then 
6:   Weightij = Memory_Unit (ii) 
7:   SUM = SUM + Wieghtij 
8:  End If 
9: End For 
10: α = Memory_Unit(ii+1) 
11:     y(t)= α ∙ SUM; 
12: RNG=Activation function: Identity, Binary or Sigmoid 
13: If Activation function=2 and SUM > 0 
14:  Neuron fires a pulse 
15:  Else 
16:  Neuron output=0 
17: End If 
18: If Activation function=1 or 3 
19:  If RNG < SUM 
20:    Neuron fires a pulse 
21:  Else 
22:   Neuron output=0 
23:  End If 
23: End If 
 

 
Fig. 4. The SN flow diagram. 

 

VI. POWER AND AREA ANALYSIS 
The neuron cell occupies relatively small silicon area, runs 

at low frequency and therefore consumes ultra-low power. 
The hardware implementation of a single digital neuron cell 
requires only 700 ASIC gates (with two inputs) and an 
additional 33 gates per synapse. The IBM spiking neuron [7] 
is implemented using 1,272 ASIC gates and therefore 
consumes about twice silicon area and power compared to 

our proposed spiking neuron. 
 

VII. CONCLUSION 
This paper introduces a new efficient digital spiking 

neuron model. The neuron is efficiently implemented in 
hardware and is well appropriate for ultra-low power 
applications. The proposed neuron model is configurable and 
has designated architecture for processing streams of 
continuous serial data, mainly audio and video. Enhanced 
performance and fast serial data processing flow is achieved 
by controlling the neuron parameters. Simulations of the 
proposed digital spiking neuron also demonstrate its ability to 
accurately replicate the behaviors of a biological neuron 
model.  
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