
  

  
Abstract—In recent years, top-view monitoring systems are 

becoming a practical driving aid that help reducing collision 
hazards by eliminating blind spots. The U.S. Department of 
Transportation’s National Highway Traffic Safety 
Administration (NHTSA) issued a rule requiring rear visibility 
technology in all new vehicles under 10,000 pounds by May 
2018. Many of such systems provide short range views 
surrounding the vehicle, limiting its application to parking and 
reversing. In this paper, we propose a practical system for 
creating images around the vehicle with the parking guidance 
line, and highlighting obstacles only relies on an embedded 
hardware and a wide-angle camera to capture images for 
analysis without sensors. By estimating the ego-motion of the 
vehicle using the input image sequence of the cameras, the 
proposed system is able to detect objects in the images by 
finding movements of features that do not correspond to ground 
motion relative to vehicle motion. Detected obstacles are 
highlighted in the multi-view imagery to warn the driver of 
potential hazards. 
 

Index Terms—Advanced driver assistance systems, parking 
assistance, collision avoidance, motion analysis. 
 

I. INTRODUCTION 
Parking a vehicle into a parking space or garage is an 

essential skill for drivers; however, it is still hard for someone. 
Moreover, to maneuver a vehicle into a parking space with 
limited dimension or with other vehicles or obstacles around 
the parking space is difficult for most drivers. Even a familiar 
driver has an unpleasant experience to park a vehicle into a 
small parallel parking space. 

In these few decades, cameras and related embedded 
system are more and more cheap, and have been used for 
vehicle driving assistance, such as lane departure warning, 
forward collision warning, blind spot detection, etc. [1]. The 
mentioned parking problem can be solved by an around view 
monitor system [2]-[4] or a back guiding monitor and 
detection system, which are just equipped cameras and an 
embedded system. 

Nissan Motor Co., Ltd. [2] has developed a parking 
assistance system named as "Around View Monitor". The 
system uses four wide-angle cameras mounted on the front, 
sides, and rear of the vehicle to capture images of the 
surrounding area to generate a bird’s eye view of the vehicle 
with its surrounding scenery and a parking guiding view of 
the rear scenery as shown in Fig. 1.  

Honda Motor Co., Ltd. [3] has provided a similar system 
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named “Multi-view Camera System” with extra functions for 
tight driving support as shown in Fig. 2. At the same time, 
Mitsubishi Motors Corp. [4] provided a similar system 
“Multi-around Monitor System”. After two years, Fujitsu 
Semiconductor America, Inc. announced the commercial 
availability of a breakthrough 3D imaging technology that 
provides a complete 360-degree view of a vehicle’s 
surrounding [5].  

 

 
Fig. 1. Nissan Around view monitor system. 

 

 
Fig. 2. Multi-view Camera system. 

 
In this paper, we propose an image-based parking 

guidance (IPG) system to estimate the direction of front 
wheels without steering sensor. The hardware is just an 
ARM-based embedded system and a wide-angle camera. The 
camera is mounted on the rear of vehicle to capture sequential 
images of ground area just behind the vehicle. In the software 
development, off-line and on-line processes are sequentially 
constructed. The off-line process is used to calibrate 3D 
position of the camera to the ground coordinate system; then 
the on-line process is utilized to estimate the vehicle 
trajectory with respect to the ground coordinate system. At 
first, input images are first transformed into top-view images 
by a transformation matrix of homography. Then corner 
feature points on two continuous images are extracted to 
match each other. The feature-point pairs are further pruned 
by a least-square error metrics. The remained pairs are then 
used to estimate the motion parameters, where an isometric 
transformation model based on the Ackermann steering 
geometry [6] is proposed to describe the vehicle motion. A 
vehicle trajectory is then estimated based on the parameters. 
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At last, a top view or rear view of parking guidance-lined 
images are provided to assist the driver. The proposed system 
is shown in Fig. 3. 
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Fig. 3. The proposed image-based parking guiding system. 

 

II. TOP-VIEW MONITORING  

A. Camera’s Parameter Calibration  
The purpose of camera calibration is to obtain the 

corresponding relation between three-dimensional world 
coordinate system and the two-dimensional image coordinate 
system. Before the cameras are installed, we can calibrate the 
intrinsic parameters for getting the transformation between 
image coordinates and camera coordinates. After mounting 
the cameras on the vehicle, we calibrate the extrinsic 
parameters which relate world coordinates to each of cameras 
coordinates. 

Zhang [7] proposed a flexible, robust and low cost method 
for camera calibration. We print the pattern and attach to a 
planar surface, and then only utilize the camera to observe a 
planar pattern shown in two or more different orientations. 
Either the camera or the planar pattern can be freely moved. 
The motion need not be known. 

We utilize the algorithm and camera model to calculate the 
constraints on the camera’s intrinsic and extrinsic parameters 
by estimating the homography between a planar model 
containing the calibration target and several images of this 
target. 

In the Zhang’s model [7], if the coordinates of a 3D point 
pw is [xw yw zw]T and its 2D image point q is [u v 1]T, then 
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where s is a non-zero scale factor; R and t are 3×3 rotation 
matrix and 3×1 translation vector, respectively; A is camera 
intrinsic parameters matrix, 
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where (uo, vo) is the camera optical axis center on the image 
coordinate system; α and β are the focus lengths in image u 
and v axes, respectively; γ  is the skew parameter between 
photosensitive element array (CCD) and lens structure. 

There are totally twelve extrinsic parameters and five 

intrinsic parameters. Zhang has proposed a sequence 
computation to initially estimate the intrinsic parameters and 
then refine the extrinsic parameters by solving the nonlinear 
minimization problem with the Levenberg-Marquardt 
algorithm [7].  

B. Wide-Angle Lens Distortion Correction  
Based on the characteristic of wide-angle camera, we can 

achieve the surrounding monitor system with a few cameras; 
however, the wide-angle lens bright distorted images. The 
goal of distortion calibration is just to correct the lens 
distortion to get the mapping between the actual image plane 
and the perspective camera model. Many distortion models 
have been proposed such as the classical polynomial model 
[8], the division model [9], the rational model [10], 
stereographic projection [11], and the unified catadioptric 
model [12].  

We here utilized the FOV model proposed by Deverney 
and Faugeras [13] to calibrate the lens distortion. The larger 
incident angle between 3-D point and optical axis is, the 
larger distance between image point and image center is. In 
the FOV model, the change of incident angle is proportional 
to the change of distance, 
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where ω is the distortion parameter associated to field of view, 
and the inverse function is 
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One example result of lens distortion calibration is shown 

in Fig. 4. 
 

  
(a)                                                 (b) 

Fig. 4. The result of distortion correction. (a) Original image. (b) After 
distortion correction. 

 

C. Top-View Transformation  
The top-view transformation is to back project images onto 

the ground surface. The task can be achieved by a 
homographic matrix. If qi = [ui vi]T and qj = [uj vj]T are 
projected from one 3D point on planes Ii and Ij, respectively. 
The point-to-point relation can be expressed by 

 
       

qHq ijs =  (5) 

where H is a homography matrix. 
We can use the intrinsic and extrinsic parameters of the 

cameras to construct the homography matrix. Assume the 
ground is the plane of WCS which means Z = 0. The 
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top-view image is generated from a virtual camera with 
image plane being parallel to the ground. Then the relation 
between a 3D point [X Y 0]T on the ground and the image 
point  [u v]T is just 
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The projection is a one-to-one transformation; thus 
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Assume the relation between the virtual image plane and 

the WCS is 
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where (uv,vv) is the point of the virtual image plane. The 
transformation from the image point [u v]T to a point on the 
virtual image is  
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The 3×3 homography matrix HvH-1 can also be estimated 

by a least-squares estimation method by taking  
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One example through the distortion calibration and 

top-view transformation is shown in Fig. 5. 
 

   
(a)                              (b)                              (c) 

Fig. 5. Top-view transformation. (a) A wide-view image. (b) Distortion- 
calibrated image. (c) Top-view transformed image. 

 

III. TRAJECTORY GENERATION 

A. Feature Matching 
Matching two continuous images to acquire the motion 

parameters of the host vehicle, we need to extract feature 
points in advance. Rosten-Drummond FAST corner detector 
[14] was utilized to acquire corner feature points for 
matching. 

Lowe [15] has proposed the scale-invariant feature 
transform (SIFT) for feature extraction and matching. SIFT is 

an excellent feature and method for application; however, it 
is very time consuming. In general, the vehicle speed is slow 
during parking and then the difference between two 
continuous images is small; thus a SAD-based matching 
method was alternatively used for feature-point matching. 

For corner point (u, v) on image I t matching a corner point 
(u'k, v'k) on image I t-1, the sum of absolute difference (SAD) 
criterion is defined as 
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where f (u, v) is the gray level of pixel (u, v), K is the number 
of corner points on I t-1 and N is the radius of the window for 
computing a SAD. One example of corner-matching result is 
shown in Fig. 6. 
 

  
(a)                                      (b) 

  
 (c)                                      (d) 

Fig. 6. Feature point matching. (a) The corner points on image I t. (b) The 
corner points on image I t-1. (b) The extracted point pairs. (c) The yellow lines 

are the credible point pairs. 
 

B. Generation of Vehicle Trajectory 
Ackermann geometry [6] described the motion trajectory 

of a four-wheel vehicle as shown in Fig. 7. In moving, all 
wheels have their axles arranged as radii of a circle with a 
common center point p. As the rear wheels are fixed, this 
center point must be on a line extended from the rear axle. 
Thus the center point can be found as the intersection of the 
rear-wheel and front-wheel axles. 
 

 
Fig. 7. Ackermann steering geometry and vehicular trajectory. 

 
We have no steering sensor, so we cannot get the 

directions of the front wheels directly. Here we use the 
movement of the vehicle to obtain the wheel direction based 
on the feature points on images. 
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We analyze the geometric transformation between two 
continuous images based on the extracted feature point pairs 
as shown in Fig. 8. The isometric coordinate transformation 
model is used to simulate the Ackermann steering geometry 
to describe the vehicle motion. According to the Ackermann 
steering geometry, the vehicle is rotated with respect to a 
center point p = (a, b). We use Eq.(12) to describe the vehicle 
motion from t-1 coordinate system (u’, v’) rotating θ  angles 
to t coordinate system (u, v). 
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Fig. 8. The coordinate transformation model. 

 
If we set c = cos θ  and d = sin θ, then Eq.(12) can be 

rewritten as two linear equations 
 

 




−+++=
−+−+=

bbvcaudv
abvdaucu

)'( )'( 
)'( )'( 

 (13) 

 
and then becomes 
 

 




++−+=
−+−−=

bcadbvcudv
bdacavducu
  ' ' 
  ' ' 

 (14) 

 
Let 

 



−+=
−−=

bcadf
bdace
 )1( 
  )1(

 (15) 
 
then Eq.(14) becomes two linear equations of four unknowns 
c, d, e, and f , 
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If there are n corresponding points on the two continuous 

images, we can get 2n linear equations. Integrating these 
equations to form a linear system 
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The equation is simply written as 
 
  β = Α ξ (18) 
 
then the unknowns (c, d, e, f) can be estimated by the 

least-square estimation method, 
 
 ξ = (ΑΤ Α) −1 Α Τ β (19) 
 

At last, the center point (a, b) can be found by Eq.(15) 
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Since 1sincos 22 =+ θθ ; that is, 122 =+ dc ; thus 
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and θ = tan-1 (d/c). 

Some point pairs may involve more error; thus these point 
pairs should be pruned out. We utilize the square error to 
prune the point pairs which have more error. Substituting a 
point pair [(ui, vi) (u’i, v’i)] into Eq.(16) to compute the square 
error 

 
 [ ] [ ]22 ))     fvcudvevducu iiiiiii −′−′−+−′+′−=ε  (23) 
 

If the error is greater than a pre-defined threshold value, 
the point pair is discarded. After that, all remained point pairs 
are used to re-compute the least-square estimation of 
transformation parameters again. At last, the parameters a, b, 
and θ are ego-motion displacement vectors to generate the 
vehicular trajectory and obstacle detection.  

With the coordinate transformation method, the vehicular 
trajectory is generated and then the parking guiding lines are 
drawn on top-view and original images as examples shown in 
Fig.9.  

 

  
(a)                                               (b) 

Fig. 9. The parking guiding lines. (a) drawn on the top-view image. (b) drawn 
on the original image. 

 

IV. OBSTACLE DETECTION 
The detection is done by comparing feature points in 

previous frame and in current frame displaced by ego-motion. 
This section describes the steps in detecting obstacles and 
eliminated ground-surface features such as lane markings 
that are not obstacles. By estimating ego-motion accurately, 
above-ground objects with detectable features will be 
detected, surface features will be rejected. 
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All features on ground surface, such as lane markings and 
manholes, will always have a rigid motion on hard ground. 
The ground's motion is the opposite of ego-motion, so 
transform a ground feature F't in current frame by ego-motion, 
we get its position that feature F't-1 in previous frame. As 
shown in Fig 10, the feature F't in WCS is calculated from Ft 
in ICS by inverses of camera transformation and distortion 
function and Ft-1 is calculated by projecting F't-1 back to ICS. 

We define a threshold Tg that Ft and Ft-1 are the same 
surface features in current and previous frame if the sum of 
absolute difference is less than Tg, otherwise Ft is part of an 
obstacle. As shown in Fig. 11, the detected feature points 
have been divided into two groups, gray points are the 
removed ground features, and white points are part of 
obstacle. 
 

 
Fig. 10. Transform feature Ft in current frame to position in previous frame. 
 

   
(a)                                           (b) 

Fig. 11. The detected feature points have been divided into two groups. (a) 
Gray points are the removed ground features. (b) white points are part of 

obstacle. 
 

V. EXPERIMENTS 
The proposed methods were implemented in C++ 

programming language and Microsoft Foundation Class 
(MFC) Library, and all experiment were excepted on a 
general PC with Intel Pentium Core2 Duo 2.66GHz and 
1.99GB RAM, Microsoft Windows 7 operation system. A 
low-cost wide-angle camera with a view field of 136o angle 
in horizontal and 115o angle in vertical was used to capture 
images. 

The performance of the proposed system is dependent on 
the speed of on-line processes: geometric transformation of 
images, feature detection, motion estimation, and obstacle 
detection. Currently, we can generate the guidance line 
images with 15 - 20 frames per second, and obstacle 
detection with 10 – 15 frames per second. Both can be switch 
between top-view and original images by driver. Two 
experiments with sequences of synchronous images are 
presented as shown in Fig. 12 and Fig. 13. Fig. 12 are a 
sequence images of parking guiding. Fig. 13 are a sequence 
images of obstacle detection. 

  

  
Fig. 12. A sequence images of parking guiding. 

 

   

   
Fig. 13. A sequence images of obstacle detection. 

 

VI. CONCLUSION 
In this paper, an imaged-based parking guidance and 

obstacle detection system is proposed to help drivers parking 
their cars into parking space. The proposed system only uses 
a wide-angle camera to capture images for vehicle trajectory 
generation; the proposed system needs no steering sensor; it 
is a money-saved technique; moreover, it is suitable for used 
cars and after-market usage.  

The proposed system only relies on image analysis to 
monitor the rear traffic situation for driver to avoid the 
possible collision. Compared to current rear anti-collision 
systems, our system gives the driver immediate view of 
vehicle's rear environment and the freedom to change view 
point. The visual detection system provides additional hint of 
above-ground objects in the environment, allow faster focus 
on potential obstacles. 

The system is useful for driving in the narrow street or 
parking. The top-view helps the driver focus on 
understanding the parking size and the collision distance 
from the vehicle, it is especially useful in slower speed. It is 
sufficient in time to avoid possible collision around the host 
vehicle. The result of the top-view monitoring system is 
affected by the camera view angle and the image resolution. 
We are able to improve the quality of synthesis images by 
employ the wider-angle camera and higher resolution video 
devices. Furthermore, the system is just migrated into an 
embedded system. 
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