
  

  
Abstract—The user-centric ultra-dense network (UUDN) is 

considered as a promising technology for 5G. However, the 
massive deployment of access points (APs) would lead to a 
considerable increase in energy consumption. Considering 
user’s different service flow and system energy efficiency, we 
propose a user-centric access algorithm through renewable 
energy cooperation. Firstly, the access point group (APG), 
which consists of several APs, is dynamically organized to serve 
each user in UUDN. Then, to maximize the system energy 
efficiency, we propose a reinforcement learning approach to 
cooperate renewable energy. Q neural network which adopts a 
three-layer BP neural network solves the problem of Q learning 
in continuous state and discrete action. Meanwhile, by 
optimizing the resource allocation in a cooperative way, the 
proposed algorithm compared to the existing algorithms has 
better performance in satisfying user’s demand and improving 
system energy efficiency. 
 

Index Terms—Energy cooperation, energy harvesting, 
reinforcement learning, user-centric ultra-dense network 
(UUDN). 
 

I. INTRODUCTION 
With the rapid development of mobile network of 5G, 

ultra-dense network (UDN) has become hot research field. 
More and more access points (APs) are needed to satisfy the 
user’s traffic demands, and the number of APs is comparable 
to the users. User-centric UDN (UUDN) is proposed as an 
ideal architecture of UDN [1], [2], which is quite different 
from traditional network-centric cellular architecture. UUDN 
lets user equipment (UE) feel like a network always 
following itself. Hence, the network will intelligently 
recognize the UE’s wireless communication environment, 
and then flexibly organize the required access points group 
(APG) to serve the UE [3]. To serve each UE seamlessly, 
authors put forward a maximum data transmission rate 
oriented dynamic APs grouping scheme, and the APG 
member will be dynamically refreshed according to the UE’s 
movement or network environment change [4]. Because of 
the limited radio resources, non-orthogonal multiple access is 
introduced into UUDN, and an access scheme by grouping 
multiple APs cooperatively to provide a user-centric access 
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service has been considered [5], [6]. Considering user’s 
different service flow and system energy efficiency, Authors 
propose a service-driven resource allocation scheme for 
UUDN and adjust the number of APs dynamically to serve 
users according to their service flow [7]. Due to heavy CSI 
feedback overhead, a general MIMO network using a hybrid 
interference coordination approach is considered, AP load by 
joint AP grouping and user association is minimized [8]. 

In order to reduce the operating expenses of these APs, 
especially minimize energy consumption, energy harvesting 
(EH) has been considered as a promising energy source [9], 
[10]. The EH capability of APs increases the network lifetime 
because APs can use the harvested energy to recharge their 
batteries [11], [12]. Energy harvesting UUDN (EH-UUDN) 
and the energy cooperation technology [13], [14] have been 
developed and widely researched. In EH-UUDN, each AP 
can harvest energy (e.g., solar and wind power) from the 
ambient environment. By employing an energy transceiver, 
each AP can also transmit some energy to other nodes in one 
time slot and receive energy from others in another time slot, 
so that the utilization of the available energy over the network 
could be optimized [15]. In [16], it studies energy 
cooperation and traffic management using the Lyapunov 
optimization framework. [15] proposes that users can 
perform energy cooperation, and the capacity region 
coincides with that of a traditional K-user Gaussian MAC 
with energy cooperation. In [17], joint renewable energy 
cooperation and resource allocation for cloud radio access 
networks with hybrid power supplies (including both the 
conventional grid and renewable energy sources) is 
investigated. [18] focuses on resource allocation in energy 
cooperation enabled two-tier heterogeneous networks with 
non-orthogonal multiple access, where base stations are 
powered by both renewable energy sources and the 
conventional grid. Authors propose a reinforcement learning 
approach based on Q-learning for the transmitter to learn to 
cooperation through energy sharing [19], [20], and the 
reinforcement learning approach is optimized by 
waterflooding [21]. The Q-network is diverged by combining 
model-free reinforcement learning algorithms with 
non-linear function approximators [22], or with off-policy 
learning [23]. More recently, there has been a revival of 
interest in combining deep learning with reinforcement 
learning [24]-[27]. 

In this paper, a user-centric access service algorithm is 
proposed which groups multiple APs into one APG for 
energy cooperation. We first set up AP grouping scheme and 
select the best servicing AP for one UE in EH-UUDN. 
Considering as Markov decision process (MDP), energy 
cooperation problem is then formulated based on Q-learning. 
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To solve the problem of reinforcement learning in continuous 
state and discrete action, we utilize a Q neural network (QNN) 
which applies a three-layer BP neural network as 
approximator. The QNN is trained through minimizing a 
sequence of loss functions that change at each iteration. ε  
greedy policy can ensure the convergence of the proposed 
algorithm, and such value iteration algorithm converges to 
the optimal action-value function, *Q Qi →  as i → ∞ . 
Simulation results show that the system EE is related to the 
density of APs and UEs, and the proposed algorithm 
compared to the existing algorithms achieves a better 
resource utilization and improves system EE in a cooperative 
way. 

The rest of this paper is organized as follows: In section II, 
the system model is first introduced. APG scheme for UE in 
EH-UUDN is described in section III. In section IV, we 
optimize the problem of energy cooperation through QNN. 
Simulation results are given in section V. And finally, we 
draw a conclusion and summarize our work in section VI. 

 

II. SYSTEM MODEL 
We consider a downlink EH-UUDN where UEs and APs 

are randomly located. Each AP is equipped with EH unit and 
rechargeable battery, and is solely powered by renewable 
energy sources. Time is slotted and time slot ( TS ) length is 
T . Assume that each AP is also equipped with an energy 
transmitting unit for transmitting some of the harvested 
energy to other APs, and an energy receiving unit for 
receiving the energy transmitted by other APs. Let ( )E ti  
denote the amount of energy that AP i  harvests in TS  t , and 

( )B ti  is the battery capacity of AP i  in TS  t . Suppose the 

channel state information is ( )H ti , which is kept constant in 

the same TS . In EH-UUDN, it meets that APλ  is 

comparable to UEλ , where APλ and UEλ  respectively 
represent the density of APs and UEs [4], as shown in Fig. 1. 
 

 
Fig. 1. The system model of UEs and APs in EH-UUDN. 

 
To investigate the performance limit of the network, we 

consider a subset of the following assumptions (A1-A5). 
A1: The energy buffer at each AP is finite, and maxB  

represents maximum capacity of the battery. 
A2: The data buffer at each AP is finite with maximum 

size maxD  to store the incoming data, and the data flow 

arrives to the data buffer in a stochastic and continuous way.  
A3: For each AP, the expectation of the harvested energy 

in each TS is finite,and the maximum harvested energy is 

maxE . { ( ), 0,1, 2, ...}E t ti = is an ergodic, independent and 
identically distributed sequence.  

A4: At any time, AP can transmit energy to other APs or 
receive energy from other APs. There is at most one selection 
of charging/discharging energy to/from the battery. 

A5: The harvested and transferred energy at TS t will be 
utilized at TS  1t + . 

In EH-UUDN, the coverage ratio is the biggest when all 
APs are working but apparently it is a waste of energy. As 
shown in Fig. 2, we consider that AP has three modes: on, 
sleeping and off. Accordingly, the energy conditions of AP 
are divided into three situations:  

○1  AP i  is qualified to be on when its battery capacity in 

TS  t  satisfies ( )B t Bi sleep≥ , and users can access to it;  

○2  When its current energy satisfies ( )B B t Boff i sleep≤ < , 

AP i  turns to sleeping mode which can continue to harvest 
energy and receive energy from other APs, and there is no 
access to it; 

○3  No matter in on or sleeping mode AP should be 
powered off automatically and enter into off mode when its 

current energy satisfies ( )B t Bi off< , and wait for the energy 

replenishment. 
 

 
Fig. 2. Three energy mode for Aps. 

 
When the AP in the off mode and the harvested energy 

from the ambient is zero (for example, the solar energy 
harvester cannot obtain the energy during the dark night). 
That is, AP consumes the basic power consumption per time 
unit while obtains nothing, which is greater than or equal to 
zero. In this case, AP will meet energy depletion, and the 
temporal death of the AP will be occurred. In this scenarios, it 
will get ( 1) 0B ti + < , which is not correct for practice 
application. So the battery energy queue length of AP i  is as 
follows ( [ ] max{0, }x x+ = ): 

 

         ( 1) [ ( ) ( ) ( ) ( ) ( )]B t B t P t E t c t d ti i i i i iχ ++ = − + + −  (1) 
 

The energy of transmitting data at time t is ( ) * (1 )P t TSi  

(we omit the implicit multiplication by 1TS  of ( )P ti  when 
converting between power and energy). The energy charged 
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to the battery is ( )c ti , and the energy discharged from the 

battery is ( )d ti . At any time, AP will charge/discharge energy 

to/from battery. There is at most one of ( )c ti  and ( )d ti  that is 

strictly positive, that is, ( ) * ( ) 0c t d ti i = . [0,1]χ ∈ is the energy 
transfer efficiency between two APs. 

In summary, the operation of AP i  in TS  t satisfes the 
following constraints C1: 

 

 

0 ( ) max
0 ( ) max
0 ( ) max

( ) 0
( ) 0

( )* ( ) 0

( ) [ ( ) ( ) ( ) ( ) ( )]1

B t Bi
E t Ei
D t Di

c ti
d ti

c t d ti i

B t B t P t E t c t d ti i i i i iχ


≤ ≤

 ≤ ≤
 ≤ ≤


≥
 ≥
 =


+ = − + + −+

 (C1) 

 
AP’s EE should be considered in detail, which is defined 

as the sending data ( ( )R ti ) divided by the power 
consumption of APs. For each AP i , we take two parts into 

account. 0Pi is the basic power, and TPi is the transmit 

power.  
When the AP is on ( 1ρ = ) and serves some UE, 

0 TP P Pi i i= + ∆ , where ∆  represents the power consumption 

of feeders and power amplifier of AP i . 
When the AP is sleeping ( 1ρ = ) and serves no UE, 

0P Pi i= . 

When the AP is off ( 0ρ = ) because of low energy, 
0 , 0 1P Pi iα α= < < . Actually, AP in off mode consumes 

approximately one tenth of the basic power for common 
control signaling. 

In conclusion, AP power can be expressed as  
 

                    0 0( ) (1 )TP P P Pi i i iρ ρ α ρ α= ∆ + − +  (2) 

 
Hence, EE of AP i  is represented as  
 

                      
( )

( ) 0 0(1 )

RiEEi TP P Pi i i

ρ
ρ

ρ α ρ α
=

∆ + − +
 (3) 

 
EE of all APs based on EH-UUDN ( I  is the AP set in the 

hot region) can be concluded: 
 

                       
( )

0 0( (1 ) )

Ri
i IEE TP P Pi i i

i I

ρ

ρ α ρ α

∑
∈=

∆ + − +∑
∈

 (4) 

 
When 1ρ= , there are two situations: ○1  the on mode of AP: 
( )Ri ρ is the actual sending data; ○2 the sleeping mode of AP: 

( ) 0Ri ρ = . When 0ρ = , ( ) 0Ri ρ = . 

III. AP GROUPING SCHEME IN EH-UUDN 

A. AP Grouping in EH-UUDN 
Each UE u calculates the number of APs in the user 

centered circle with a radius of r , and store the APs from 
which the user received signal strength are greater than 

maxPu η− , where maxPu is the max received signal strength 

by UE u from APs, and η is the gap to maxPu , which is 
decided by the traffic demand of UE, so it may be different 
for different users. The received signal strength of UE u  

from AP i  is , ,
eP P Hdu i u ii

−= , where P
i  is the transmit 

power of AP i , e  is the path-loss exponent, ,du i  is the 

distance between UE u and AP i , and H  is the Rayleigh 

fading. These APs that satisfy , maxP Pu i u η≥ −  form the 

potential serving AP group of UE u , which is marked as 
PGu . Every AP requires other APs who serve the same UE 
within distance r  to avoid interference.  

 
TABLE I: THE ARRANGEMENT OF CHANNELS 

Algorithm 1: Grouping APs in EH-UUDN 
Input: {The AP set: I , the UE set: U , the radius: r , the gap: η } 
 Output: {the serving AP group for each UE: Gu } 
1) Initialize: mark all APs and UEs, determine the value of η  and r , 
PGu =∅ , Gu =∅ , calculate maxPu  
2)For 0u= to ( ) 1U − do 
 calculates S  (the number of APs in the user centered r circle) 

For s=0 to 1S−   
if , maxP Pu i us η≥ −  

then store the AP is in PGu  
 End For 
 End For 
3)For 0i=  to ( ) 1PGu −  do  

 if 
1

( )
2 '

P Pi u
u U

≥ ∑
∈

, 'U represents the user set who want to access to 

AP i  
then G G iu u=   

else get rid of the AP i  from the potential group PGu  
 End For 

4)For 0u=  to ( ) 1U −  do 
if Gu =∅  

then select , maxP Pu i u= , G G iu u=   

End For 
 

For AP i , if its capacity satisfies 
1

( )
2 '

P Pui u U
∑>
∈

, where 

'U represents the user set who want to access to AP i , then 
choose all users that want to access to it, else select the top n  
users from whom the capacity of AP i  is greater than half of 

their sum of traffic demands, that is, 
1

( )
2

P Pui u N
∑>
∈

, where 

N represents the top n  user set. Each user will decide its 
serving AP group through getting rid of APs which reject its 
request from the potential group. If the user has no potential 
group, then it should access to the strongest AP from those 
who have remaining capacity. The group for UE u  is marked 
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as Gu , and the AP number in Gu is ( )G nu u= , where (.)  
represents the number of elements in a set. The algorithm for 
AP grouping is in Table I. 

B. Selecting the Best Serving AP 

Suppose there are | |I APs in the group Gu  centered by the 

UE u , which expressed as { , , ..., }1 2 | |G b b bu I= .The SINR of 

the UE u associated with AP i  is  
 

                       
, ,

, 2
, ,

eP Hdu i u iSINRu i eP Hdu j u j
j i

ρ

ρ σ

−
= − +∑

≠

 (5) 

 

where 2σ  is the white noise power, ,
edu i

−  represents the path 

loss between AP i  and UE u . 
The potential serving AP for UE u  should 

meet ,SINR SINRu i threshold≥ , where SINRthreshold  is the 

predefined threshold. In this paper, we set 
max min=

2
SINR SINR

SINRthreshold
+ , maxSINR  and 

minSINR  are the maximum and minimum SINR in the 
serving APG respectively. 

According to the Shannon capacity, the achievable data 
rate of user u associating with AP i is  

 

                        log (1 )2 ,R W SINRi u u i= +  (6) 
 

where Wu  is the bandwidth used by AP i  for its associated 
UE u . 

AP need to estimate their load beforehand, and the 
estimation should accurately reflect the actual load. The load 
of AP i  at time t based on history is ( )L ti , which is 
expressed by 

 

                ( ) ( ) ( 1) (1 ( )) ( 2)L t t L t t L ti i i= ϒ − + − ϒ −  (7) 
 

where ( )tϒ is the learning rate of the load estimation,and 
(0) 0Li = . 

The remaining renewable energy of AP i is ( )B ti , then the 
AP quality can be estimated by 

 

              * * ( ) * ( )1 , 2 3Qua SINR L t B ti u i i iω ω ω= + +  (8) 
 

where 1, 2, 3ω ω ω is the weight of , ( ), ( )SINR L t B ti i . 

Each UE selects the AP of the biggest Qua value as the 
best serving AP. 

 

IV. ENERGY COOPERATION BASED ON AP GROUPING 
Reinforcement learning has been used for solving various 

optimization problems, and the traditional Q-learning, which 

can be assumed to be MDP model, considers quadruples: 
( , , ( , ), ( , ))1 1s a p s s r s st t t t t ta at t+ + . st  belongs to the 

environment state space; at  is the system action space; 

( , ) [0,1]1p s st tat
∈+  and ( , )1r s st tat +  respectively 

represent the state transition probability and the immediate 
reward of transferring the state from st to 1st+  by taking 
action at . The system does not need to know other priori 
information, and the algorithm can converge to the optimal 
strategy by learning to enhance the discount return value. The 
Q-value functions can be updated using the following 
equation:  
 

( , ) ( , ) [ max ( , ) ( , )]1Q s a Q s a l r Q s a Q s at t t t t t t ta
γ← + + −+  (9) 

 

where ( , )s at t  is state-action pair in TS t  in MDP. 1st+  is 
the state in TS 1t+ , rt  is the reward in TS t , l ( 0 1l< < ) is 
the learning factor which controls the convergence speed, 
and γ ( 0 1γ< < ) is the discount factor. We utilize the ε greedy 
policy, which enforces sporadic jumps to sub-optimal states 
for the exploration purposes. Whenever a decision is to be 
made, the one will be picked at random with the 
(1 )ε− probability, which is given to the action with the 
highest Q-value. Such value iteration algorithm converges to 
the optimal action-value function, *Q Qi →  as i → ∞  [28]. 
The convergence rate increases with the value of δ and the 
number of learning iterations NL , and decreases with the 
number of ,a s and γ  [29].  

 Energy cooperation in EH-UUDN can be regarded as a 
system of multi-agent cooperation. We consider one APG in 
which APs are not in isolation, but mutual influence and 
mutual restriction. The traditional Q-learning algorithm uses 
a table to store the Q-value. However, there is infinite 
Q-value need to be stored because the state space is 
continuous. In view of this problem, neural network 
architectures is adopted to store the Q-value function, which 
solves the problem of reinforcement learning in continuous 
state and discrete action.  

A neural network function approximator with weights ω  
is referred as a Q neural network (QNN). QNN can be trained 
by minimizing a sequence of loss functions that change at 
each iteration. In QNN, a three-layer BP neural network is 
utilized to improve the traditional Q-learning algorithm. The 
input parameters of the network are the state of APs within 
one APG, and the output is the Q-value for each possible 
action. The relationship between input and output parameters 
of the neural network is described as: 

 

                 ( , ; ) ( , , ..., )1 2 ( )Q s a f s s sQNN APGω =


 (10) 
 
The update of the value function is expressed as 
 

                             ( , ; ) ( , ; )Q s a Q s a eω ω= +  (11) 
 
The direct gradient descent method [30] is utilized to train 
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the parameters of the BP network, and the error is defined as  
 

                   max ( ', ; ) ( , ; )e r l Q s a Q s a
a

ω ω= + −  (12) 

 
The loss function is 

 

 
1 12 2( ) ( ( )) [ max ( ', ; ) ( , ; )]
2 2

E t e t r l Q s a Q s a
a

ω ω= = + −  (13) 

 
The network weight update rule is  

 
                             ( 1) ( )t tω ω ω+ = − ∆  (14) 
 

                   
( ) ( , ; )

( )
( ) ( )

E t Q s at tl le t
t t

ω
ω

ω ω
∂ ∂

∆ = − =
∂ ∂  (15) 

 

where 1 2( ) ( ( ))
2

E t e t= , 
( , ; )

( )
Q s at t

t
ω

ω
∂

∂  is gradient information, 

and l is the learning rate of network weights. 
In the proposed model, the state of AP in TS t  is 

[ , ( ), ( ), ( )]mods B E t B t H tt e= , which is formed by four 

components. modB e  represents three AP 

modes: [ , , ]on sleep off , and the corresponding value is 
[2,1, 0] ,which is shown in Table II.  
 

TABLE II: THREE MODES OF AP 

The value of ( )B ti  The value of modB e  

( )B t Bi sleep≥  2modB e =  

( )B B t Boff i sleep≤ <  1modB e =  

( )B t Bi off<  0modB e =  

 
TABLE III: THE ARRANGEMENT OF CHANNELS 

Algorithm 2: QNN algorithm 
Initialize action-value function Q with random weights 
Initialize [ , ( ), ( ), ( )]mods B E t B t H tt e=  

repeat 
With probability ε  select a random action at  

otherwise select max *( , ; )a Q s at a t ω=  

Execute action at  and observe reward rt  

Set 
                                          for terminal 1

max ( , '; )      for non-terminal  ' 1 1

r sj j
rj r Q s a sj a j jγ ω

+
=

+ + +





  

According to (12) and (13)  
Perform a gradient descent step on (14) and (15)  
Set 1s st t=+  

Until 1st+ is terminal state 

 

The joint action is ( ) ( ), ( )a t P t T ti i ij=< > , and the set of 

actions is ( ) ( ), ( ), ..., ( )1 2 ( )A t a t a t a tAPG=< >


, where 

( )APG  represents the AP number in one APG. The reward 
is designed to accomplish the leading of energy cooperation. 

The main purpose of selecting the appropriate energy 
allocation strategy is to increase the system throughput of 
EH-UUDN. Thus, the system reward function is related to 
the rate of this time slot, which can be defined as  

 

                            
( )

( , ) ( )
1

APG
r s a R tit t i

∑=
=



 (16) 

 
Energy cooperation through QNN is described in Table 

III. 
 

V. SIMULATION RESULTS 
In this section, the effectiveness of our proposed user 

centric QNN will be demonstrated. We consider a 1 *1Km Km  
square area in hot spot environment. A large amount of APs 
and users are modeled as independent homogeneous Poisson 
point process, and the channel state satisfies Rayleigh 
distribution, which is kept constant in the same TS . Each TS  
is 10ms . At any time, AP either charges energy to battery or 
discharges energy from battery. The data flow arrives to the 
data buffer in a stochastic and continuous way. The harvested 
and transferred energy at TS t can be utilized at TS  1t + . 
Set 5, 5, 2,max max maxB D E= = =  and the basic 
configuration of the system simulation parameters are shown 
in the following Table IV and Table V. 

 
TABLE IV: THE PARAMETERS OF AP GROUPING ALGORITHM USED IN 

SIMULATION 

Parameters Values 

The radius of the user centered circle r  20m  

The path-loss exponent e  4  

The bandwidth Wu  200kHz  

The learning rate of the load estimation ( )tϒ  0.9  
 

TABLE V: THE PARAMETERS OF ENERGY COOPERATION ALGORITHM USED 
IN SIMULATION 

Parameters Values 

The energy transfer efficiency χ  0.9  

The discount factor γ  0.9  

The learning rate of network weights l  0.005  

The basic power of AP 20mW  

APλ  2700 /users Km  

UEλ  2200 /users Km  

Battery capacity , ,maxB B Bsleep off  100 ,20 ,10kJ kJ kJ  

Maximum harvested energy maxE  30 /kJ TS  

Maximum amount of data maxD  1Mbit  

 
The network structure is a neural network of one hidden 

layer, and the input layer of the network is the state of AP 
[ , ( ), ( ), ( )]mods B E t B t H tt e= . The input layer has 5 neurons, 

and the hidden layer has 128 neurons, and the output layer 
has 10 neurons, which are corresponding to 10 discrete 
actions (transmitting power). 
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Fig. 3. Reward curve under different learning steps. 

 

 
Fig. 4. System average reward curve under different learning steps. 

 
The learning rate controls the loss size added to the 

parameters in each round of training. It is generally 
considered that the larger the learning rate is, the faster the 
algorithm is to reach the optimal value. However, the 
learning rate is too large to cause concussion near the optimal 
value, and the learning rate is too small to cause the low 
learning speed to reach the optimal value, which may not be 
convergent for a long time. The results are shown in Fig. 3, 
and the longitudinal axis is the reward for the corresponding 

learning step. In Fig. 4, 
1_ ( ) ( )

1

T
Average reward i r i

T i
= ∑

=
. 

 

 
Fig. 5. Average system throughput under different energy harvesting 

probability. 
 

When modB Be sleep= , AP cannot serve any UE and 

cannot send any data, so the system throughput is decreased 
as more and more APs turn to sleep mode. As shown in Fig.5, 
the two lines represent the average system throughput for 
different energy harvesting probability, and the average 

system throughput of 1
max3

B Bsleep =  is higher than that of 

1
max2

B Bsleep = . 

 
Fig. 6. The system EE versus the density of Aps. 

 

 
Fig. 7. The system EE versus the density of users. 

 
Fig. 6 and Fig. 7 show the EE performance of the proposed 

algorithm versus various APs’ density and Users’ density. As 
the density of AP increases, on one hand, the inter-group and 
intra-group interference will lead to a decline in system 
throughput of the overall network. On the other hand, the 
more circuit power of APs will be consumed which makes 
the EE performance decrease gradually. As a result, all the 
curves go down gradually in Fig. 6. The EE performance 
firstly go up to a peak then go down gradually with the 
increase density of users in Fig. 7. When the user density is 
too small, the proportion of AP circuit power is increased, 
which results in low energy efficiency. As the number of 
users increased, the energy efficiency reaches the maximum 
value. The larger density of users will bring more receiver 
circuit energy consumption, which may cause EE 
performance decrease. 

 

 
Fig. 8. The system EE of different algorithms versus the density of Aps. 

 
To evaluate the EE performance, the proposed algorithm is 

compared to two typical access algorithms [5]: 1) an 
opportunistic APs with cooperative resource (OAPCR); 2) an 
opportunistic APs with noncooperative resource (OAPNR). 
Fig. 8 and Fig. 9 show the EE performance of different 
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algorithms versus the various APs’ density and users’ density 
respectively. The OAPNR algorithm has the worst EE 
performance because it assigns the APs opportunistically and 
without cooperation for optimizing resource allocation, 
which results in serious interference and low EE. By 
optimizing resource allocation in a AP grouping and 
cooperative way, the proposed algorithm can achieve a better 
resource utilization and EE performance compared with 
other algorithms. 

 

 
Fig. 9. The system EE of different algorithms versus the density of users. 
 

VI. CONCLUSIONS 
In this paper, we propose a energy cooperation algorithm 

based on AP grouping and reinforcement learning in 
EH-UUDN. Under the proposed algorithm, we formulate the 
problem as MDP model. Moreover, organizing multiple APs 
into APG, AP grouping algorithm is proposed to meet 
user-centric design in UUDN. Then, a reinforcement learning 
approach based on Q-learning is utilized. The major 
challenge of reinforcement learning is continuous state and 
discrete action. To address this problem, we propose QNN 
which uses a three-layer BP neural network, and is trained by 
minimizing a sequence of loss functions. Performance 
evaluation through extensive simulations shows that the 
system energy efficiency is related to the density of APs and 
UEs, and the proposed algorithm can achieve better resource 
utilization and improve system energy efficiency. At last, 
conclusions and future research directions are presented, 
which includes: mobility management of users, energy 
cooperation between clusters, combination of renewable 
energy and smart grid and etc. 
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