
  

  
Abstract— In this paper, we propose a method to accurately 

estimate the position of the vehicle by millimeter wave radar 
(MWR). In recent years, many techniques of autonomous 
driving have been developed actively. In order to realize a safety 
autonomous driving system, MWR plays an important role for 
its inherent robustness against external circumstances. 
However, MWR has low spatial resolution. To achieve highly 
accurate estimation, we propose a model-based matching 
approach to the point cloud observed from MWR. Simulation 
experiments show that accurate estimation of the position of a 
moving vehicle can be obtained. 
 

Index Terms—Autonomous driving, object detection, 
Millimeter Wave Radar (MWR), point cloud, least-squares 
method.  
 

I. INTRODUCTION 
In recent years, many techniques of Advanced Driving 

Assistance System (ADAS) have been developed actively. 
Examples of these are Adaptive Cruise Control (ACC), 
Parking Aid, and so on. For these techniques, various types of 
sensors are used, which are camera, LiDAR (Light Detection 
and Ranging), millimeter wave radar (MWR), and so on. The 
mainstream of vehicle detection is based on image processing 
using a camera. Although the camera is easy to deploy, the 
image-based method provides low accuracy to measure the 
distance to the target vehicle and it is seriously affected by 
external factors such as light source and weather. LiDAR has 
been also used in recent years due to its high resolution. 
However, the detection performance for long distance 
measurement by LiDAR is insufficient, and it is susceptible 
to external factors in the same way as the camera. On the 
other hand, MWR can measure the distance to the target 
object with high accuracy, and it is robust to external factors. 
However, MWR possesses the disadvantage of low spatial 
resolution. Owing to that, it is difficult to accurately estimate 
the shape and position of the target object. For these reasons, 
the sensors mentioned above are often used in a combined 
form. Actually, MWR often assists the camera and LiDAR. 
However, in order to improve the overall sensing 
performance, it is necessary to improve the performance of 
each sensor. 

Radar is a sensor that measures the distance and angle to 
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the target object using the radio wave reflected from the 
target object. The reflection strength which represents the 
power of the radio wave reflected from the object can be 
obtained and utilized in radar systems. The point cloud is 
obtained from the radar points extracted by threshold 
processing. This is because the radar points reflected from the 
target object have high reflection strength. This feature is 
utilized for object detection. MWR which uses the millimeter 
wave radio can be, especially, used as a car-equipped radar 
for detecting obstacles. MWR is a small device but has 
detection ability of long-distance measurement. On the other 
hand, the spatial resolution of MWR is lower due to the 
wavelength. In fact, the number of radar points that can be 
utilized for object detection is extremely small, and thus it is 
very difficult to estimate the shape and position of the object. 
This is a different feature when compared to LiDAR. 
Therefore, signal processing to improve the low spatial 
resolution of MWR has been tried as front-end processing 
[1]-[3]. 

However, accurate estimation of the object position by 
improving only the spatial resolution of MWR may be 
difficult. This is because the point cloud obtained by MWR 
often includes outliers due to multipath and clutter 
phenomena. The point cloud obtained by LiDAR is sufficient 
with high resolution, and object recognition is often 
conducted by converting the point cloud data to depth map 
data [4]. The point cloud expressing the target object in 
LiDAR is of high density. Hence, it is possible to eliminate 
outliers in advance by pre-processing. On the other hand, the 
point cloud obtained by MWR is insufficient, and denoising 
is difficult. This is because it is difficult for MWR to 
distinguish the outliers. Therefore, a matching processing 
technique considering the outliers would be required. 

In this paper, we propose a method to accurately estimate 
the position of the vehicle even in the above conditions. We 
utilize a model which has reference points (denoted as 
evaluation point in this paper). These points are used to 
evaluate a distance between the model and point cloud. We 
accomplish robust estimation for the outliers by introducing a 
new projection function and by embedding constraint 
conditions. In simulation experiments, position estimation is 
set out in a situation where a single vehicle is the target object. 
The estimation error is evaluated and discussed.  

After this Introduction, Section 2 explains the model of the 
observation data of the vehicle, and Section 3 describes the 
related work for the object detection and point cloud fitting. 
Section 4 derives the proposed method and Section 5 shows 
simulation experiments. In Section 6, we conclude this paper. 
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II. VEHICLE DATA MODELING 
By radar, we can obtain three types of information; 

direction, distance, and reflection strength. The former two 
can be easily transformed into a 2-D coordinate. The 
reflection strength is affected by the material of the target 
object. It is easy to detect a metal object such as vehicles, 
while it is difficult to detect an object with less reflection, 
which is, for example, a pedestrian.  

In this paper, referring to [5], a vehicle is recognized as a 
2-D model with four corners and four wheel covers of the 
vehicle. The four corners and four wheel covers are 
considered as the reflection points of the radio wave. Fig. 1 
shows the vehicle model used in this paper. The size of this 
vehicle is 1.8 m in width and 4.9 m in height. The wheel 
covers are set to a smaller size by 1.0 m from the front and 
rear of the vehicle. As shown in Fig. 1, the vehicle model has 
totally eight reflection points, which are illustrated as circles.  

 

 
Fig. 1. Arrangement of the reflection point on the vehicle model. 

 
In MWR, the position of radar points is often scattered 

around the true one due to the existence of noise and due to 
the low spatial resolution of MWR. In this paper, we model 
the radar points as a spread that obeys the Gaussian 
distribution around the true reflection points. In addition, the 
point cloud obtained in real situation contains many outliers 
such as reflections from the ground, other obstacles, and so 
on. However, it is difficult for MWR to distinguish the target 
object from the outliers since the point cloud is poor. 
Therefore, it is not easy to remove the outliers by front-end 
processing. In simulation experiments to be followed, we 
assume that the outliers occur at random positions and cannot 
be removed by front-end processing.  

 

 
Fig. 2. An example of target vehicle and point cloud obtained by MWR. 
 
An example of simulation data is shown in Fig. 2. In Fig. 2, 

the centroid of the target vehicle is located on (𝑥,𝑦) =
(10, 10). The blue bounding box indicates the target vehicle 
position, the red points indicate the point cloud, and the green 
points indicate the outliers. As can be seen in Fig. 2, the radar 
points are distributed along the boundary of the target 
vehicle. 

 

III. RELATED WORK 
For LiDAR-based object detection, the detection process 

requires two steps; region proposal and classification [4]. In 
the region proposal step, multi-scale anchors are generated as 
candidates of the region occupied by the object. In the 
classification step, the type of the object is detected, and the 
detailed information such as size and orientation are 
estimated. Most of such state-of-the-art approaches utilize 
convolutional neural networks (CNN). In the method shown 
in [4], the point cloud is projected onto a depth map as input 
data. PointNet [6] utilizes the point cloud directly as the input, 
and VoxelNet [7] divides the point cloud into 3D voxels. 
However, for MWR-based object detection, it is invalid to 
utilize such methods because the point cloud obtained by 
MWR is of low density and with outliers. Therefore, it is 
necessary to set the model of the object and then match the 
model with the point cloud because a small number of points 
represent the shape of the object. 

For fitting between the point cloud and the model, a plane 
[8], [9] or a voxel [10] is designed as the model. These 
approaches are usually based on the principle of the 
least-squares method. However, the squared norm is affected 
by outliers, and a large estimation error occurs. When 
considering the model as the point cloud, ICP (Iterative 
Closest Point) [11], which is an algorithm for fitting two 
point-clouds, is often utilized. However, this algorithm leads 
a local optimal solution unless the two point-clouds are set to 
the appropriate initial position. Also, Generalized-ICP [12], 
which searches for the global solution, has been proposed. It 
would be difficult to match the model with the point cloud 
obtained by MWR due to the characteristics of ICP [13] that 
means those of weakness against ununiform samples and 
outliers. Therefore, it is not suitable to utilize ICP directly for 
MWR-based position estimation.  

 

IV. PROPOSED APPROACH 

A. Matching with the Template Model 
In MWR-based position estimation of the object, we 

should firstly design a template model to match the set of 
radar points reflected from the surface of the object. The 
template model is constructed from M evaluation points (M is 
a positive integer) for the simple calculation instead of a line 
object. The evaluation points are arranged so as to match to 
the reflection points on the vehicle model shown in Fig. 1. 

The objective function to minimize is defined by the sum 
of the distance between each evaluation point of the template 
model and each radar point. Letting 𝑻𝑖 = (𝑇𝑥

(𝑖),𝑇𝑦
(𝑖))  and 

𝑺𝑗 = (𝑆𝑥
(𝑗),𝑆𝑦

(𝑗)) be the i-th evaluation point and the j-th radar 
point, respectively. The objective function, 𝐸 , can be 
described as follows; 
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                                   E = ∑ ∑ dijN
j

M
i  (1) 

 
                                 dij = �Ti − Sj�2

2
 (2) 

 

B. Weighting for the Evaluation Point  
Next, in order to improve the matching accuracy between 

the point cloud and the template model, we utilize a weight 
for each evaluation point. The weight of the i-th evaluation 
point, 𝑤𝑖, is set so that the area where the radar points gather 
is largely weighted. Using the weight 𝑤𝑖 , the objective 
function E can be redefined as follows; 

 
                                 E = ∑ wi ∑ dijN

j
M
i  (3) 

 
The weight 𝑤𝑖  can be determined uniquely from the 

relative position between the radar device and the template 
model. The reflection is strong at the evaluation point close to 
the radar device, which indicates high reliability to represent 
the target object. On the other hand, the reflection is weak at 
the evaluation point far from the radar device. This means 
that weak reflection points may correspond to outliers. 
Therefore, 𝑤𝑖 can be defined as follows; 

 
                                       wi = cosθi (4) 
 

                                     θi = tan−1
Ty

(i)

Tx
(i) (5) 

 
where 𝜃𝑖 is the angle between the position of the radar device 
and the i-th evaluation point, which is limited to −π/2 ≦
𝜃𝑖 ≦ 𝜋/2. According to (4), 𝑤𝑖 becomes a larger value when 
the evaluation point is closer to the radar device. Also, due to 
the characteristics of the radar, it is impossible to observe the 
back of the object where the radar points disappear. 
Therefore, we set the value of 𝑤𝑖  to 0 in this case. Fig. 3 
shows an example of actual weights. In Fig. 3, the centroid of 
the vehicle is located on (𝑥,𝑦) = (−5, 10).  

 

 
Fig. 3. An example of the weights of the evaluation points. 

 

C. Data Formatting by Threshold 
Generally, the radar points reflected from the target object 

have high reflection strength. On the other hand, the radar 
points which have low reflection strength are likely outliers. 
That is, the radar points with low reflection strength may 
cause the error of object position estimation. Therefore, the 

radar points with lower reflection strength than a threshold 
value, 𝛽, are removed from the objective function. Therefore, 
the objective function E is further redefined as follows; 

 
                                 E = ∑ wi ∑ ϕjdijN

j
M
i  (6) 

 

                                ϕj = �1 �rj > β�
0 (otherwise)

 (7) 

 
where 𝑟𝑗 is the reflection strength of the j-th radar point.  

D. Suppression of the Influence of Outliers 
Outliers may cause the error of object position estimation 

because the distance to outliers tends to become long. In 
order to suppress the effect of the outliers, we propose the 
following projection; 

 
                                         d�ij = f�dij� (8) 
 
where 𝑓(∙)  is a monotonically increasing function, which 
should be designed so as to compress the large values which 
corresponds to outliers. In this paper, 𝑓(𝑥)  is defined as 
follows;  

            f(x) = �
x (x < α)

log(x − α + 1) + α (otherwise) (9) 

 
where 𝛼 is a positive constant. Fig. 4 shows the shape of 
𝑓(𝑥). As shown in Fig. 4, 𝑓(𝑥) plots a linear line for 𝑥 < α 
and a logarithmic curve for 𝑥 ≧ 𝛼. 

 

 
Fig. 4. Shape of the projection f(x). 

 

E. Constraint Conditions for Improving Tracking 
Accuracy 
The coordinate of the position estimated at the current 

time,Θ𝑡, can be expressed as follows; 
 

                       Θt  =  (1
M
∑ Tx

(i)M
i , 1

M
∑ Ty

(i))M
i  (10) 

 
When the object moves continuously, it is assumed that the 

position at the current time, Θ𝑡 , exists near the position 
estimated at the previous time, Θ𝑡−1. Then, the problem can 
be expressed by the following equation: 

 
                          minimize ∑ wi ∑ ϕjd�ijN

j
M
i  (11) 

 
                        subject to ‖Θt −Θt−1‖2 < K (12) 

 
In (12), K is a positive constant, which limits the search 

range. The above problem can be rewritten to the following 

Ve
rti

ca
l d

ist
an

ce
 fr

om
 ra

da
r [

m
]

-5.0 0

Horizontal distance from radar [m]

0.00
0.00

0.290.17
0.00

0.14

: Centroid of Template
: Evaluation Point

10.0

Radar Position

0.16

0.24

𝛼

𝛼

0 𝑥

𝑓(
𝑥) linear

logarithm

International Journal of Future Computer and Communication, Vol. 8, No. 3, September 2019

96



  

formula by use of Lagrange multiplier in inequality 
constraint: 

 
                  E = ∑ si ∑ ϕjd�ijN

j
M
i + λ‖Θt −Θt−1‖2 (13) 

 
where 𝜆 is a positive constant. In this paper, we obtain the 
value of Θ𝑡 by raster scanning of the template in the search 
area. In order to ensure matching accuracy, the scanning 
resolution should be set to a small value. From this point of 
view, we set the scanning resolution to 0.2 m. 

 

V. EXPERIMENTS 

A. Parameter Tuning 
In this section, we simulated a scene where one vehicle 

equipped with an MWR device (which is referred to as the 
ego vehicle) tracks a vehicle passing through in a right area of 
the ego vehicle. When we show the location of the ego 
vehicle at the origin (0, 0) in the x-y coordinate, the moving 
vehicle is found in the front right direction of the ego vehicle. 
The moving vehicle is assumed to be the target vehicle. The 
search area for position estimation is, in this case, restricted 
to 0 [𝑚] < 𝑥 < 20 [𝑚] , 5  [m] < 𝑦 < 25 [m] . For our 
simulation, we assume that the ego vehicle goes forward at a 
speed of 0.2 m per observation time. The target vehicle 
passes through at a faster speed than that the ego vehicle. 
Under the above conditions, simulation data for 100 
observation times are prepared and utilized for evaluating the 
performance of the proposed method. 

As the evaluation metric, the error between the centroid of 
the estimated position and the true position of the target 
vehicle is utilized. The evaluation value is calculated by 
averaging the estimation error, which is considered according 
to the following three groups; 
・Long distance   (20 [𝑚] < Θ���𝑡

(𝑦) < 25 [𝑚]) 
・Medium distance  (10 [𝑚] < Θ���𝑡

(𝑦) < 20 [𝑚]) 
・Short distance   (05 [𝑚] < Θ���𝑡

(𝑦) < 10 [𝑚]),  
where Θ���𝑡 = (Θ���𝑡

(𝑥),Θ���𝑡
(𝑦)) is the true position of the target 

vehicle. 
 

 
Fig. 5. Parameter tuning results with changing α. 

 
Fig. 5 shows the estimation error versus the constant value 

𝛼. Improvement in estimation accuracy can be confirmed as 
the value 𝛼 decreases. From the results in Fig. 5, 𝛼 = 1 is 
used in subsequent evaluation experiment. Fig. 6 shows the 
estimation error versus the constant value 𝜆. Improvement in 
estimation accuracy can be confirmed as the value 𝜆 

increases. From the results in Fig. 6, 𝜆 = 1.0  is used in 
subsequent evaluation experiment.  

 

 
Fig. 6. Parameter tuning results with changing λ. 

 

B. Evaluation Experiment 
We tried to additionally implement two methods to 

confirm the performance of the proposed method. The first 
one is the least-squares method to minimize (6), which is 
referred to as “LSM”. The second one is the LSM using the 
projection shown in (9), which is referred to as “Projection”. 
Now the proposed method, which minimizes (13), is referred 
to as “Proposed”. The experimental conditions and 
evaluation metric are the same as those in the parameter 
tuning case.  

 
TABLE I: ESTIMATION RESULTS FOR EACH METHOD  

Method Estimation error [m] 
Long distance Middle distance Short distance 

LSM 2.31 0.72 0.41 
Projection 1.10 0.33 0.27 
Proposed 0.40 0.25 0.23 

 

 
Fig. 7. Position estimation in long distance case (blue box: estimated position, 

green box: true position). 
 

 
Fig. 8. Position estimation in medium distance case (blue box: estimated 

position, green box: true position). 
 

The results are summarized in Table I. Experiments show 
that the proposed method achieves improvements compared 
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with “LSM” and “Projection”. Especially for the long 
distance case, where the radar points are insufficient and 
affected by outliers, the proposed method achieves large 
improvements compared with the two methods. Fig. 7-Fig. 9 
show states of actual estimation results by the proposed 
method in each group. 
 

 
Fig. 9. Position estimation in short distance case (blue box: estimated 

position, green box: true position). 
 

VI. CONCLUSION 
In this paper, considering the characteristics of MWR, we 

have derived a new objective function to accurately estimate 
the position of the vehicle. Simulation experiments have 
shown that accurate estimation of the position can be 
obtained. In future, we will aim at further estimation 
improvement by developing a method to estimate the size of 
the object.  
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