
  

  

Abstract—An improved spectrum sensing algorithm 

combining energy and eigenvalues is proposed, which employs 

the energy, maximum eigenvalue and minimum eigenvalue of 

the sample covariance matrix to construct test statistic. The 

proposed algorithm includes the MET, MME and EME 

algorithms as special cases, and it can be seen as a fusion of the 

test statistics of the MET and EME algorithms. In addition, the 

false alarm probability and threshold of the proposed method 

are derived using random matrix theory. The proposed 

algorithm is a more general algorithm. Simulation results show 

the effectiveness of the new algorithm. 

 
Index Terms—Cognitive radio, eigenvalue based detection,  

random  matrix  theory, spectrum  sensing. 

 

I. INTRODUCTION 

With the rapid expansion of the wireless broadband and the 

application of high data rates, the lack of spectrum resources 

will bring great challenges to future wireless communication 

networks. A limitation comes from the current fixed 

spectrum allocation strategy, which leads to the inefficient 

use of available frequency resources [1]-[4]. A dynamic 

spectrum sharing technology, namely cognitive radio (CR) 

technology, can be used to solve the problem of spectrum 

scarcity [5]. The basic concept of cognitive radio is spectrum 

reuse or spectrum sharing, which allows cognitive users 

(secondary users) to communicate through the spectrum 

licensed to the primary user. For this reason, it is necessary to 

detect the presence of the primary user, this operation is 

called as spectrum sensing.  

However, intricate real-world scenarios have brought great 

challenges to spectrum sensing, and also promoted the 

development of cognitive radio technology. CR technology 

has been widely concerned by the academic and industry, and 

a large amount of research focused on designing reliable, 

accurate, and efficient spectrum sensing algorithms [6]-[8].  

The most favorable sensing method is Energy Detection 

(ED) algorithm [9]-[11], which requires simple hardware 

implementation and low computational complexity. 

Moreover, ED does not require priori knowledge about the 

characteristics of the licensed user’s signal. ED method 
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achieves the optimal detection performance for i.i.d signals, 

while the detection performance is poor for correlated signals. 

To overcome this shortcoming, Zeng et al. proposed 

maximum eigenvalue detection (MED) method [12]. Since 

the maximum eigenvalue of the covariance matrix catches 

the correlations among the signal samples, the proposed 

method is better than the energy detection for correlated 

signals.  

ED and MED algorithms require known noise power as the 

premise for detection. However, in the actual system, the 

noise changes with time leading to the existence of 

signal-to-noise ratio (SNR) wall phenomenon and the 

increase of false alarm probability. Therefore, the totally 

blind detection algorithm came into being, which requires 

neither signal power information nor noise power 

information. Zeng and Liang use the ratio of the maximum 

eigenvalue to the minimum eigenvalue as test statistic (MME) 

as test statistic. It eliminates the need for the noise-power 

estimate. Simulations results show that MME improves 

detection probability for i.i.d signals and correlated signals 

under noise power uncertainty [13]. There are many spectrum 

sensing algorithms based on eigenvalues, such as the energy 

to the minimum eigenvalue (EME) detection, the ratio of the 

maximum eigenvalue to trace of the sample covariance 

matrix (MET). The MET method has better detection 

capacity compared with the MME and EME algorithms [14], 

[15]. 

In fact, the maximum and minimum eigenvalues have 

good applications in various signal detection problems. At 

low signal-to-noise ratios, these eigenvalue-based blind 

detection algorithms show good detection performance. The 

main reason is that the maximum and minimum eigenvalues 

of sample covariance matrix capture the correlation of the 

signal and noise characteristics well. An interesting question 

is whether there is an  intrinsic connection between these 

algorithms? Whether these algorithms can be combined into 

a more general algorithm to further improve detection 

performance and take these algorithms as special cases. 

Motivated by this, we propose a novel fusion spectrum 

sensing algorithm based on the energy and max-minimum 

eigenvalues of sample covariance matrix (ɑ-MaxE-En-MinE). 

The proposed algorithm takes the MET, MME and EME 

algorithms as its special cases, which has important 

theoretical significance and valid practical significance. 

The rest of the paper is structured as follows. Section II 

introduces the fundamental signal and system model.  Section 

III reviews some existing detection algorithms and proposes 

some new detection algorithms based on the maximum 

eigenvalue, minimum eigenvalue and energy. Some 

simulation experiments are performed to verify the 

effectiveness of the proposed algorithms in Section IV. In  
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Section V, some conclusions are given.  

 

II. SYSTEM MODEL 

This paper considers multi-antenna cognitive radio 

network, which is shown in Fig. 1. Assume that there are P 

primary users, and each cognitive user is equipped with M 

receiving antennas to sense the existence of the primary 

user. The received signal for the mth antenna of the 

cognitive user is denoted as ( )mr n . 

 
Fig. 1. Spectrum sensing scenario in  multi-antenna cognitive radio system. 

 

The spectrum sensing problem is actually a judgment on 

whether a certain licensed frequency band is available. 

Assuming that the cognitive user has M receiving antennas, 

without loss of generality, the sensing problem for the 

primary user can be transformed into the following binary 

hypothesis testing problem: 
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Among them, H0 indicates that the primary user signal 

does not exist, and H1 indicates that the primary user signal 

exists. ( ) 2~ (0, )m ww n CN  I is complex additive white noise 

and follows the 0-mean and 2
w -variance Gaussian 

distribution, js is the jth primary user signal and is 

independent of noise, mjh  is the channel response between 

the jth primary user and the mth receiving antenna of the 

cognitive user, pC is the multi-path channel order. 

The received data for the same sampling time can be 

expressed as the following vector form: 
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The received vector can be represented as 

( )( ) ( ) ,n n n= +r Hs w where H is the channel response matrix 

between the primary user and the cognitive user, and 
(C 1)

[ (0),..., ( )]
M p

j j j pC C
 +

= H h h . 

Considering N sampling sequence, the sample covariance 

matrix of the received signal can be expressed as 

( ) ( )
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N
=

= rR r r                        (3) 

III. FUSION DETECTION METHOD BASED ON ENERGY 

AND EIGENVALUES  

This section firstly reviews several classical spectrum 

sensing methods, and then proposes a new fusion 

detection method based on energy and eigenvalues. 

A. Related Work 

Some typical eigenvalue-based spectrum sensing 

methods include the MME, EME, MET, and 

mean-to-square extreme eigenvalue (MSEE) [16] 

detection methods.This section reviews these typical 

spectrum sensing detectors and the ED algorithm. 

1)  Energy detector 

Energy Detection is a popular choice for spectrum 

sensing, and the test statistic is given as follows 

( )
2
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=  r                            (4)                                                                     

where ||.|| represents the vector 2-norm. Intuitively, the ED 

algorithm makes a decision by comparing the energy of 

the received signal with threshold; if the primary signal 

exists, then the energy is increased. In fact, the statistic of 

the ED is an estimation of the received signal variance. 

The ED algorithm has low computational complexity and 

does not require prior knowledge of PU signal 

characteristics. ED is an optimal sensing approach for 

detecting i.i.d signal, while the detection performance is 

poor for correlated signals. In addition, ED suffers from 

severe performance degradation at low SNR. 

2)  Maximum-minimum eigenvalue (MME) detector  

Zeng. at al provides a two-step approach for the case 

where the rank of the signal subspace is 1 [11]. It firstly 

derives the General Likelihood Ratio Test (GLRT) 

detection scheme under the assumption that the noise 

variance is known, and then employs the minimum 

eigenvalue of the sample covariance matrix to replace the 

noise variance. The derived detector calculates the ratio of 

the maximum eigenvalue to the minimum eigenvalue of 

the sample covariance matrix, whose test statistic is given 

by  

max

min

MME

( ( ))

( ( ))

N
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N




= r

r

R

R
                               (5) 

MME is an incoherent spectrum detection method, 

which does not require the prior knowledge of PU and the 

estimation of noise power. The performance of MME is 

superior to ED for the case of noise uncertainty. However, 

the MME has high computational complexity than ED, as 

it requires to compute the covariance matrix and 

eigenvalues.  

3)  Energy-minimum eigenvalue (EME) detector 

The test statistic of Energy-Minimum Eigenvalue (EME) 

Detector is given as follows: 

a
EME

m x

n
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T

E
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= rR

                             (6)                                                                                  
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The difference between conventional energy detection 
and EME is as follows: energy detection compares the 
signal energy to the noise power, which needs to be 
estimated in advance, while EME compares the signal 
energy to the minimum eigenvalue of the sample 
covariance matrix, which is computed from the received 
signal only. Both MME and EME only use the received 
signal samples for detections, and no information on the 
transmitted signal and channel is needed. Such methods 
can be called blind detection methods. The major 
advantage of the proposed methods over energy detection 
is as follows: energy detection needs the noise power for 
decision while the MME and EME methods do not need. 

4) Maximum eigenvalue-trace (MET) detector 

According to Neyman-Pearson criterion, the likelihood 
ratio detection method is the optimal detection method 
when the signal and noise information is known. The 
general signal and noise related information is unknown. 
At this time, the GLRT method is a common method to 
solve this kind of problem. The main idea of the GLRT 
method is to first perform maximum likelihood estimation 
on unknown parameters, and then use the likelihood ratio 
detection method to detect. Literature [14] used this idea 
to estimate the noise power and channel under H0 and H1 
to obtain the following GLRT method, whose detection 
statistics are expressed as 

( )
m
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ax ( ( ))
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= r

r

R

R
                       (7)                                                                                

where Tr(Rr) is the trace of the sample covariance matrix 
Rr(N). Simulation experiments show that the MET 
method has better detection performance under Rayleigh 
fading channels than MME and other methods. 

5) Mean-to-square extreme eigenvalue (MSEE) detector 

The test statistic of Mean-to-Square Extreme 
Eigenvalue (MSEE) Detector is given as follows: 
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B. Fusion Detection Method Based on Energy and 

Eigenvalues 

The eigenvalues of the sample covariance matrix 
contains a wealth of information about the received signal, 
and is an indication of the received signal strength, which 
can be used to detect the primary user signal. Some 
spectrum sensing methods using the extreme eigenvalues 
focuses on the distinction between the maximum and 
minimum eigenvalues. In essence, the distinction can also 
be the discrimination between the functions of maximum 
and minimum eigenvalue. To this end, this paper 
considers the general combination of the max-minimum 
eigenvalues and energy, and proposes new spectrum 
sensing methods. For simplicity, it is called 

-MaxE-En-MinE algorithm. The detection statistic of the 
proposed method is expressed as follows: 
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where  is a positive number and it is less than or equal to 
1. It can be seen from (4) that the proposed method makes 
use of the energy and max-minimum eigenvalues of the 

sample covariance matrix. It can be seen from formula (4) 
that this is the weighted geometric average of two 
variables. The first variable is the ratio of the maximum 
eigenvalue to energy, which has never been considered 
before and is denoted as the MEE detection method. The 
second variable is the detection statistic of the EME 
algorithm. Since En=Tr(Rr)/M, the detection statistic of 
the proposed method can be further expressed as 
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This means that the new detection statistic is the 
weighted geometric average of the statistics of the MEE 
algorithm and EME algorithm. It can also be regarded as 
the weighted geometric average of statistics of the MET 
algorithm and EME algorithm. This is because the MEE 
algorithm and the MET algorithm are actually equivalent. 
In the following, we do not distinguish the MEE algorithm 

and the MET algorithm, and simply use the “MET” 

expression. 

According to (10), it can be known that the proposed 

method is a generalization of some existing eigenvalue 

based detection methods. When =1, 0.5 and 0, the 

proposed method is equivalent to the MET method, MME 

method and  EME method, respectively. 

The detailed steps of the -MaxE-En-MinE algorithm 

are summarized as follows: 

Step 1. Compute the sample covariance matrix of the 

received signal as given in (3). 

Step 2. Calculate the maximum eigenvalue and 

minimum eigenvalue of sample covariance matrix, and 

denote them as max and min , respectively. 

Step 3. Compute the test statistic of the proposed 

algorithm given in formula (10). 

Step 4.   Make a decision by comparing test statistic 

with threshold: if the test statistic is greater than the 

threshold, then the primary user presents; otherwise, the 

primary user is absent. 
 

IV. THRESHOLD SETTINGS 

The algorithm performance is closely related to not 

only test statistic but also decision threshold setting. In 

general, the decision threshold is determined by false 

alarm probability. To do this, the probability density 

distribution of test statistic is essential to obtain the false 

alarm probability. Under the framework of random matrix 

theory, the false alarm probability and thresholds of 

several well-known benchmark methods, such as MET 

and MME, are acquired using the Tracy-Widom (TW) 

distribution. In similar vein, the false alarm probability of 

the α-MaxE-En-MinE algorithm can be discussed. 

Under 0H , The matrix ( )NrR  can be viewed as a 

Wishart matrix according to random matrix theory. The 
distribution of maximum eigenvalue of Wishart matrix 
approximately follows the TW distribution, which is 
reviewed in Theorem 1 [17], [18]. 
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Theorem 1. For complex noise, let 2
( ) ( )

w

N
N N


= wA R , 

( ( ))max N A  is the maximum eigenvalue of matrix ( )NA . 

If 0 lim ( / ) 1
N

M N
→

  , then 
( ( ))max N

v

 −A
 converges to 

the Tracy-Widom distribution of order 2 with probability 

one, where 2( )N M = +  and 

1/31 1
( )( )v N M

N M
= + +  are the mean and variance 

of ( )NA , respectively. 

Theorem 1 describes the asymptotic distribution of the 

maximum eigenvalue of sample covariance matrix, which 

provides the foundation for theoretical analysis. Using the 

result, the detection probability, false alarm probability 

and threshold of the ɑ-MaxE-En-MinE algorithm are 

analyzed as follows. 
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Under 0H , the energy of the received signal 

satisfies
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=A R  , then the false alarm probability 

of the ɑ-MaxE-En-MinE algorithm is expressed as 
follows: 
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When the number of samples N is sufficiently large, 

max ( (N)) 



−A
follows the TW distribution of order 2. Then  

 

( )
( )

( )
( )

2 1
2 11

max

2 1
2 11

( (N))

    1

fa

TW

N
N ML

L
P P

N
N ML

L
F













 
 

 

 



−
−

−
−

 
  − −  −  

=  
 
 
 

 
  − −   

 −  
 
 
 

A

 
                                         (13) 
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2

1

3

( 1 ) ,

1 1
( 1 )( )

1

N ML

N ML
N ML





= − +

= − + +
−

. 

And then the threshold is obtained employing the 
relationship between false alarm probability and 
threshold. 
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where 1
TWF −  is the inverse function of TWF . It is noted that 

the threshold given in (14) includes the thresholds of MET 
and MME as special cases. 

The detection probability of the ɑ-MaxE-En-MinE 
algorithm is defined as  
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Under 1H , the covariance matrix of the received signal 

is approximately expressed as (N) (N)r s w +R HR H R . 

The eigenvalues i i( (N)) ( (N))r i w  = +R R , where 

, {1,..., M}i i  is the eigenvalues of matrix sHR H  and 

meets 1 2 ... M     .The energy of received data is 

( (N)) ( ) ( (N))H
y s w

N

Tr Tr Tr
E

ML ML ML
 = +

R HR H R
.  

The detection probability is given by (16). 

 

V. SIMULATIONS 

This section demonstrates the effectiveness of the 

proposed ɑ-MaxE-En-MinE algorithm through some 

simulation experiments. In each experiment, it is assumed 

that primary user independently transmits the BPSK signal, 

the cognitive user has 4 receiving antennas, and the 

number of sampling points is 1000. In addition, this paper 

considers the Rayleigh fading channel. The false alarm 

probability is set to 0.01, and it is realized through 10,000 

Monte Carlo simulation experiments under each SNR. To 

verify the effectiveness of the proposed method, the MET, 

MSEE and EME algorithms are taken into consideration. 

In the first experiment, it is assumed that there is only 

one primary user. Fig. 2 shows the detection probability of 

the α-MaxE-En-MinE algorithm with different α, and the 

above mentioned algorithms for different SNRs. Here, α 

ranges from 0.1 to 1 with an interval of 0.1. As shown in 

the enlarged figure of Fig. 1, the detection performance of 

the α-MaxE-En-MinE algorithm is increased with the 

increase of α. It is worth pointing out that the 

α-MaxE-En-MinE algorithm achieves the optimal 

performance  for α=1. When α is equal to 1, the 

α-MaxE-En-MinE algorithm becomes the MET algorithm. 

The simulation result is consistent with the literature [19], 

i.e., the MET algorithm has the optimal detection 

performance when there is only one primary user. What's 
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more, the fusion method achieves performance 

improvement over the MSEE and EME algorithms for 

α<1. 

 

( )

2 1
11

max min

2 1
1 1

2
max 12

1

2

( ) ( (N))
( )

( ) ( (N))
  ( (N))

( ) ( (N))

    1

H
s w

d y

H
s w

M w

w

H
s w

w

TW

Tr Tr
P P

ML ML

Tr TrN
P

ML ML

Tr TrN

ML M
F









 



  

    





−
−

−
−

 
  

=  +   
  

 

  
   

  + + −    
   

  

+

= −

HR H R
R

HR H R
A

HR H R
( )

2 1
1

2
12M w

w

N

L




   




−
− 

  
+ − −  

  
 
 
 
 

(16) 

 

In the second experiment, we assume that there are 3 

primary users. Fig. 3 gives the comparison results of the 

proposed algorithm and other algorithms based on 

eigenvalues. As observed from Fig. 3, we can obtain that 

the detection performance of the α-MaxE-En-MinE 

algorithm is decreased with the increase of α. The 

α-MaxE-En-MinE algorithm is equivalent to the MET, 

and MME algorithms for α=1, and α=0.5, respectively. 

The results indicate that the fusion method is superior to 

the individual algorithm. 

At the end, we consider the influence of the number of 

samples on the detection performance of the proposed 

method. Fig. 4 plots the detection probability of the 

α-MaxE-En-MinE algorithm versus SNR under the 

condition that N=1000, 2000 and 10000. Simulation 

results show that the detection performance of the 

α-MaxE-En-MinE algorithm is improved with the number 

of samples and is superior to the MME, MSEE and MET 

algorithms. 
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Fig. 2. Probability of detection versus SNRs for one primary user. 
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Fig. 3. Probability of detection versus SNRs for three primary users. 
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Fig. 4. Probability of detection versus SNRs for different samples. 

 

VI. CONCLUSIONS 

In order to better realize spectrum reuse, a new 

spectrum sensing algorithm based on energy and 

max-minimum eigenvalues is proposed in this paper. The 

proposed α-MaxE-En-MinE algorithm is a generalized 

fusion form of MET and EME algorithms, which 

maintains the advantages of the MET and EME algorithms. 

Simulation experiments show that the α-MaxE-En-MinE 

algorithm has better detection performance than the MET, 

MME, EME and MSEE algorithms for multiple primary 

users. Based on the fusion ideas in this paper, many other 

fusion algorithms can be considered, which has a positive 

significance for the research on spectrum sensing 

algorithms. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

H. Li, W. Zhao, and M. Jin conducted conceptualization, 

methodology, software, validation, experimental data 

collection, and writing-original draft preparation; S.Yoo 

conducted writing-review, validation and funding 

acquisition. 

REFERENCES 

[1] T. Xu, M. Zhang, H. Hu et al., "Sliced spectrum sensing — A channel 

condition aware sensing technique for cognitive radio networks," IEEE 
Trans. Veh. Technol., vol. 67, no. 11, pp. 10815-10829, 2018. 

[2] M. Shbat, F. C. Ordaz-salazar, and J. S. González-salas, "Spectrum 

sensing challenges of IOT nodes designed under 5G network 
standards," in Proc. 2018 15th International Conference on Electrical 

Engineering, Computing Science and Automatic Control (CCE), IEEE, 

2018, pp. 1-6. 
[3] W. Ejaz and M. Ibnkahla, "Multiband spectrum sensing and resource 

allocation for IoT in cognitive 5G networks," IEEE Internet of Things 

Journal, vol. 5, no. 1, pp. 150-163, 2018. 
[4] M. Katz, M. Matinmikko-blue, and M. Latva-aho, "6 genesis flagship 

program: Building the bridges towards 6G-enabled wireless smart 

society and ecosystem," in Proc. 2018 IEEE 10th Latin-American 
Conference on Communications (LATINCOM). IEEE, 2018, pp. 1-9. 

[5] J. Mitola and G. Q. Maguire, "Cognitive radio: making software radios 

more personal," IEEE Personal Communications, vol. 6, no. 4, pp. 
13-18, 1999. 

[6] A. Ali and W. Hamouda, "Advances on spectrum sensing for cognitive 

radio networks: Theory and applications," IEEE Communications 
Surveys and Tutorials, vol. 19, no. 2, pp. 1277-1304, 2017. 

[7] F. Awin, E. Abdel-raheem, and K. Tepe, "Blind spectrum sensing 

approaches for interweaved cognitive radio system: A tutorial and 

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

31



  

short course," IEEE Commun. Surveys and Tutorials, vol. 21, no. 1, 

2019, pp. 238-259. 
[8] P. Yu, B. Li, and C. Zhao, "Asynchronous perception algorithm based 

on energy detection," Journal on Commun., vol. 38, no. 3, pp. 165-173, 

2017. 
[9] J. Yao, M. Jin, Q. Guo, Y. Li, and J. Xi, "Effective energy detection for 

IoT systems against noise uncertainty at low SNR," IEEE Internet of 

Things Journal, vol. 6, no. 4, pp. 6165-6176, Aug. 2019. 
[10] D. Capriglione, G. Cerro, L. Ferrigno, and G. Miele, "Effects of real 

instrument on performance of an energy detection-based spectrum 

sensing method," IEEE Transactions on Instrumentation and 
Measurement, vol. 68, no. 5, pp. 1302-1312, May 2019. 

[11] S. Dikmese, P. C. Sofotasios, M. Renfors et al., “Subband energy based 

reduced complexity spectrum sensing under noise uncertainty and 
frequency-selective spectral characteristics,” IEEE Transactions on 

Signal Processing, vol. 64, no. 1, pp. 131-145, 2016.  

[12] Y. Zeng, C. L. Koh, Y.-C. Liang, “Maximum eigenvalue detection: 
Theory and application,” in Proc. IEEE Int. Conf. Commun., May. 

2008, pp. 4160-4164. 

[13] Y. Zeng and Y.-C. Liang, “Eigenvalue-based spectrum sensing 
algorithms for cognitive radio,” IEEE Trans. Commun., vol. 57, no. 6, 

pp. 1784-1793, Jun. 2009. 

[14] P. Wang, J. Fang, N. Han, and H. Li, “Multiantenna-assisted spectrum 

sensing for cognitive radio,” IEEE Trans. Veh. Technol., vol. 59, no. 4, 

pp. 1791-1800, May 2010. 

[15] N. Pillay, H. Xu, “Blind eigenvalue-based spectrum sensing for 
cognitive radio networks,” IET Commun., vol. 6, no. 11, pp. 1388-1396, 

Jan. 2012. 

[16] K. Bouallegue, I. Dayoub, M. Gharbi et al., “Blind spectrum sensing 
using extreme eigenvalues for cognitive radio networks,” IEEE 

Commun. Lett., vol. 22, no. 7, pp. 1386-1389, Jul. 2018. 

[17] C. A. Tracy and H. Widom, “On orthogonal and symplectic matrix 

ensembles,” Commun. Math. Phys., vol. 177, no. 3, pp. 727-754, 

1996. 
[18] I. M. Johnstone, “On the distribution of the largest eigenvalue in 

principal components analysis,” Ann. Stat., vol. 29, no. 2, pp. 295-327, 

Apr. 2001. 
[19] P. Bianchi, M. Debbah, M. Maida, and J. Najim, "Performance of 

statistical tests for single-source detection using random matrix 

theory," IEEE Trans. Inform. Theory, vol. 57, no. 4, 2011, pp. 
2400-2419. 

 

Copyright © 2020 by the authors. This is an open access article distributed 
under the Creative Commons Attribution License which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original 

work is properly cited (CC BY 4.0). 
 

He Li received the B.S. degree in electronic 

information science and technology from Peking 
University in 2006, the M.S. degrees in 

communication and information engineering from 

Aerospace Engineering University, Beijing, China, in 
2009. He is currently working toward the Ph.D. 

degree in information and communication 

engineering from Dalian University of Technology, 
Dalian, China. 

His current research interests include signal 

processing and spectrum sensing in cognitive radio. 

 
Wenjing Zhao was born in Liaoning, China, in 

1990. She received the B.S. degree in 

mathematics and applied mathematics from 
Liaoning Normal University in 2012, the M.S. 

degree in fundamental mathematics from 

Northeast Normal University, Changchun, China, 
in 2015. She is currently working toward the 

Ph.D. degree in information and communication 

engineering from Dalian University of Technology, Dalian, China. 
Her current research interests include information geometry, 

statistical signal processing and radar target detection. 

 
 

Minglu Jin received the B.S degree from the 

University of Science and Technology of China, 

Hefei, China, in 1982, the M.S. and Ph.D. 
degrees from Beijing University of Aeronautics 

and Astronautics, Beijing, China, in 1984 and 

1995, respectively. 
He was a visiting scholar in the Arimoto 

Laboratory, Osaka University, Osaka, Japan, 

from 1987 to 1988. He was a research fellow in 

Radio and Broadcasting Research Laboratory, Electronics 

Telecommunications Research Institute, Daejeon, South Korea, from 

2001 to 2004. He is currently a professor at Dalian University of 
Technology, Dalian, China. 

His research interests include wireless communication, wireless 

sensor networks, and signal processing for wireless communication 
system. 

 
  

Sang-Jo Yoo received the B.S. degree in 
electronic communication engineering from 

Hanyang University, Seoul, South Korea, in 1988, 

the M.S. and Ph.D. degrees in electrical 
engineering from the Korea Advanced Institute of 

Science and Technology, in 1990 and 2000, 

respectively.  
From 1990 to 2001, he was a member of 

technical staff with the Korea Telecom Research 
and Development Group, where he has been 

involved in communication protocol conformance testing and network 

design fields. From 1994 to 1995 and from 2007 to 2008, he was a guest 

researcher with the National Institute Standards and Technology, USA. 

Since 2001, he has been with Inha University, where he is currently a 

professor with the Information and Communication Engineering 
Department. 

His current research interests include cognitive radio network 

protocols, adhoc wireless network MAC and routing protocol design, 
wireless network QoS, and wireless sensor networks. 

 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

32

https://creativecommons.org/licenses/by/4.0/



