

Abstract—Geo-spatial data becomes more and more large

amount of data on the Web. On the other hand, managing

massive spatial data is one of challenges for supporting spatial

queries and high performance computational is also needed to

support spatial queries. Thus there is needed to solve this

criteria is to create a better spatial indexing method. The

proposed method is to create Grid-based R-tree index structure

for k nearest neighbour query and range query. R-tree is

constructed with Minimum Bounding Rectangle (MBR) that

contains a group of objects. The proposed system is combined

R-tree with grid index that is reduced overlapping and covering

area. The proposed system is to support spatial queries

efficiently and also supports speed up computational

performance.

Index Terms—K nearest neighbor search, R-tree, grid-index,

LBS.

I. INTRODUCTION

The increasing of inter-network technologies and Internet

of Things (IoTs) devices has become commonly useful for

consumers on their mobile smart aware devices. Thus the

quality of spatial data is needed to support on their real-time

location via location-based services (LBS). Google Maps

Services and Social networking services (SNS), such as

Twitter and Facebook are provided online users to reveal

their location during emergencies, retrieve information about

nearby restaurants and hotel, and acquire local traffic. The

current growth of LBS services, companies is boosting their

efforts to automatically locate consumers for advertising and

marketing purposes. LBS software services are also

considered for mobile applications to represent a new

business sector and E-commerce. Meanwhile, retrieval of

k-Nearest Neighbour (k-NN) efficiently and quickly requires

an informative and effective index structure that can reduce

the search space. Spatial index is used by spatial databases to

optimize spatial queries.

Spatial databases are fully-fledged databases that, in

addition, enable the storage, retrieval, manipulation,

querying, and analysis of geometries like points, lines, and

retrieval, manipulation, querying, and analysis of geometries

like points, lines, and regions representing, for example, the

geometries of cities, roads, and states respectively.

In order to handle spatial data efficiently, database

management system needs an index mechanism that will

output the data quickly according to their current location.

Manuscript received June 25, 2019; revised October 12, 2019.

Aung Zaw Myint is with Faculty of Computing, University of Computer

Studies, Yangon (UCSY), Myanmar (e-mail:

aungzawmyint@ucsy.edu.mm).

Khin Mo Mo Tun is with the Faculty of Computing, University of

Information Technology, Myanmar (e-mail: khinmomotun@uit.edu.mm).

There are many index structures such as K-D-B tree works

only in points data, B- tree, R-tree, Hilbert-Curve tree,

BSP-tree and Quard-tree. Most spatial database application

uses R-tree indexing method because it is the most widely

accessed method [1].

This study proposes a new algorithm to speed up the

performance of k-Nearest Neighbour (k-NN) retrieval on

spatial database. The proposed method named as R-tree

based grid index is a hybrid index structure of R-tree and grid

indexing technique [2].

Grid index is used for locating objects. As grid index is

easy in implementations such as updating and creating index,

it is simple and efficient way of spatial indexing. The grid

index extracts only locations from nearest indices and sends

theses indices to R-tree. R-tree is used to retrieve nearest

objects [3].

Additionally, the remainder of this paper is organized as

follows. In Section II, we describe related works of this paper.

In Section III, we describe background theory. In Section IV,

we discuss the overview of proposed system. In Section V,

we explain computing grid index. In Section VI, we describe

construction of R-tree. In Section VII and VIII, we discuss

our expected experimental and then conclude the paper.

II. RELATED WORKS

Processing k-Nearest Neighbour (KNN) query based on

location has been well studied in spatial database. R-tree

method was proposed by Guttman in 1984 in order to handle

spatial data efficiently, as required in computer aided design

and geo-data applications and to extract the objects by current

location [4], [5]. Zhang et al. proposed a grid cell based

continuous k-NN query processing method (CkNN)

[6].Inverted file-R* tree and R* tree – inverted file are

geo-textual indices that loosely combine the R* tree and

inverted file [7]. Hariharan, B. Hore, C. Li,S. Mehorotra [8]

proposed the KR*-tree structure that captures the join

distribution of keywords in space and significantly improves

performance. The query performance of grid index is robust

while updating positions of the objects [9]. The proposed

index used Distributed grid index from server transmission

and clients examine the received index with the unique ID

number to each grid-cell [10]. Z. Li,K.C. K. Lee, B.

Zheng,W.C. Lee,D.LLee,X [2] proposed IR-tree. This paper

proposed to support efficient geographic document and

IR-tree enables the pruning of textually and spatially

irrelevant subsets.

As to k-NN query algorithm [3], its system has studied

well in traditional databases. The idea of this system is to

establish a static R-tree-like structure which is developed

from Rtree. It cannot handle continuous queries and update

Grid-Based Spatial Index Method for Location-Based

Nearest Neighbour Search

Aung Zaw Myint and Khin Mo Mo Tun

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

40doi: 10.18178/ijfcc.2020.9.2.563

mailto:aungzawmyint@ucsy.edu.mm

queries. DJ Oneil et al. X. Cao, G. Cong, Christian S.

Jesen,Jun J. Ng,Beng C. Ooi, N.T.Phan,D. [7] proposed

Spatial Web Object Retrieval System(SWORS) that is

capable of efficiently retrieving spatial web objects that

satisfy spatial keyword queries. This system use IR tree and

inverted file for index. SWORS supports location-aware

top-k text retrieval (LkT) query and the spatial keyword

group (SKG) query that retrieves a group of objects that

cover the query keywords.

III. BACKGROUND THEORY

The rapidly expanding technology of mobile

communication will give mobile users capability of accessing

information from anywhere and anytime. It is also a

distributed system with a network to communicate between

different machines. Wireless communication is needed to

enable mobility of communicating devices. In recent years,

Location-Based Service (LBS) is growing rapidly among

mobile users. As the mobility is the most distinguishing

feature of the mobile computing environment, location

becomes an important piece of information for LBS.

Therefore, spatial database for spatial locations has become

an important area of people’s interest and research. A

fundamental issue in this area is how to store and operate

spatial data efficiently. Quickly executing

k-Nearest-Neighbour (k-NN) and range queries in spatial

database applications requires an informative and efficient

index structure that can effectively reduce the search space.

A. R-tree Index Structure

R-trees index method was presented by Guttman [1].

R-tree is an index tree-structure that uses multi-dimensional

indexes. R-tree derived from B-tree. An R-tree is a

depth-balanced tree in which each node corresponds to a disk

page (i.e., the number of entries in each node is limited).

R-trees are based on Bounding Box. Objects are entirely

contained inside the bounding box. The actual objects are

recorded in the leaves point that are enclosed minimum

bounding rectangles (MBRs). This is also the reason for the

benefits R-trees have in the matter of dynamic indexing. But

the bounding boxes used in R-tree nodes can overlap.

The following is the description of R-Tree:

Let M be the maximum number of entries that will fit in

one node and let m<=M/2 be a parameter specifying the

minimum number of entries in a node. An R-tree satisfies the

follow properties.

1) Every leaf node contains between m and M index

records unless it is the root.

2) For each index record (I, tuple-identifier) in a leaf node,

I is the smallest rectangle that spatially contains the

n-dimensional data object represented by the indicated

tuple.

3) Every non-leaf node has between m and M children,

unless it is the root.

4) For each entry (I, child-pointer) in a non-leaf node, I is

the smallest rectangle that spatially contains the

rectangles in the child node.

5) The root nodes have at least two children unless it is a

leaf.

6) All leaves appear on the same level.

The following figure is to illustrate this situation for a

simple two-dimensional structure. Fig. 1 shows R-tree

structure.

Fig, 1. R-tree structure.

B. Insert Algorithm in R-tree

Insert a new index entry E into R-Tree T.

Insert (E, t)

1. L  ChooseLeaf (E, t) > select a leaf node L where

to place E

2. If L need not split

3. then install E

4. else SplitNode(L)

5. AdjustTree(L)

Choose Leaf(E, t)

1. Nt

2. while N is not a leaf

3. do choose the entry F in N whose rectangle FI

needs least enlargement to include EI

4. NFP

5. return N

AdjustTree(L)

1. NL

2. if L was split previously

3. NNresulting second node

4. While N is not the root

5. do Pparent(N)

6. Enentry in P which points to N

7. Adjust EnI so that it tightly encloses all entry

rectangles in N

8. if N has a partner NN which results from an

earlier split.

9. then create Enn so that EnnP point s to NN

and EnnI enclose all rectangles in NN.

10. if there is room in P

11. then add Enn to P

12. else splitNode(P) to produce P and

PP

13. NP

14. if there exists PP

15. then NN PP

16. Return

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

41

C. Search Algorithm in R-tree

Search algorithm accomplishes the following task, given

an R-Tree whose root node is T, find all index records whose

rectangles overlap a search rectangle S. An entry in a node as

E(EI, EP), where EI represents the smallest rectangle

bounding the sub-tree or the spatial object, EP is the pointer

to the sub-tree or the spatial object.

SearchSubTree(t, s)

1. If t is not a leaf

2. then for each entry E in t do

3. if EI overlaps S

4. then SearchSubTree(EP, s)

5. else SearchLeaf(T, s)

SearchLeaf(t, s)

1. for each entry E in t

2. do if EI overlaps s

3. then output E

We can apply the searching of an R-tree to find objects that

overlap a search object, say o, by the following steps.

SearchObj(t, o)

1. sbounding box of the search object o

2. SearchSubTree(t, s)

and revise the above SearchLeaf(t, s) as follows

SearchLeaf(t,s)

1. for each entry E in t

2. do if EI = s

3. then if EP = o

4. then output E

D. Delete Algorithm in R-tree

Remove an index record E from an R-Tree.

Delete(E, t)

1. L  FindLeaf(E, t)

2. If L is null

3. Then return

4. Remove E from L

5. CondenseTree(L)

6. If the root node has only one child.

7. then make the child the new root.

FindLeaf(E, t)

1. if t is not a leaf

2. then for each entry F in t

3. do if FI overlaps EI

4. then FindLeaf(E, FP)

5. else for each entry F in T

6. do if FI = EI & FP=EP

7. then return T

CondenseTree(L)

1. N  L

2. Q  empty

3. while N is not the root

4. do P  parent(N)

5. En  the entry of N is P

6. if N had fewer than m entries

7. then delete En from P

8. add N to set Q

9. else adjust EnI to tightly contain all entries in

N

10. NP

11. Reinsert all entries of nodes in set Q according to

their level.

E. Grid Index Structure

Grid is a pre-defined partitioning index in which the region

is partitioned into rectangular cells because it indicates the

pre-defined spatial region. Grid covers a part of the space that

object position is inside the boundaries of a grid cell and this

object belongs to this cell. Šidlauskaset al [9] proposed the

grid index which is one of the principal framework index

structures for moving objects database. The performance of

grid index commonly uses in multi-dimensional queries. The

grid index file can be stored entirely in memory. The storage

structure of a grid index file stores the size parameters m and

n that is block pointer of the grid. Then index files stores the

buckets of the grid. Grid is a 2-d array that every cell in the

array matches to a square cell with a length of grid cell size.

Every grid cell in the array has a link to a list of buckets

which contains the data object [9]. Each bucket has bucket

size bs and metadata fields where metadata contains the next

bucket, the number of entries and pointer to the next bucket in

Fig. 2.

Fig. 2. Grid index structure.

IV. PROPOSED SYSTEM

The proposed system is explained in detail. This system

offers k nearest neighbour results to the user based on their

current location quickly by using R-tree based grid indexing

technique.

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

42

Fig. 3. System overview.

Fig. 4. Flow chart of proposed system.

First of all, locations of objects (latitude and longitude

values) can be acquired via GPS in user device. The objects

are located in two dimensional grid cells in Figure 3. Then, it

identifies coordinates of the top left corner and right bottom

corner within specified area. We collect clinics, mini-marts,

restaurants, shops, and stores within above coordinates. Then

index for each collected location and current location are

computed. Thus nearest indices around index of current

location can be acquired. The grid index extracts only

locations from nearest indices and sends these indices to

R-tree in Fig. 4. Therefore, the usage of large memory space

in R-tree can be reduced. In R-tree, nearest indices that are

sent by grid index are constructed as a tree. R-tree is

composed of root node, intermediate node and leaf node.

R-tree sort active branch list (ABL) by ordering MINDIST.

ABL is a list that calculates the distance of objects.

V. COMPUTING GRID INDEX

The grid index is composed by grid cells. Each cell

represents a region of space generated by partitioning the

domain using a uniform grid, which can then be assigned

unique identifiers and used for spatial indexing purposes. It

uses coordinates of objects and sorts them into grids, where

grids have their own identifier index for faster querying. It is

simple and efficient way of spatial indexing. A grid index file

is organized into a two dimensional structure that is shown in

Fig. 5. The geographically related data (i.e.: points that are

close to each other) are stored in the same data block. The

grid index cannot represent objects, it can only present points.

In fact, the only kind of index that can handle where am I

queries: is given by a location (i.e., coordinate), and then find

the objects that contains the location. Therefore, performance

of grid index for range queries is to find objects that are

located within a certain range and such performance of grid

index for nearest neighbor queries is to find the nearest

neighbor of a data point.

Fig. 5. Grid index algorithm.

VI. CONSTRUCTION R-TREE

R-tree can be used (nearest neighbour) search for some

places. In R-tree, nearest indices that are sent by grid index

are constructed as a tree. R-tree is composed of root node,

intermediate node and leaf node. The processing step of the

R-tree construction for nearest neighbour search is shown in

Fig. 6.

Fig. 6. Nearest neighbor search on R-tree.

In this algorithm, p is query point and points in a node are

objects. MBR means Minimum Bounding Rectangle of each

leaf node. The two ordering metrics in R-tree are MinDist and

MinDist. MinDist is the distance of object O from query point

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

43

P. MinMaxDist is the minimum of the maximum possible

distances to a face or vertex of the MBR containing O.

MinDist and MinMaxDist offer a lower and an upper bound

on the actual distance of object O from the query point P

respectively.

There are two pruning strategies. They are downward

pruning and upward pruning. In downward pruning, it allows

pruning an entry from Active Branch List (ABL). If

MINDIST of MBR [i] (length of ABL) is greater than

MINMAXDIST, discard MBR[i] and all other nodes with

greater MINDIST from ABL. In upward pruning, discard

MBR[i] and all other nodes with greater MINDIST from

ABL if MINDIST of MBR[i] is greater than current best

distance.

The distance is calculated by using Haversine formula.

This formula is used as follows.

Let lon1, lat1 be longitude and latitude of current location

and lon2, lat2 be longitude and latitude of next location

respectively.

dlon = lon2-lon1

dlat = lat2-lat1

a = (sin (dlat/2))^2 + cos(lat1)× cos(lat2)×(sin (dlon/2)) ^2

c = 2× atan2 (sqrt (a), sqrt(1-a))

 d =R×c

where, a=the square of half of the straight-line distance

between the two points

 c=the great circle distance in radians

 d=the distance between the two points

 R=radius of the earth (R=6371.01km)

Although Euclidean distance is suitable for most spatial

datasets, computing the distance between two points on earth

based on longitude and latitude is actually not very precise.

Thus, Haversine formula is suitable in calculating distance

for spatial object. After calculating distance, R-tree keeps the

sorted buffer of at most nearest neighbour.

VII. EXPERIMENTAL RESULT

The performance evaluations of the proposed system on

processing time, response time are covered. Moreover, the

comparisons on evaluation results for the proposed indexing

scheme, no indexing scheme, and traditional R-tree indexing

scheme. In order to implement an efficient k-NN search

application, need a structured framework. First of all,

locations of objects (latitude and longitude values) can be

acquired via GPS in user device. The objects are located in

two dimensional grid cells. Then, it identifies coordinates of

the top left corner and right bottom corner within specified

area. We collect restaurants, ATM machines, hotels,

hospitals, gift shops, cinemas within above coordinates. Then

index for each collected location and current location are

computed. Thus nearest indices around index of current

location can be acquired. The grid index extracts only

locations from nearest indices and sends these indices to

R-tree. Therefore, the usage of large memory space in R-tree

can be reduced.

In R-tree, nearest indices that are sent by grid index are

constructed as a tree. R-tree is composed of root node,

intermediate node and leaf node. R-tree sort active branch list

(ABL) by ordering MINDIST. ABL is a list that calculates

the distance of objects.

The system evaluated on client-server model. In client side,

it is user level side for mobile devices while evaluating the

system. It is necessary to create API key for Google map.

Google map does not work in mobile client without creating

API key.

Therefore, the user has to register in the Google APIs

Console that user wants to use Google Maps for Android.

After creating API key, Google maps API key is added inside

the application element. When the required permission

access, the user can see map in mobile client. If the user

wants to see related information of nearest objects, API key

of Google places must be created. Google Places API is one

among the many APIs provided by Google and this is to get

geographic information about places. By using Global

Positioning System, this component may be accessed via

GPS receiver to get the current location of the Smartphone

devices. Android provides access to the above components to

facilitate the implementation of LBS services

In server side, locations of objects are divided into

dimensional grid cell. After computing index of each grid

cell, send only indices nearest to the current location to R-tree.

These indices are constructed into tree structure. After

performing the processing steps in R-tree, the nearest

neighbour will be retrieved. The server sends these nearest

results to the client.

In the evaluation, the proposed indexing scheme can

reduce the processing time rather than traditional R-tree

method that is shown in Table I.

Moreover, k-nearest neighbour results can be given back

quickly to mobile user by using the proposed indexing

scheme in Fig. 7.

TABLE I: EXCEPTED RESULTS FOR PROPOSED SYSTEM

Service Types R-tree Index Proposed Index

Restaurants 40 15

ATM Machines 30 12

Hospitals 55 20

Hotels 70 40

Cinemas 68 43

Gift Shops 77 34

Fig. 7. Processing time of different indexing schemes.

VIII. CONCLUSION

Nearest neighbor search such as k-nearest neighbor query

and range query based on user’s current location is very

important to get useful geo-information efficiently. A

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

44

k-nearest neighbour query retrieves k objects in a given

objects set which are closet to the query point q. Processing

k-nearest neighbour query efficiently requires spatial

indexing methods. In this paper, we proposed grid based

R-tree indexing method system. The system can be used

effectively the retrieval of user relevant geo-spatial

information. The proposed system can reduce searching time

and reduce unnecessary node visiting cost. The memory

space can be reduced by using that proposed indexing

techniques. The speed performance of this system

outperforms the traditional R-tree system. As further work,

we will consider on moving objects retrieval using the

proposed index structure.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Khin Mo Mo Tun guided Aung Zaw Myint to do this

research using data mining method. Aung Zaw Myint

implemented the research by using hybrid method which

combined grid data structure and R-tree index structure. Khin

Mo Mo Tun approved system design and flow chart of this

system. Aung Zaw Myint is writing this research paper and is

testing the outcome results.

REFERENCES

[1] A. Guttman, “R-Tree: A dynamic index structure for spatial
searching,” ACM SIGMOD, pp. 47-57, 1984.

[2] Z. Li, K. C. K. Lee. And Z. W. C. Lee “Ir-tree: An efficient index for
geographic document search,” IEE TKDE, vol. 3, no. 4, pp. 585-599,

2011.

[3] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of th top-k most

relevant spatial web objects,” PVLDB, vol. 2, no. 1, pp. 337-248, 2009.

[4] Y. Zhang, “The improvement and implementation of k nearest
neighbor,” Computer Development and Application, vol. 21, no. 2, pp.

18-21, 2008.

[5] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” pp. 656-665, 2008.

[6] N. Vincent, “Nearest neighbor queries,” ACM SIGMOD, 1995.

W. Zhang, J. Z. Li, and H. W. Pan, “Processing continuous k- nearest

neighbor queries in location dependent application,” International
Journal of Computer Science and Network Security, vol. 6, no. 3,

March 2006.

[7] X. Cao, G. Cong, C. S. Jesen, J. Jun, N. T. Phan, and D. Wu, “SWORS:

A system for the efficient retrieval of relevant spatial web objects,”

2018.
[8] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing

spatial-keyword (sk) queries in geographic information retrival(gir)
systems,” pp. 655-665, 2008.

[9] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen, and D.

Šaulys,"Trees or grids?: Indexing moving objects in main memory," in
Proc. thnternational Conference on Advances in Geographic

Information Systems, 2009, pp. 236-245.
[10] K. J. Park, “Location-based grid index for spatial query processing,”

Expert Systems with Applications, vol. 4, pp. 1294–1300, 2014.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Khin Mo Mo Tun was born in Yangon, Yangon

Region, Myanmar in 1970. She received her master
degree in information science in 1997 and the Ph.D

(IT) degree in 2004 from University of Computer

Studies, Y angon, Myanmar. She received her Ph.D
degree in performance evaluation in high performace

computing. She worked as an associate professor and
the head in the Faculty of Computing in 2015 to 2017

at University of Computer Studies, Yangon. She is

currently the head of the Faculty of Computing at University of
Information Technology, Yangon. Her areas of research interests are

digital image processing, data mining ,modeling and network security.

Aung Zaw Myint was born in Pakokku, Magway

Region, Myanmar in 1982. He received his master in
computer science degree from Moscow Institute of

Electrical Engineering MIET), Russia in 2007. He is

currently studying and doing research for doctor of
philosophy (IT) in the Faculty of Computing,

University of Computer Studies, Yangon. He is
working for Ministry of Defence in IT section.

Author’s formal

photo

International Journal of Future Computer and Communication, Vol. 9, No. 2, June 2020

45

https://creativecommons.org/licenses/by/4.0/

