
  

  

Abstract—Link prediction is an important task in the area of 

complex networks. Some networks can be better modeled by 

temporal networks where the patterns of link appearance and 

disappearance varying with time. However, most of the 

previous link prediction researches ignore the temporal 

behaviors of links. The temporal link prediction needs to 

predict future links via a known network, considering the 

temporal relationship of node pairs. We propose a method 

combining the node centrality with time series. We distinguish 

the contributions of common neighbors to link generation by 

their centralities. Compared with benchmark approaches in 

several temporal networks, the proposed method can improve 

the accuracy of temporal link prediction efficiently. 

 
Index Terms—Temporal link prediction, eigenvector 

centrality, time series, temporal networks.  

 

I. INTRODUCTION 

Link prediction aims to estimate the link occurrence 

probability from available information in complex networks 

[1]. The link prediction has received lots of attention due to 

its important role in network analysis and link mining [2]. A 

link prediction model based on topological information was 

proposed by Liben-Nowell and Kleinberg [3]. The 

commonly similarity link prediction methods [4]-[9] allocate 

scores to node pairs and compute the likelihood of link 

generation by such scores. In order to improve the predict 

performance, Lü et al. adopted weak ties from social theory 

[10]. Considering the different roles of common neighbors, 

Liu et al. [11] combined node centrality with weak ties. Li et 

al. [12] proposed a node-centrality based link prediction 

method. They improved Salton index and random walk by 

using degree and betweenness centralities to measure the 

influence of nodes. Several methods consider community 

information in link prediction [13], [14]. They assumed that 

nodes have more probability to connect with other nodes in 

the same community. 

Many networks have dynamic structures, which means 

that links may appear and disappear over time. A temporal 

network can be represented as a sequence of 

snapshots
 1 2, ,..., TG G G

. Given a temporal network, link 

prediction task aims to predict future links in 1TG + , 

considering the temporal patterns in previous snapshots. 

Time series models are employed to capture the temporal 

pattern of networks. In [15], time series of the non-connected 

nodes pair are constructed via the similarity scores at past 
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timestamps. The final link prediction scores are computed 

according to such model. In [16], the time series for each 

node pairs is calculated by the frequency of link occurrence 

between adjacent snapshot. Then, the likelihood of links are 

estimated based on the time series model. In [17], a collection 

of time-series to model are adopted to produce similarity 

scores over time. 

Several methods try to utilize the time-evolving patterns of 

temporal networks. O'Madadhain et al. [18] regarded the 

historic events and node attributes as the input of a logistic 

regression classifier and decided the future links according to 

the output. In [19], the local probabilistic model is extended 

to include time awareness. 

We present a node centrality-based temporal link 

prediction approach by the extendence of Salton. The main 

contributions of this paper are as follows: 

1) We assess the influence of common neighbors in 

temporal network by the eigenvector centrality of nodes. 

In order to describe the influence of the previous 

timestamps on the later ones, we use time series model to 

capture the evolution of node centrality over time. Then, 

the future node centralities are produced. 

2) We regard the centrality of common neighbors as their 

contribution to the connection likelihood. We extend the 

definition of global neighbors from multilayer networks 

to temporal networks. 

3) We execute experiments on several real temporal 

networks. The results show that the performance of the 

proposed approach outperforms other benchmark 

methods. 

 

II.  RELATED WORK 

A. Similarity-Based Methods 

A lot of similarity-based link prediction methods are 

depicted in the literature. We present several approaches 

briefly. For a node x , let 
( )x

 be the neighborhood set of 

x  and xk
 be the degree of x . 

Common Neighbors (CN) [4] is one of the basic methods 

for link prediction. The similarity of node x  and 
y

 is 

measured by the number of their common neighbors. The 

definition is written as: 

 

( ) ( )CNS x y=  
                                 (1) 

 

For Adamic-Adar (AA) [5], the node pairs that share fewer 

common nodes are weighted more heavily. The AA score is 

defined as: 
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( ) ( )

1

log( )

AA

z x y z

S
k 

= 
                           (2) 

For node pairs without direct connection, Jaccard Index [6] 

produces higher score value when they have more common 

neighbors in proportion to their total number of neighbors. It 

is defined as: 

| ( ) ( ) |

| ( ) ( ) |

Jaccard x y
S

x y

 


=

                              (3) 

Preferential Attachment (PA) [7] gives the score according 

to the degrees of node neighbors, and it is defined as: 

x

PA

yS k k=
                                  (4) 

Analogous to AA, Resource-Allocation (RA) [8] assigns 

more weights to the nodes with lower-degree neighbors. The 

RA score is defined as follows: 

( ) ( )

1RA

z x y z

S
k 

= 
                                  (5) 

Salton index [9] is based on cosine similarity, and it is 

defined as follows: 

| ( ) ( ) |Salton

x y

x y
S

k k

 
=


                         (6) 

B. Eigenvector Centrality 

In complex network, eigenvector centrality can measure 

the influential nodes. The eigenvector centrality is related to 

the number of node neighbors and the influence of each 

neighbor. The eigenvector centrality of node x  can be 

calculated as follows: 

( )

1
x y

y x

c c
 

= 
                                  (7) 

where  is a constant and ( )x  is the neighbor set of node 
x . 

For the adjacent matrix A , the eigenvector c associated 

with the largest eigenvalue of A is obtained as follows: 

Ac c=                                       (8) 

The centrality of node x  is represented by the x th 

element of eigenvector c . 

C. Time Series 

The Auto-Regressive Integrated Moving Average 

(ARIMA) includes autoregressive and moving average 

models. It is a combination model for time series data. The 

ARIMA model is defined as follows: 

1 1

p q

t i t i j t j

i j

X X  − −

= =

= + 
                    (9) 

 

Here, tX
represents the estimated variable at t th snapshot, 

and 1,..., p 
 and 1,..., p 

denote parameters, and 

1,..., t q  −  denote error terms. 

 

III. THE TSALTON APPROACH 

Many activities are closely related to more influential 

nodes. Node centrality is regarded as the weight that 

represents the contribution of nodes to link generation. 

Therefore, the key issue is how to distinguish the nodes in 

important positions in the future when predicting links. Our 

proposed approach is referred to as the extension of Salton 

index [9] for temporal link prediction (TSalton). 

A. The Proposed Model 

In the TSalton method, we utilize the eigenvector 

centrality of each node to distinguish their roles to the 

likelihood of links. We use the ARIMA model to capture the 

changes of node centrality with time as follows: 

1 1

p q

t i t i j t j

i j

C C  − −

= =

= + 
                       (10) 

where tC
represents the estimated node centrality at t th 

snapshot. We calculates the eigenvector centrality at each 

timestamp. Then, we forecast the future node centrality by 

ARIMA. 

Inspired by the node-centrality-based method in [12], we 

proposed the TSalton which is eigenvector-centrality-based 

Salton. The proposed model is read: 

( ) ( )

( )

( ) ( )

GLN GLNz x yTSalton

t t

xy

tC y

C C y
S

x

 


=



                       (11) 

where z  denotes the global common neighbors of node x  

and 
y

 in the temporal network, and  
( )tC x

means the 

centrality of node x  produced by Eq.(10). 

We extend the neighbors to temporal neighbors according 

to the definition of neighbors in multilayer network [20]. The 

global neighbors of node  represents the unique neighbors 

over time: 

 

 1( ) :GLN t xy t tx y V e E E− =  
                (12) 

 

where xye
 is the connections between node x  and 

y
, tE

 is 

the link set at the t th snapshot. 

B. The Proposed Algorithm 

The TSalton algorithm consists of three main components: 

node centrality calculation, centrality-based score 

construction and temporal link prediction. Framework of 

TSalton algorithm is presented as follows: 

Algorithm 1: TSalton algorithm                                                              

Input: tA
: Temporal network; 

Output: 1TA + : Temporal network at time 1T +  

1 : Compute the node centrality of each snapshot according to 

Eq.(8); 
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2 : Construct the node centrality at time 1T +  according to 

Eq.(10); 

3 : Compute the scores according to Eq.(11); 

4 : Predict temporal links according to the TSalton scores. 

5 : return 1TA + .  
                                                                                           

IV. RESULTS 

A. Evaluation Metrics 

We adopt two standard metrics, AUC [21] and precision 

[22] to estimate the accuracy of temporal link prediction 

algorithms.  

The AUC score is defined as

' ''0.5n n
AUC

n

+
=

 . Suppose 

nodes x  and 
y

are connected in the next timestamp. 

Randomly select other nodes 
'x  and 

'y
 which don't exist 

link at the same timestamp. n  is the total comparison times 

of xyS
 and 

' 'x y
S

. 
'n  is the number of times that xyS

 has 

greater scores. 
''n  is the number of times that xyS

 and 
' 'x y

S
 

have the same scores.  

The precision is defined as 

rL
precision

L
=

. The precision 

value is the ratio of relevant links to the number of selected 

links. If we predict L links to be connected and among them 

Lr links are correct. 

B. Settings 

 

TABLE I: THE STATISTICS OF TEMPORAL NETWORKS 

Dataset Vertices Edges |T| 

Workplace 92 2,548 11 days 

EnronEmail 151 50,572 3 years 

Manufacture 167 82,927 9 months 

CollegeMessage 1899 61,735 7 months 

 

TABLE II. COMPARISON IN TERMS OF AUC 

Dataset Workplace  EnronEmail Manufacture CollegeMessage 

TSalton 0.7782 0.9134 0.8722 0.9507 

AA 0.6764 0.6884 0.6767 0.6769 

CN 0.6750 0.6923 0.6771 0.6756 

Jaccard 0.6688 0.6538 0.7985 0.6731 

PA 0.6794 0.6896 0.8047 0.9017 

RA 0.6761 0.6919 0.6787 0.6771 

 

The temporal networks applied in this paper includes 

Workplace [23], EnronEmail [24], Manufacture [25] and 

CollegeMessage [24]. Table I reports the important statistics 

of the real-world network. 

C. Evaluation of Link Prediction 

In these experiments, we compare the temporal link 

prediction approaches on real-world networks. The 

comparative approaches are similarity-based methods in 

Section II. Experiments have been performed adopting the 

networks in Table I. We take snapshots of 

 1 2, ,..., TG G G G=
for each temporal network. We evaluate 

the prediction results by comparing with the actual 1TG + . 

The AUC results of these methods are given in Table II 

and the related ROC (Receiver operator characteristic) curves 

are depicted in Fig. 1. We can see that the TSalton 

outperforms all the other approaches. 

 

 
Fig. 1. ROC curves of compared methods in each network. 

 

The similarity-based methods ignore the temporal 

information of network and only use local topological 

information, so they perform poorly on temporal link 

prediction.  Meanwhile, TSalton takes the temporal 

information into account, and the time series model can 

reflect the influential nodes more accurately. Let's take the 

example of EnronEmail. TSalton achieves the highest AUC 

0.9134 and is about 20% higher than CN which is in second 

place. 

We list the precision results in Table III. TSalton yields 

higher precision than similarity-based methods. As for 

EnronEmail, TSalton is about 0.4% higher than PA in second 

place. This result shows the advantages of time influence in 

link prediction. 
 

TABLE III: COMPARISON IN TERMS OF PRECISION 

Dataset Workplace  EnronEmail Manufacture CollegeMessage 

TSalton 0.0638 0.0964 0.0844 0.0689 

AA 0.0267 0.0908 0.0489 0.0617 

CN 0.0263 0.0853 0.0490 0.0649 

Jaccard 0.0524 0.0910 0.0491 0.0622 

PA 0.0298 0.0923 0.0380 0.0654 

RA 0.0048 0.0846 0.0490 0.0611 

 

In general, we can see that TSalton performs the best 

among the baseline approaches in term of AUC and precision 

on real networks. This results verify that TSalton is suitable 

for temporal link prediction. The possible reasons are from 

two aspects :(1) TSalton employs the time series model of 

eigenvector centrality which can represent the influential 

nodes more accurately in temporal networks. (2) TSalton 

considers the contributions of each neighbor to link 

generation via Salton scores to adjust such contribution. 

 

V. CONCLUSION 

The paper proposes a novel algorithm named TSalton. It 
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can obtain the topology information, which considers the 

influential nodes over time. The TSalton scores the likelihood 

of links by taking the eigenvector centralities of common 

neighbors into account. We have considered link prediction 

methods in terms of AUC and precision. Experiments in real 

networks show that, TSalton performs better than the 

methods without using temporal information.  As a future 

direction, we aim to consider other information on each 

snapshot included in the model, such as the context and the 

community. 
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