
  

  
Abstract—This paper presents a survey of existing GUI test 

case generation techniques; we have thoroughly reviewed the 
existing literature, identified Analysis parameters and provided 
a comparative Analysis of all the existing techniques. We have 
classified the GUI test case generation techniques on the basis of 
Fault Models which is a novel work in the context of GUI 
testing.  

Our Analysis shows a clear picture about the usefulness of 
each technique. Classification of the techniques according to the 
fault model expected to help determine which technique is most 
suitable to capture which type of faults. 
 

Index Terms—GUI, testing, techniques, classification, fault 
model.  
 

I. INTRODUCTION 
Graphical User Interfaces (GUIs) have become very 

important and significant in the software engineering 
discipline. GUIs are the interacting points between users and 
programs. Sophisticated and complex systems often possess 
sophisticated and complex GUIs and to ensure the 
correctness of these, GUI testing is necessary. 

GUI testing is not a single way testing rather it is a set of 
activities, which, as a whole confirm us that GUI testing, has 
been done successfully. In other words, it is an activity in 
which we test GUI from different perspectives, which 
includes test coverage, test case generation, test oracle and 
regression testing. Among these, the test case generation is 
the focal point. For this reason to ensure that testing has been 
done in such a way that it ensures tested GUI is error-free, we 
should select such test cases that are enough capable to 
capture the errors if they exist. For this purpose, different test 
case generation techniques have been proposed in the 
literature. However, each technique has its limitations.  

Different researchers have proposed techniques keeping in 
view the different aspects and features of a GUI. Eventual 
objective of every technique is to generate GUI test cases 
which are capable to detect maximum faults. 

Harris has classified the different faults into fault models 
[1]. We have classified the available GUI test case generation 
techniques according to the fault models which is a novel 
work in this area. 

 

II. EVALUATION CRITERIA 
Since various approaches have been proposed for GUI test 

case generation and each has its own advantages and 
disadvantages so it was necessary to evaluate the techniques 
with such parameters which not only highlight the 
 

Manuscript received August 6, 2012; revised September 20, 2012. 
The authors are with Center for Software Dependability, Mohammad Ali 

Jinnah University, (MAJU) and Islamabad, Pakistan (e-mail: 
i4imran@mail.com, anadeem@jinnah.edu.pk).  

weaknesses and strengths of the techniques but also give us a 
picture about the effectiveness of the approach. For this 
purpose, following parameters were identified. 

All the surveyed techniques were evaluated on the basis of 
these parameters: 

A. Input Representation of GUI Under Test 
Submit your manuscript electronically for review.  
This parameter describes how the GUI under test is 

represented as an input. When a GUI is given for testing, each 
technique requires some information according to the 
mechanism of that technique. This parameter describes the 
type of information required by a technique as a first step.  

B. Intermediate Representation  
The information acquired from the GUI under test may be 

transformed into intermediate representation to make them 
clear and easy to generate test cases. This parameter precisely 
explains, what attributes are required as an input to generate 
GUI test cases. This parameter helps to determine the test 
case generation mechanism for a technique. 

C. Coverage Criteria  
This parameter describes the type of coverage criteria 

adopted by a technique. Since in GUI testing we have to 
evaluate events, states, and their relationships because we 
know that every action is associated with some events, and 
every event generates a new state. In this parameter, we 
specify the coverage criteria.  

D. Automation  
This parameter describes whether the said technique is 

automatable or not. Automation is a key factor for any GUI 
test case generation technique. A technique is fully 
automated if from start to end process of the test case 
generation there is no human involvement. Semi-automated 
means some human involvement is required for test case 
generation. A value of "No" for this parameter means that the 
technique is not automatable at all.  

E. Tool Support  
This parameter describes whether the said technique has 

any tool support or not. It could be possible that a technique 
might be automatable but no tool support is available for such 
technique. Values are "Yes" and "No". 

F. Case Study  
This parameter describes whether technique has been 

practically evaluated or not. Possible values are "Yes" and 
"No". 

G. Fault Model  
Fault model is an abstraction of types of faults. This 

parameter describes the fault model in which a technique is 
placed. Following fault model have been used in GUI 
perspective: SMFM (State Machine Fault Model), CDFM 

GUI Testing Techniques: A Survey 

Imran Ali Qureshi and Aamer Nadeem 

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

DOI: 10.7763/IJFCC.2013.V2.139 142



  

(Control Flow Fault Model), TFM (Textual Fault Model) and 
IFM (Interface Fault Model) [1]. 

H. Fault Injection  
This parameter describes whether fault injection/ seeding 

has been used in a technique or not. Its values are "Yes" and  
"No". 

 

III. TEST CASE GENERATION TECHNIQUES FOR GUIS 
We have conducted a thorough survey to explore and find 

out existing test case generation techniques. In the following 
paragraphs, we explained different test case generation 
techniques for GUIs. 

A. A Method to Automate User Interface Testing Using 
Variable Finite State Machines (Shehday et. al., 1997) 
Shehday et al. proposed a technique for the automation of 

a limited portion of GUI testing [2]. In this technique a given 
GUI is first transformed in Variable Finite State Machine 
(VFSM) Model. The objective to used VFSM is to reduce the 
complexity of modeling GUIs. Then this model is converted 
into an equivalent FSM, and then test cases are generated 
from FSM. Implementation showed that technique was 
feasible because it revealed such errors which were not 
identified through the conventional debugging process. In 
current scenario this technique could be consider as an early 
work.  

Analysis this technique provides coverage for all-paths and 
all-transitions, it is an automatable but no tool support is 
provided. Case study showed that no fault injection is used. 
This technique is classified in SMFM and CDFM fault 
models [1].  

B. Using a Goal-Driven Approach to Generate Test Cases 
for GUIs (Memon et. al., 1999) 
Memon et al. proposed a technique which is primarily 

based on Plan Generation [3],[4],[5],[6]. Basic objective of 
this technique is to achieve the predefined goals for a specific 
GUI. These goals act as input in this technique and as output, 
generate sequences of actions, which reach these goals. 
These sequences of actions are termed as test cases for GUIs 
[3],[4]. This technique is said to be test designer oriented 
rather than user oriented. Author argues that a test designer 
has a good perspective about GUI goals and events as 
compared to a tester (user) who simply follows a sequence of 
events to get the desired goal. 

Analysis According to the presented technique, source file 
of GUI under test is given as input, which is transformed into 
hierarchical model, that is an intermediate representation; 
then an initial state, a goal state, a set of operators, and a set of 
objects are given as input, and a planner returns a set of steps 
to achieve the goal state. On the basis of this, a test case 
generation system by the name of Planning Assisted Tester 
for grapHical user interface Systems (PATHS) is proposed 
[5]. It is semi-automated technique because in second phase 
test designer has to give certain input values. PATHS creates 
hierarchical model as seen in the case study. This technique is 
not capable of handling huge number of states and also it does 
not cater all events [7],[8],[9] whereas it provides transition 
coverage. Author has not used any fault injection mechanism. 
This technique is classified in SMFM fault model [1].  

C. Model-Based Testing in Practice (Dalal et. al., 1999)  
Dalal et al. proposed technique is used to generate test 

cases from requirements [10]. The generated test case suite 
includes inputs, expected outputs and necessary 
infrastructure to execute the tests automatically. Basically 
this approach uses data model to generate test cases. A model 
is a specification of the inputs, so it can be developed at early 
stage from the requirements. This techniques primarily 
depends on three key factors; notation used for data model, 
test-generation algorithm, and tools that generate supporting 
infrastructure for the tests (including expected outputs). First 
two are portable.  

Analysis this technique first of all generates a data model 
as an intermediate representation from requirements and 
constraints of given GUI using ATEGSpec notation and then 
from data model test cases are generated. This technique 
provides Pairwise-interaction coverage, event-interaction 
coverage. It is semi-automated because a tester has to verify 
data model manually. After verification ATEG Software 
generates the test cases. The most difficult aspect of this 
approach is, from requirement it can not be predict what 
could be the constraints. This technique is most applicable to 
a system for which data model is sufficient to capture the 
system’s behavior [10]. The small case study proposed for 
GUIs showed that no fault injection is used. This technique 
revealed such faults which were not detected through 
conventional testing. This technique is classified in CDFM 
and IFM fault models [1].  

D. Generating Test Cases for GUI Responsibilities Using 
Complete Interaction Sequences (White et. al., 2000) 
White et al. proposed a technique, in which first of all a 

given GUI is transformed into different tasks and their 
complete interaction sequences (CIS) [11]. Then from these, 
for every CIS, a reduced finite state machine (FSM) Model is 
created. Then test cases are generated by traversing the 
created reduced FSM Model.  

Analysis this technique mainly relies on the tester, because 
it requires substantial amount of work from tester. Case study 
showed that this technique has detected faults but no fault 
injection is used. To minimize number of test cases, author 
suggested that components of CIS should be reduced. This 
approach provides coverage of all-paths and 
event-interaction. No tool support is provided. This technique 
is classified in SMFM and CDFM fault models [1].  

E. Finite State Testing and Analysis of Graphical User 
Interfaces (Belli, 2001) 
Belli [12] has extended the work of While et al. [11] with 

certain improvements, like for effectiveness of generated test 
cases, introduction of test coverage criteria, suggestion to 
cover all possible combinations of node with edges for the 
complete coverage of nodes and edges.     

Analysis Technique provided coverage for all-IPs 
(Interaction Pairs), all-FIPs (Faulty interaction pairs) of CIS 
and FCIS respectively along with all-paths and 
event-interaction. Case study showed that technique has 
detected more faults after improvement, but still it can not be 
considered as a cost effective because tool support is still 
required. No fault injection is used. This technique is 
classified in SMFM and CDFM fault models [1].  

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

143



  

 
TABLE I:  SHOWING COMPARISON OF GUI TEST CASE GENERATION TECHNIQUES 

 
F. On the Test Case Definition for GUI Testing (Cai et al., 
2005) 
Cai et al. proposed an approach that defines GUI test cases 

as a sequence of primitive GUI actions and treats GUI test 
suites as an inner hierarchy of formal languages [13].  In this 
technique the test case generation and execution process is 
sequential i.e. one by one, and treats GUI Test cases as a 
sequence of primitive GUI actions and GUI test suites as 
hierarchical language. In order to investigate how test cases 
should be defined for GUI testing, Mealy machines are used 
here. 

Analysis this technique covers all-paths, all-transition and 
event-interaction coverage criterion. This technique provides 
a systematic way for GUI test case generation. It is a 
semi-automated supported by WinRunner tool. Case study 
showed that this technique is more effective in fault detection 
as compare to random. Fault injection is also used. This 
technique is classified in SMFM, CDFM and IFM fault 
models [1]. 

G. Automation of GUI Testing using a Model-driven 
Approach (Vieira et al., 2006) 
Vieira et al. have proposed an approach that follows 

category-partition method to generate UML Model [14]. 
Authors said that this approach is the only approach that 
generates test cases on activity diagram control flow basis. 
Major aim of this technique is to improve the effectiveness of 
testing. Authors said that effectiveness is directly related to 
the completeness, consistency and accuracy of supplied 
information and tester experience. 

Analysis this technique first transformed the given GUI 
into a UML Model (use case, class and activity diagrams), 
which is an intermediate representation. This technique 
provided Graph Coverage which includes Round Trip 

criterions, Happy Path criterion, All-Paths criterion and 
All-Activities criterion and Data Coverage which includes 
Sampling, Group coverage, Expression, Choice coverage and 
Exhaustive coverage. It is a semi-automated. In this 
technique authors have provided their own tool, Test 
Development Environment using UML (TDE/UML) for test 
case generation. No fault injection is used. This technique is 
classified in CDFM fault model [1].  

H. Developing Cost-Effective Model-Based Techniques 
for GUI Testing (Xie, 2006) 
Xie proposed a technique whose primary goal is to 

provides the best combination of fault detection effectiveness 
and cost [15]. Author proposed a framework, which consists 
of a model of the GUI, and modules that employ this model to 
perform various GUI testing tasks. The GUI model is 
obtained using a GUI analyzer that automatically reverse 
engineers the GUI and extracts all the widgets, properties and 
their values. Given the GUI model as input, a test case 
generator automatically generates focused test cases. The 
generated test cases are provided to a test oracle generator, 
which derives the expected output of the GUI for each test 
case.  

Analysis According to the author, work done in-house has 
proof that this technique is feasible, scalable and cost 
effective, but neither case study nor any tool support is 
provided by the author. Author also claims that the technique, 
if automated, is capable of detecting a large number of faults. 
This technique provides event-interaction coverage and 
all-states coverage. Fault injection can also be used. This 
technique is classified in SMFM and IFM fault models [1].  

I. An Event-flow Model for GUI-Based Applications for 
Testing (Memon, 2004, 2007) 
Memon proposed a technique that consolidates different 

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

144



  

models into one scalable event-flow model and outlined 
algorithms to semi-automatically reverse engineer the model 
from an implementation [16],[17]. This technique forms 
model by defining event-space exploration strategies (ESES), 
which addressed the problem of reusability of test cases, 
effectiveness of test cases for detecting GUI faults, scalability 
of test cases in the form of reduction of test case suites.  

Analysis this technique transforms the given GUI into 
event-flow model by using GUI Ripper, which is a 
component of GUITAR tool. This technique is a 
semi-automated author has provided a tool, i.e., GUITAR. 
Case study showed that this technique has detected faults. 
Event-flow model can be edit to minimize the generation of 
test cases. This technique provides all-transition and 
event-interaction coverage. Fault injection is used in the 
technique. This technique is classified in TFM, SMFM and 
CDFM fault models [1].  

J. A Model-Based Approach for Testing GUI Using 
Hierarchical Predicate Transition Nets (Reza et al., 2007) 
Reza et al. proposed a model based testing method to test 

the structural representation of GUIs specified in high class 
of Petri nets known as Hierarchical Predicate Transitions 
Nets (HPrTNs) [18].  Main reason for using HPrTNs to test 
GUI is, HPrTNs recognize and treat both Events (desirable 
and undesirable behaviors) and states (desirable and 
undesirable conditions) equally. Authors have also proposed 
a new coverage criteria for GUI testing but they have not 
proved the feasibility of their approach neither they have 
done any implementation. 

Analysis this technique provides all-states, all-transitions, 
all-threads coverage. Authors have not given any tool support 
neither they have stated that their technique is automated if so 
then upto what extend, no case study is provided. No fault 
injection is used. This technique is classified in SMFM and 
CDFM fault models [1].  

K. Generating Test Cases from The GUI Model (Alsmadi 
et. al., 2006,2007) 
Alsmadi et al. proposed a technique that first transforms 

the GUI from implementation to a XML tree model, Test 
cases are then generated from XML model which makes it 
easier to automate generating test cases and executing them 
[5], [6]. The proposed technique has four algorithms that do 
not need any user involvement and generates test cases from 
different perspective, which is an edge on other techniques. 
Through this approach automation of first few test cases is 
expensive, but cheaper for generating large test cases. GUI 
state reduction is the key contribution of this research. Tool 
that is developed by the authors have a component GUI 
modeler whose purpose is to transform the GUI into model 
that becomes easier for testing using an automated tool. 

Analysis this technique is fully automated and provides 
coverage of all-paths, all-transitions and branch. Authors 
have provided the case study and claimed that their technique 
is cost-effective, scalable and effective in fault detection. 
They have developed their own tool, i.e., GUI Auto, which 
generates the test cases independently and allow the user in a 
later stage to define pre- and post-conditions for the 
verification process. No fault injection is used. This 
technique is classified in SMFM and CDFM fault models [1].  

L. Using GUI Run-Time State as Feedback to Generate 
Test Cases (Yuan et. al., 2007) 
Yuan et al. in this technique have introduced a mechanism 

how to generate test cases from the feedback of the executing 
application under test (AUT) [19]. This technique is used for 
the automated GUI testing. In this technique first of all given 
GUI is automatically converted into an Event-Interaction 
Graph (EIG) Model, then test cases are generated from this 
EIG Model. This technique is also useful for testing GUI 
events-interaction with possible multi-ways interaction.   

Analysis It is a fully automated technique but  authors have 
not specifically mentioned the tool name. This technique 
provides all-states and event-interaction coverage. Case 
study showed that feedback technique was helpful in 
detecting various types of faults. This technique needs to be 
reviewed to make it cost-effective and more effective in fault 
detection. No fault injection is used. This technique is 
classified in SMFM and IFM fault models [1]. 

 

IV. EVALUATION OF TEST CASE GENERATION TECHNIQUES 
FOR GUIS 

We have analyzed the existing techniques with the help of 
eight identified evaluation parameters and showed in Table 1. 
We have thoroughly investigated how each technique 
generates test cases for GUI, which type of coverage it 
provides, we have also explored either the process of the said 
technique is manual or automated, and if automated then any 
tool support is provided by the author, whether the technique 
is practically evaluated, in which type of fault model this 
technique is classified, and fault injection is used by this 
technique or not. Our analysis showed a clear picture about 
the functionality of each technique. Classification of 
surveyed techniques according to the fault model is an 
important attempt which, help us to determine which 
technique is most suitable to capture which type of faults.  

 

V. CONCLUSION 
We have presented a survey of existing GUI test case 

generation techniques; we have thoroughly examined the 
existing GUI test case generation techniques and given a brief 
analysis for each technique. For a comprehensive and 
detailed analysis, we identified various analysis parameters 
and with the help of these parameters, we compared all the 
techniques. 

We have classified the GUI test case generation techniques 
on the basis of fault models.  

Our analysis shows a clear picture about usefulness of each 
technique. Classification of surveyed techniques according to 
the fault model is an important attempt which helps in 
determining the suitability of a technique to capture certain 
types of faults. 

REFERENCES 
[1] I. G. Harris, “Fault Models and Test Generation for 

Hardware-Software Covalidation,” IEEE Design and Test, vol. 20, no. 
4, pp. 40-47, January 2003. 

[2] R. Shehady and D. Siewiorek, “A Method to Automate User Interface 
Testing Using Variable Finite State Machines,” in Proc. of the 27th 
International Symposium on Fault Tolerant Computing (FTCS-27), pp 
80-88, June 24-27, 1997, Seattle, WA, USA. 

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

145



  

[3] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Using a Goal-Driven 
Approach to Generate Test Cases for GUIs,” in Proceedings of the 21st 
International Conference on Software Engineering (ICSE'99), pp. 
257-266, May 16-22, 1999, Los Angeles, USA.   

[4] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Plan Generation for 
GUI Testing,” in Proceedings of the 5th International Conference on 
Artificial Intelligence Planning Systems(AIPS'00), pp. 226-235, April 
14-17, 2000, Breckenridge, CO, USA.  

[5] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI Test 
case generation using automated planning,” IEEE Trans. on Soft. Eng. 
(TSE), vol. 27, no. 2, pp. 144-155, February 2001. 

[6] A. M. Memon, M. E. Pollack, and M. L. Soffa. “A Planning-based 
Approach to GUI Testing,” in Proceedings of the 13th International 
Software / Internet Quality Week (QW'00), May 30-June 2,  2000, San 
Francisco, California, USA.  

[7] I. Alsmadi and K. Magel, “Generating Test Cases from The GUI 
Model,” World Scientific and Engineering Academy and Society 
(WSEAS), 2006. 

[8] I. Alsmadi and K. Magel, “An Object Oriented Framework for User 
Interface Test Automation,” in Proceedings of Midwest Instruction and 
Computing Symposium (MICS'07), April 20-21, 2007, Alerus Center,  
Grand Forks, North Dakota, USA. 

[9] M. U. Hayat and N. Qadeer, “Intra Component GUI Test Case 
Generation Technique,” in Proc. of the Int. Conf. on Information and 
Emerging Tech. (ICIET'07), July 6-7, 2007, Karachi, Pakistan. 

[10] S. R. Dalal, A. Jain, N. Karuanith et al., “Model-Based Testing in 
Practice” in Proc. of the 21st Int. Conf. on Software Engineering 
(ICSE'99), pp. 285-294, May 16-22, 1999, Los Angeles, USA.   

[11] L. White and H. Almezen, “Generating test cases for GUI 
responsibilities using complete interaction sequences,” in Proc. of the 

21st IEEE Int. Conf. on Software Maintenance (ICSM’05), pp. 473-482, 
September 25-30, 2005, Budapest, Hungary. 

[12] F. Belli, “Finite State Testing and Analysis of Graphical User 
Interfaces,” in Proc. of the 12th Int. Symposium on Soft. Reliability Eng. 
(ISSRE’01), pp. 34-43, November 27-30, 2001, Hong Kong. 

[13] 10. K. Cai, L. Zhao, H. Hu, and C. Jiang “On the Test Case Definition 
for GUI Testing,” in Proc. of the 5th Int. Conf. on Quality 
Soft.(QSIC’05), pp. 11-18, Sept.19-20,2005, Melbourne, Australia. 

[14] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J. Kazmeie, 
"Automation of GUI Testing using a Model-driven Approach," in 
Proceedings of the 2006 Int. Workshop on Automation of Software Test 
(AST’06), pp. 9-14, May 23, 2006, Shanghai, China. 

[15] Q. Xie, “Developing Cost-Effective Model-Based Techniques for GUI 
Testing,” in Proc. of the 28th Int. Conf. on Software Eng. (ICSE'06), pp. 
997-1000, May 20-28, 2006, Shanghai, China. 

[16] A. M. Memon, “An Event-flow Model for GUI-Based Applications for 
Testing,” Software Testing, Verification and Reliability, vol. 17, no. 3, 
pp. 137-157, September 2007.  

[17] A. M. Memon, “Developing Testing Techniques for Event-driven 
Pervasive Computing Applications,” OOPSLA'04 Workshop on 
Building Software for Pervasive Computing (BSPC'04), October 24, 
2004, Vancouver, BC, Canada. 

[18] H. Reza, S. Endapally, and E. Grant, “A Model-Based Approach for 
Testing GUI Using Hierarchical Predicate Transition Nets,” in Proc. of 
the 4th Int. Conf. on Inf. Tech. New Generations (ITNG’07), pp. 
366-370, April 2-4, 2007, Las Vegas, USA.   

[19] X. Yuan and A. M. Memon, “Using GUI Run-Time State as Feedback 
to Generate Test Cases,” in Proceedings of the 29th International 
Conference on Software Engineering (ICSE’07), pp. 396-405, May 
20-26, 2007, Minneapolis, MN, USA.  

 
 
 

 
 
 

 

International Journal of Future Computer and Communication, Vol. 2, No. 2, April 2013

146


