

Abstract—Typical Byzantine fault tolerance algorithms

require the application requests to be executed sequentially,

which may severely limit the throughput of the system

considering that modern CPUs are equipped with multiple

processing cores. In this paper, we present the design and

implementation of a Byzantine fault tolerance framework for

software-transactional-memory based applications that aims to

maximize concurrent processing while preserving strong replica

consistency. The approach is based on the idea of committing

concurrent transactions according to the total order of the

requests that triggered the transactions. A comprehensive

performance evaluation is carried out to characterize the

effectiveness and limitations of this approach.

Index Terms—Byzantine fault tolerance, software

transactional memory, distributed systems, concurrent

computing, performance evaluation

I. INTRODUCTION

Byzantine fault tolerance (BFT) [1], [2] appears to be a

powerful technology to enhance the trustworthiness of

distributed applications. In the past decade, we have seen

significant advancement of both the efficiency and robustness

of BFT algorithms [1]–[5]. However, typical BFT algorithms

require the application requests to be executed sequentially,

which may severely limit the throughput of the system

considering that modern CPUs are equipped with multiple

processing cores. This issue has been addressed by a number

of researchers [3], [4], [6], [7]. The primary approach is to

enable concurrent execution of requests that do no involve

conflicting operations. However, to enable concurrent

execution, it is assumed that the application semantics is

already known. This inevitably increases the design cost of

such BFT solutions and limits their reusability for other

applications.

In this paper, we present the design and implementation of

a BFT framework for software-transactional-memory based

applications that aims to maximize concurrent processing

without requiring the knowledge of application semantics.

The approach is based on the idea of committing concurrent

transactions according to the total order of the requests that

triggered the transactions. In essence, the dependency

between different requests is discovered dynamically (and

automatically) by the software-transactional-memory runtime.

Non-conflicting requests can be processed concurrently with

Manuscript received April 10, 2012; revised May 8, 2012.

Honglei Zhang and Wenbing Zhao are with the Department of Electrical

and Computer Engineering, Cleveland State University, Cleveland, OH

44115, USA (e-mail: wenbing@ieee.org.)

the only constraint that the commit order must respect the

total order of the corresponding requests. Some of the

conflicting requests that have been processed concurrently

may have to be aborted and retried. A comprehensive

performance evaluation is carried out to characterize the

effectiveness and limitations of this approach.

II. RELATED WORK

The primary approach to increasing the performance of

BFT systems is by exploiting application semantics. In PBFT

[1], Castro and Liskov noted that read-only requests can be

delivered without the need of total ordering. In BASE [2], it

was recognized that a BFT system can be made more robust

(to minimize deterministic software errors) by adopting a

common abstract specification for the service to be replicated.

A conformance wrapper for each distinct implementation is

then developed to ensure that it behaves according to the

common specification. Furthermore, an abstraction function

and one of its inverses are needed to map between the

concrete state of each implementation and the common

abstract state.

In [3], Kotla and Dahlin proposed to exploit application

semantics for higher throughput by parallelizing the execution

of independent requests. They outlined a method to determine

if a request is dependent on any pending request using

application specific rules. In [4], Distler and Kapitza further

extended Kotla and Dahlin’s work by introducing a scheme to

execute a request on only a selected subset of replicas. This

scheme assumes that the state variables accessed by each

request are known, and that the state object distribution and

object access are uniform.

In prior work [6], [7], we proposed to rely on deeper

application semantics to not only enable more requests (such

as those that are commutative) to be executed concurrently,

but also minimize the number of Byzantine agreement steps

used in an application (particularly for session-oriented

applications).

This paper takes a drastically different approach from those

mentioned above. Rather than resorting to the application

semantics, which may be expensive to acquire accurately and

hard to reuse, we rely on the use of software transactional

memory to dynamically capture the dependency of concurrent

operations automatically. This approach is inspired by the

work of Brito, Fetzer, and Felber [8], where a similar idea was

used to ensure multithreaded execution for actively-replicated

event stream processing systems. Our work applies the idea in

a different context (i.e., Byzantine fault tolerance instead of

crash fault tolerance) and furthermore, we carry out detailed

experiments and analysis on the level of concurrency that can

Honglei Zhang and Wenbing Zhao

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

47

Concurrent Byzantine Fault Tolerance for
Software-Transactional-Memory Based Applications

be achieved under various conditions.

III. CONCURRENT BFT FRAMEWORK

The proposed Byzantine fault tolerance framework is

shown in Figure 1. The framework supports client-server

applications where the server is constructed using software

transactional memory. In our implementation, the LSA-STM

open source library [9] is used to enable software

transactional memory. The total ordering of the requests sent

by the clients is ensured by using the UpRight agreement

cluster [5]. The replicated server is running within a separate

cluster. Due to the separation of agreement and execution [10],

only 2f + 1 server replicas are needed to tolerate up to f faulty

replicas.

Fig. 1. The proposed Byzantine fault tolerance framework.

The agreement cluster dispatches totally ordered requests

(from the clients) to the server replicas. At the server replica,

we assume that each request triggers one and only one

transaction. A deterministic algorithm is used to assign a

multi-dimensional monotonically increasing timestamp to

each request and the corresponding transaction (the sequence

number assigned by the agreement cluster cannot be directly

used because of batching, i.e., multiple requests in the same

batch are assigned the same sequence number). The

timestamp is then used to ensure the total ordering of the

commit of the transactions.

Fig. 2. A transaction is aborted and retried if it accessed shared data items in

a conflicting operation out-of-order.

A request is delivered immediately at each replica once it is

known that it has been totally ordered. The request is handled

by one of the threads in a pre-allocated thread pool. This

approach could significantly increase the throughput in

systems equipped with multi-core processors. In general, the

number of concurrent transactions (i.e., the size of the thread

pool) should equal the number of CPU cores. It is possible

that a transaction accesses a data item out of order (e.g.,

transaction i reads a shared data item, and then transaction i −

1, which is ordered ahead of transaction i, later writes to the

same shared data item), in which case, transaction i is aborted

and retried as soon as the out-of-order conflicting operation is

detected, as shown in Figure 2. It is important to note that all

transactions ordered later (such as transaction i + 1) would

have to wait until the retried transaction has been committed.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

The proposed Byzantine fault tolerance framework is

implemented in Java based on LSA-STM [9] and UpRight [5].

A comprehensive experimental study has been carried out on

the research prototype in a Local-Area Network testbed that

consists of 14 HP BL460c blade servers and 18 HP ProLiant

DL320 G6 rack-mounted servers connected by a Cisco

Gigabit switch. Each BL460c server is equipped with two

Xeon E5405 (2GHz) processors and 5GB RAM. Each DL320

server is equipped with one Xeon E5620 (2.40GHz)

processor and 8GB RAM. All servers run the 64-bit Ubuntu

server Linux operating system.

The test application is a client-server application where the

server is written using LSA-STM. Each client’s request

triggers a new transaction at the server. If a transaction is

aborted, it will be retried until it is committed. The server

maintains a shared data pool that consists of 100 data items.

Each transaction accesses 10 data items (all of them are write

operations for simplicity). A transaction accesses the data

items in the shared data pool pseudo-randomly according to a

predefined sharing rate. For example, a 20% sharing rate

means that a transaction will access 2 data items in the shared

data pool and 8 private data items. To characterize non-trivial

processing load, a finite processing delay is artificially

introduced at the server for each transaction in the form of

busy loops (i.e., the server executes a while loop until the

predefined time has passed). Two types of processing load are

experimented: (1) fixed at 5ms, and (2) random processing

delays with a Poisson distribution with a mean of 5ms.

In the test, the server replicas are deployed among the

BL460c blade servers, and the clients are deployed among the

DL320 servers. A thread pool of 8 threads is used to enable

concurrent processing of up to 8 requests at the server (this is

to match the 8 CPU cores at each server node).

The server is replicated with f =1 (i.e., 3 server replicas are

used). The client sends a request first to the UpRight

agreement cluster for total ordering. The agreement cluster

then forwards the request to the server replicas with the

designated total order for processing. In the agreement cluster,

f = 1 is also used (i.e., 4 agreement nodes are used) for the

Byzantine agreement on the total order of requests.

During the experiments, the following scenarios are tested:

1) Fixed processing time (5ms) for each transaction in our

BFT framework, denoted as C-BFT (Fixed-i%) in the test

result figures, where i is the data sharing rate;

2) Random processing time with Poisson distribution with a

mean of 5ms for each transaction in our BFT framework,

denoted as C-BFT (Poisson-i%) in the test results figures;

3) For comparison, concurrent processing is disabled (i.e.,

all requests are processed sequentially one after another),

denoted as S-BFT in the test result figures.

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

48

Fig. 3. Test results. (a) Throughput versus the number of concurrent clients

for C-BFT Fixed configurations. For comparison, the throughput for S-BFT

is also included. (b) Throughput versus the number of concurrent clients for

C-BFT Poisson configurations. (c) Peak throughput versus different data

sharing rates.

The throughput test results are summarized in Figure 3.

Figure 3(a) shows the average throughput with respect to

different number of concurrent clients under various C-BFT

Fixed scenarios, and the S-BFT scenario. The results for

C-BFT Poisson scenarios are shown in Figure 3(b). As

expected, the lowest throughput is observed for the S-BFT

configuration and the highest throughput is achieved under

C-BFT (Fixed-0%) (i.e., when there is no shared data between

different transactions). Figure 3(c) shows the peak throughput

dependency on the data sharing rate for the three sets of

scenarios.

To study the inner workings of the system, the number of

conflicts and aborts are profiled, in addition to the number of

commits in each run. The profiling results for C-BFT Fixed

scenarios are shown in Figure 4 (the results for C-BFT

Poisson scenarios are very similar, and hence, they are

omitted in the figure). It can be seen that the conflict and abort

rates increase exponentially with the number of concurrent

clients, and with the sharing rate.

Fig. 4. Conflict and abort rates for C-BFT Fixed. (a) Conflict rate in terms of

average number of conflicts per transaction versus different number of

concurrent clients. (b) Abort rate in terms of average number of aborts per

transaction versus different number of concurrent clients. (c) Abort rates

observed for 10 concurrent clients with different data sharing rates.

The test results shown above prove that indeed the

throughput is improved with the proposed system compared

with sequential BFT processing (i.e., the S-BFT scenario) in

all circumstances tested. The throughput improvement ranges

from about 28% (with 100% sharing rate), to 125% (with 0%

sharing rate). We can make the following two observations

from the test results:

1) The throughput is higher with smaller data sharing rate,

and

2) The throughput is higher with a uniform fixed processing

time for each transaction (i.e., each transaction takes

identical fixed amount of time to complete).

Both observations can be easily explained. The higher the

data sharing rate, the more likely some transactions will be

aborted and retried, as illustrated in Figure 4. Furthermore,

when a transaction is retried, all transactions ordered after this

transaction may have to wait before they can be committed.

This explains observation 1. When all transactions take the

same amount of time to complete, the next transaction can be

committed almost immediately after the current one is

committed, which minimizes any potential wait-to-commit

time. On the other hand, if the processing time for each

transaction is randomly distributed, it is very likely some

transactions will have to wait before they can be committed,

which reduces the throughput. This explains the observation

2.

One might expect a much sharper reduction in throughput

with the increase of number of concurrent clients and sharing

rate due to the observed exponential increase in conflict and

abort rates. This did not happen because the aborted

transactions can be retried concurrently as well.

Furthermore, the test results also reveal that the proposed

system could be further improved. When 0% sharing rate is

used, the peak throughput is only about 2.3 times that of

sequential BFT. In an ideal scalable system, the peak

throughput would be 8 times that of sequential BFT. The less

than ideal scalability of the proposed system may be partially

due to the restriction of the total ordering of the commits. It is

possible to relax this restriction by incorporating the

knowledge of application semantics.

V. CONCLUSION

In this paper, we described a concurrent BFT framework

for applications based on software transactional memory. We

have done extensive performance evaluation of the proposed

framework. The results show indeed the throughput is

increased significantly compared with sequential BFT, even

in the worst case when every transaction accesses data from

the shared data pool. We observed that the throughput

strongly depends on the data sharing rate among the

transactions. Furthermore, the distribution of processing time

of the transactions also plays a role in determining the average

throughput. Better throughput can be achieved if all

transactions take similar amount of time to complete.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant CNS

0821319, by a CSUSI grant, and by a Doctoral Dissertation

Research Expense Award (for the first author) from

Cleveland State University.

REFERENCES

[1] M. Castro and B. Liskov, “Practical byzantine fault tolerance and

proactive recovery,” ACM Transactions on Computer Systems 2002,

vol. 20, pp.398–461.

[2] M. Castro, R. Rodrigues, B. Liskov, “Base: Using abstraction to

improve fault tolerance,” ACM Transactions on Computer Systems

2003, vol. 21, pp. 236–269.

[3] R. Kotlan and M. Dahlin, “High throughput byzantine fault tolerance,”

Proceedings of International Conference on Dependable Systems and

Networks, 2004.

[4] T. Distler and R. Kapitza, “Increasing performance in byzantine

fault-tolerant systems with on-demand replica consistency,”

Proceedings of the sixth Eurosys conference, 2011.

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

49

[5] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, T.

Riche, “Upright cluster services,” in Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles, pp. 277–290, 2009.

[6] H. Zhang, H. Chai, W. Zhao, P. M. Melliar-Smith, L. E. Moser,

“ Trustworthy coordination for web service atomic transactions,” IEEE

Transactions on Parallel and Distributed Systems (to appear) 2012.

[7] H. Chai, H. Zhang, W. Zhao, P. M. Melliar-Smith, L. E. Moser.

Toward trustworthy coordination for web service business activities.

IEEE Transactions on Services Computing (to appear), 2012.

[8] A. Brito, C. Fetzer, and P. Felber, “Multithreading-enabled active

replication for event stream processing operators,” in Proceedings of

the 28th IEEE International Symposium on Reliable Distributed

Systems, 2009, pp. 22–31.

[9] T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot algorithm with

eager validation,” in Proceedings of the 20th International Symposium

on Distributed Computing, 2006, pp. 284–298.

[10] J. Yin, J. P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,

“Separating agreement from execution for byzantine fault tolerant

services,” in Proceedings of the ACM Symposium on Operating

Systems Principles, Bolton Landing, NY, 2003, pp. 253–267.

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

50

