
  

 

Abstract—Typical Byzantine fault tolerance algorithms 

require the application requests to be executed sequentially, 

which may severely limit the throughput of the system 

considering that modern CPUs are equipped with multiple 

processing cores. In this paper, we present the design and 

implementation of a Byzantine fault tolerance framework for 

software-transactional-memory based applications that aims to 

maximize concurrent processing while preserving strong replica 

consistency. The approach is based on the idea of committing 

concurrent transactions according to the total order of the 

requests that triggered the transactions. A comprehensive 

performance evaluation is carried out to characterize the 

effectiveness and limitations of this approach. 
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I. INTRODUCTION 

Byzantine fault tolerance (BFT) [1], [2] appears to be a 

powerful technology to enhance the trustworthiness of 

distributed applications. In the past decade, we have seen 

significant advancement of both the efficiency and robustness 

of BFT algorithms [1]–[5]. However, typical BFT algorithms 

require the application requests to be executed sequentially, 

which may severely limit the throughput of the system 

considering that modern CPUs are equipped with multiple 

processing cores. This issue has been addressed by a number 

of researchers [3], [4], [6], [7]. The primary approach is to 

enable concurrent execution of requests that do no involve 

conflicting operations. However, to enable concurrent 

execution, it is assumed that the application semantics is 

already known. This inevitably increases the design cost of 

such BFT solutions and limits their reusability for other 

applications.  

In this paper, we present the design and implementation of 

a BFT framework for software-transactional-memory based 

applications that aims to maximize concurrent processing 

without requiring the knowledge of application semantics. 

The approach is based on the idea of committing concurrent 

transactions according to the total order of the requests that 

triggered the transactions. In essence, the dependency 

between different requests is discovered dynamically (and 

automatically) by the software-transactional-memory runtime. 

Non-conflicting requests can be processed concurrently with 
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the only constraint that the commit order must respect the 

total order of the corresponding requests. Some of the 

conflicting requests that have been processed concurrently 

may have to be aborted and retried. A comprehensive 

performance evaluation is carried out to characterize the 

effectiveness and limitations of this approach. 

 

II. RELATED WORK 

The primary approach to increasing the performance of 

BFT systems is by exploiting application semantics. In PBFT 

[1], Castro and Liskov noted that read-only requests can be 

delivered without the need of total ordering. In BASE [2], it 

was recognized that a BFT system can be made more robust 

(to minimize deterministic software errors) by adopting a 

common abstract specification for the service to be replicated. 

A conformance wrapper for each distinct implementation is 

then developed to ensure that it behaves according to the 

common specification. Furthermore, an abstraction function 

and one of its inverses are needed to map between the 

concrete state of each implementation and the common 

abstract state.  

In [3], Kotla and Dahlin proposed to exploit application 

semantics for higher throughput by parallelizing the execution 

of independent requests. They outlined a method to determine 

if a request is dependent on any pending request using 

application specific rules. In [4], Distler and Kapitza further 

extended Kotla and Dahlin’s work by introducing a scheme to 

execute a request on only a selected subset of replicas. This 

scheme assumes that the state variables accessed by each 

request are known, and that the state object distribution and 

object access are uniform.  

In prior work [6], [7], we proposed to rely on deeper 

application semantics to not only enable more requests (such 

as those that are commutative) to be executed concurrently, 

but also minimize the number of Byzantine agreement steps 

used in an application (particularly for session-oriented 

applications).  

This paper takes a drastically different approach from those 

mentioned above. Rather than resorting to the application 

semantics, which may be expensive to acquire accurately and 

hard to reuse, we rely on the use of software transactional 

memory to dynamically capture the dependency of concurrent 

operations automatically. This approach is inspired by the 

work of Brito, Fetzer, and Felber [8], where a similar idea was 

used to ensure multithreaded execution for actively-replicated 

event stream processing systems. Our work applies the idea in 

a different context (i.e., Byzantine fault tolerance instead of 

crash fault tolerance) and furthermore, we carry out detailed 

experiments and analysis on the level of concurrency that can 
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be achieved under various conditions. 

 

III. CONCURRENT BFT FRAMEWORK 

The proposed Byzantine fault tolerance framework is 

shown in Figure 1. The framework supports client-server 

applications where the server is constructed using software 

transactional memory. In our implementation, the LSA-STM 

open source library [9] is used to enable software 

transactional memory. The total ordering of the requests sent 

by the clients is ensured by using the UpRight agreement 

cluster [5]. The replicated server is running within a separate 

cluster. Due to the separation of agreement and execution [10], 

only 2f + 1 server replicas are needed to tolerate up to f faulty 

replicas. 

 

Fig. 1. The proposed Byzantine fault tolerance framework. 

 

The agreement cluster dispatches totally ordered requests 

(from the clients) to the server replicas. At the server replica, 

we assume that each request triggers one and only one 

transaction. A deterministic algorithm is used to assign a 

multi-dimensional monotonically increasing timestamp to 

each request and the corresponding transaction (the sequence 

number assigned by the agreement cluster cannot be directly 

used because of batching, i.e., multiple requests in the same 

batch are assigned the same sequence number). The 

timestamp is then used to ensure the total ordering of the 

commit of the transactions.  

 

Fig. 2. A transaction is aborted and retried if it accessed shared data items in 

a conflicting operation out-of-order. 

 

A request is delivered immediately at each replica once it is 

known that it has been totally ordered. The request is handled 

by one of the threads in a pre-allocated thread pool. This 

approach could significantly increase the throughput in 

systems equipped with multi-core processors. In general, the 

number of concurrent transactions (i.e., the size of the thread 

pool) should equal the number of CPU cores. It is possible 

that a transaction accesses a data item out of order (e.g., 

transaction i reads a shared data item, and then transaction i − 

1, which is ordered ahead of transaction i, later writes to the 

same shared data item), in which case, transaction i is aborted 

and retried as soon as the out-of-order conflicting operation is 

detected, as shown in Figure 2. It is important to note that all 

transactions ordered later (such as transaction i + 1) would 

have to wait until the retried transaction has been committed. 

 

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION 

The proposed Byzantine fault tolerance framework is 

implemented in Java based on LSA-STM [9] and UpRight [5]. 

A comprehensive experimental study has been carried out on 

the research prototype in a Local-Area Network testbed that 

consists of 14 HP BL460c blade servers and 18 HP ProLiant 

DL320 G6 rack-mounted servers connected by a Cisco 

Gigabit switch. Each BL460c server is equipped with two 

Xeon E5405 (2GHz) processors and 5GB RAM. Each DL320 

server is equipped with one Xeon E5620 (2.40GHz) 

processor and 8GB RAM. All servers run the 64-bit Ubuntu 

server Linux operating system.  

The test application is a client-server application where the 

server is written using LSA-STM. Each client’s request 

triggers a new transaction at the server. If a transaction is 

aborted, it will be retried until it is committed. The server 

maintains a shared data pool that consists of 100 data items. 

Each transaction accesses 10 data items (all of them are write 

operations for simplicity). A transaction accesses the data 

items in the shared data pool pseudo-randomly according to a 

predefined sharing rate. For example, a 20% sharing rate 

means that a transaction will access 2 data items in the shared 

data pool and 8 private data items. To characterize non-trivial 

processing load, a finite processing delay is artificially 

introduced at the server for each transaction in the form of 

busy loops (i.e., the server executes a while loop until the 

predefined time has passed). Two types of processing load are 

experimented: (1) fixed at 5ms, and (2) random processing 

delays with a Poisson distribution with a mean of 5ms.  

In the test, the server replicas are deployed among the 

BL460c blade servers, and the clients are deployed among the 

DL320 servers. A thread pool of 8 threads is used to enable 

concurrent processing of up to 8 requests at the server (this is 

to match the 8 CPU cores at each server node).  

The server is replicated with f =1 (i.e., 3 server replicas are 

used). The client sends a request first to the UpRight 

agreement cluster for total ordering. The agreement cluster 

then forwards the request to the server replicas with the 

designated total order for processing. In the agreement cluster, 

f = 1 is also used (i.e., 4 agreement nodes are used) for the 

Byzantine agreement on the total order of requests.  

During the experiments, the following scenarios are tested:  

1) Fixed processing time (5ms) for each transaction in our 

BFT framework, denoted as C-BFT (Fixed-i%) in the test 

result figures, where i is the data sharing rate;  

2) Random processing time with Poisson distribution with a 

mean of 5ms for each transaction in our BFT framework, 

denoted as C-BFT (Poisson-i%) in the test results figures;  

3) For comparison, concurrent processing is disabled (i.e., 

all requests are processed sequentially one after another), 

denoted as S-BFT in the test result figures. 
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Fig. 3. Test results. (a) Throughput versus the number of concurrent clients 

for C-BFT Fixed configurations. For comparison, the throughput for S-BFT 

is also included. (b) Throughput versus the number of concurrent clients for 

C-BFT Poisson configurations. (c) Peak throughput versus different data 

sharing rates. 

 

The throughput test results are summarized in Figure 3. 

Figure 3(a) shows the average throughput with respect to 

different number of concurrent clients under various C-BFT 

Fixed scenarios, and the S-BFT scenario. The results for 

C-BFT Poisson scenarios are shown in Figure 3(b). As 

expected, the lowest throughput is observed for the S-BFT 

configuration and the highest throughput is achieved under 

C-BFT (Fixed-0%) (i.e., when there is no shared data between 

different transactions). Figure 3(c) shows the peak throughput 

dependency on the data sharing rate for the three sets of 

scenarios.  

To study the inner workings of the system, the number of 

conflicts and aborts are profiled, in addition to the number of 

commits in each run. The profiling results for C-BFT Fixed 

scenarios are shown in Figure 4 (the results for C-BFT 

Poisson scenarios are very similar, and hence, they are 

omitted in the figure). It can be seen that the conflict and abort 

rates increase exponentially with the number of concurrent 

clients, and with the sharing rate. 

 

Fig. 4. Conflict and abort rates for C-BFT Fixed. (a) Conflict rate in terms of 

average number of conflicts per transaction versus different number of 

concurrent clients. (b) Abort rate in terms of average number of aborts per 

transaction versus different number of concurrent clients. (c) Abort rates 

observed for 10 concurrent clients with different data sharing rates. 

 

The test results shown above prove that indeed the 

throughput is improved with the proposed system compared 

with sequential BFT processing (i.e., the S-BFT scenario) in 

all circumstances tested. The throughput improvement ranges 

from about 28% (with 100% sharing rate), to 125% (with 0% 

sharing rate). We can make the following two observations 

from the test results:  

1) The throughput is higher with smaller data sharing rate, 

and  

2) The throughput is higher with a uniform fixed processing 

time for each transaction (i.e., each transaction takes 

identical fixed amount of time to complete).  

Both observations can be easily explained. The higher the 

data sharing rate, the more likely some transactions will be 

aborted and retried, as illustrated in Figure 4. Furthermore, 

when a transaction is retried, all transactions ordered after this 

transaction may have to wait before they can be committed. 

This explains observation 1. When all transactions take the 

same amount of time to complete, the next transaction can be 

committed almost immediately after the current one is 

committed, which minimizes any potential wait-to-commit 

time. On the other hand, if the processing time for each 

transaction is randomly distributed, it is very likely some 

transactions will have to wait before they can be committed, 

which reduces the throughput. This explains the observation 

2.  

One might expect a much sharper reduction in throughput 

with the increase of number of concurrent clients and sharing 

rate due to the observed exponential increase in conflict and 

abort rates. This did not happen because the aborted 

transactions can be retried concurrently as well.  

Furthermore, the test results also reveal that the proposed 

system could be further improved. When 0% sharing rate is 

used, the peak throughput is only about 2.3 times that of 

sequential BFT. In an ideal scalable system, the peak 

throughput would be 8 times that of sequential BFT. The less 

than ideal scalability of the proposed system may be partially 

due to the restriction of the total ordering of the commits. It is 

possible to relax this restriction by incorporating the 

knowledge of application semantics. 

 

V. CONCLUSION 

In this paper, we described a concurrent BFT framework 

for applications based on software transactional memory. We 

have done extensive performance evaluation of the proposed 

framework. The results show indeed the throughput is 

increased significantly compared with sequential BFT, even 

in the worst case when every transaction accesses data from 

the shared data pool. We observed that the throughput 

strongly depends on the data sharing rate among the 

transactions. Furthermore, the distribution of processing time 

of the transactions also plays a role in determining the average 

throughput. Better throughput can be achieved if all 

transactions take similar amount of time to complete. 
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