

Abstract—This paper introduces a class of conjunction-based

clauses with function variables and their semantics, with an aim

to provide a larger problem-transformation space that

seamlessly supports both top-down computation and bottom-up

computation. A representative set of the collection of all models

of a set of conjunction-based clauses is formulated. Two types of

equivalent transformation on conjunction-based clauses, i.e.,

unfolding and forwarding, are presented and their application is

illustrated. The presented work provides a foundation for

constructing a correct method for solving query-answering

problems.

Index Terms—Query-answering problem, equivalent

transformation, conjunction-based clause, representative set,

forwarding transformation.

I. INTRODUCTION

A query-answering (QA) problem is concerned with

finding the set of all ground instances of a given query atom

that are logical consequences of a given logical formula.

Equivalent transformation (ET) of formulas is essential and

very useful for solving many kinds of logical problems [1],

including QA problems. In ET-based problem solving, a

logical formula representing a given problem is successively

transformed into a simpler but logically equivalent formula.

Correctness of computation is readily guaranteed by any

combination of equivalent transformations. Many kinds of

correct algorithms for solving logical problems can be

devised based on the ET principle.

Meaning-preserving Skolemization [2] necessitates

incorporation of function variables. This paper introduces a

class of extended clauses, called conjunction-based clauses,

which may contain occurrences of function variables, and

establishes their semantics. A representative set of the

collection of all models of a set of conjunction-based clauses

is formulated, based on which preservation of the intersection

of all these models can be discussed. Two types of

transformation on conjunction-based clauses, i.e., unfolding

transformation and forwarding transformation, are presented.

Transformation of the first type corresponds to top-down

(goal-directed) computation, while that of the second type can

be naturally regarded as bottom-up computation. Application

of them to simplification of a QA problem is illustrated.

To begin with, Section 2 formulates a class of QA problems,

describes a general scheme for solving them using ET, and

Manuscript received March 11, 2012; revised May 2, 2012.

Kiyoshi Akama is with the Information Initiative Center, Hokkaido

University, Japan (e-mail: akama@iic.hokudai.ac.jp).

Ekawit Nantajeewarawat is with the Sirindhorn International Institute of

Technology, Thammasat University, Thailand.

recalls the class of extended clauses introduced in[2]. Section

3 formulates conjunction-based clauses and defines their

semantics. Section 4 defines a representative set of the

collection of all models of a set of conjunction-based clauses.

Section 5 presents unfolding transformation and forwarding

transformation on conjunction-based clauses. Section 6

illustrates their application. Section 7 provides concluding

remarks.

II. SOLVING QUERY-ANSWERING PROBLEMS BY

EQUIVALENT TRANSFORMATION

A. Query-Answering (QA) Problems

A query-answering problem (QA problem) is a pair K, a,

where K is a logical formula and a is an atomic formula (atom).

The answer to a QA problem K, a, denoted by ans(K, a), is

defined as the set of all ground instances of a that follow

logically from K. When K consists of only definite clauses,

problems in this class are problems that have been discussed

in logic programming [6]. In the class of QA problems

discussed in [8], K is a conjunction of axioms and assertions

in Description Logics [3]. Recently, QA problems have

gained wide attention, owing partly to emerging applications

in systems involving integration between formal ontological

background knowledge and instance-level rule-oriented

components, e.g., interaction between Description Logics and

Horn rules [5, 7] in the Semantic Web's ontology-based rule

layer.

B. Solving QA Problems by Equivalent Transformation

Using the set of all models of K, denoted by Models(K), the

answer to a QA problem K, a can be equivalently

represented as

ans(K, a) = (Models(K)) rep(a),

where Models(K) is the intersection of all models of K and

rep(a) is the set of all ground instances of a. Calculating

Models(K) directly may require high computational cost.

To reduce the cost, K is transformed into a simplified formula

K such that (Models(K)) rep(a) is preserved and

(Models(K)) rep(a) can be determined at a low cost.

By meaning-preserving Skolemization [2] and moving

constraint atoms from left sides to right sides, the logical

formula K is converted into a set Cs of extended clauses, each

of which takes the form

a1, , am b1, , bp, f1, , fq,

where a1, , am are usual atoms, each of b1, , bp is a usual

atom or a constraint atom, and f1, , fq are func-atoms, which

are introduced as follows: Given any n-ary function constant

Conjunction-Based Clauses for Equivalent Transformation

of Query-Answering Problems

Kiyoshi Akama and Ekawit Nantajeewarawat

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

5

or n-ary function variable f, an expression

func(f, t1, , tn, tn+1),

where the ti are usual terms, is considered as an atom of a new

type, called a func-atom. When f is a function constant and

the ti are all ground, the truth value of this atom is evaluated to

be true iff f(t1, , tn) = tn+1. Let ECL denote the set of all

extended clauses.

Given Cs ECL, the set of all models of Cs is denoted by

Models(Cs). A QA problem Cs, a such that Cs ECL is

called a QA problem on ECL.

III. CONJUNCTION-BASED CLAUSES AND CONVERSION

FROM EXTENDED CLAUSES

An atom conjunction is a formula of the form [a1, , am],

where a1, , am are usual atoms. A conjunction-based clause

C is a formula of the form

c1, , cm b1, , bn, f1, , fp,

where c1, , cm are atom conjunctions, each of b1, , bn is a

usual atom or a constraint atom, and f1, , fp are func-atoms.

The sets {c1, , cm} and {b1, ..., bn, f1, ..., fp} are called the

left-hand side and the right-hand side, respectively, of C,

denoted by lhs(C) and rhs(C), respectively. When m = 1, C is

called a conjunction-based definite clause, c1 is called the

head of C, denoted by head(C), and rhs(C) is also called the

body of C, denoted by body(C). When the conjunction-based

clause C above contains no usual variable and no function

variable, it determines a formula L(C), given by

L(C) = (conj(c1) conj(cm) b1 bn

f1 fp),

where for any i {1, , m}, if ci = [a1, , aq], then conj(ci)

denotes (a1 aq).

Let CBC be the set of all conjunction-based clauses. Let

FVar be the set of all function variables, FCon the set of all

function constants, and Map(FVar, FCon) the set of all

functions from FVar to FCon. Given Map(FVar, FCon)

and R CBC, let inst(, R) be the set of conjunction-based

clauses obtained from R by instantiating all function variables

appearing in it into function constants using . A set G of

ground usual atoms is a model of a set R CBC iff there

exists Map(FVar, FCon) such that for any C inst(, R)

and any ground substitution for all usual variables occurring

in C, L(C) is true with respect to G. The set of all models of

a set R CBC is denoted by Models(R).

Theorem 1. Let Cs be a set of extended clauses. Let R be

the set of conjunction-based clauses obtained from Cs by

converting each clause (a1, , am b1, , bn, f1, , fp) Cs

into the conjunction-based clause ([a1], , [am] b1, , bn,

f1, , fp). Then Models(Cs) = Models(R).

IV. A REPRESENTATIVE SET FOR SOLVING QA PROBLEMS

Next, the notion of a representative set of a collection of

sets is introduced. The intersection of a given collection of

sets can be determined in terms of the intersection of sets in its

representative set (Theorem 2). Given a set R of

conjunction-based clauses, a set collection, MM(R), is

defined, with an important property being that MM(R) is a

representative set of the set of all models of R (Theorem 3).

Consequently, the answer to a QA problem concerning R can

be computed through MM(R).

A. Representative Sets

A representative set is defined below:

Definition 1. Let G be a set and M1, M2 2
G
. M1 is a

representative set of M2 iff M1 M2 and for any m2 M2,

there exists m1 M1 such that m2 m1.

Theorem 2 below provides a basis for computing the

intersection of the set of all models of a clause set using its

representative set.

Theorem 2. Let G be a set. For any M1, M2 2
G
, if M1 is

a representative set of M2, then M1 = M2.

B. Representative Set for All Models of a

Conjunction-Based-Clause Set

Given a set R CBC, MM(R) is defined below. The

following notations are used:

 Let CBCnfv be the set of all conjunction-based clauses

with no occurrence of any function variable, GCBC

the set of all conjunction-based clauses that consist

only of ground usual atoms, and GAC the set of all

ground atom conjunctions.

 Given R CBCnfv, let ginst(R) be defined as a subset

of GCBC as follows:

1) Let R1 be the set of ground conjunction-based clauses

obtained from R by R1 = {C | (C R) & (is a ground

substitution for all usual variables occurring in C)}.

2) Let R2 be the set of ground conjunction-based clauses

obtained from R1 by removing each conjunction-based

clause whose right-hand side contains at least one false

constraint atom or at least one false func-atoms.

3) Then let ginst(R) be the set of ground conjunction-based

clauses obtained from R2 by removing all true constraint

atoms and all true func-atoms from the right-hand side of

each conjunction-based clause in R2.

 Let SEL be the set of all mappings from GCBC to

GAC {} such that for any sel SEL and any C

GCBC, the following conditions are satisfied:

1) If lhs(C) = , then sel(C) = .

2) If lhs(C) , then sel(C) lhs(C).

 Let GCBDC be the set consisting of every

conjunction-based definite clause whose body

contains only ground usual atoms and whose head is

either a ground atom conjunction or .

 Given a mapping sel SEL and R GCBC, let

edc(sel, R) be defined as a subset of GCBDC by

edc(sel, R) = {edc(sel, C) | C R},

where for each conjunction-based clause C R, edc(sel, C) is

the conjunction-based definite clause obtained from C as

follows:

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

6

1) head(edc(sel, C)) = sel(C)

2) body(edc(sel, C)) = rhs(C)

 Given C = ([a1, , am] b1, , bn) GCBDC, let

dc(C) = {(ai b1, , bn) | 1 i m}. Given D

GCBDC, let dc(D) = CD dc(C).

Definition 2. Let R CBC. A collection MM(R) of

ground-atom sets is defined by

MM(R) = {M(D) | (Map(FVar, FCon)) & (sel SEL)

&

 (D = dc(edc(sel, ginst(inst(, R))))) & (M(D))},

where for any set D of definite clauses, M(D) denotes the

minimal model of D.

Theorem 3. For any set R of conjunction-based clauses,

MM(R) is a representative set of Models(R).

V. EQUIVALENT TRANSFORMATION OF QA PROBLEMS

A QA problem R, a such that R CBC is called a QA

problem on CBC. Given a QA problem R, a on CBC, R may

be further transformed equivalently in the CBC space into

another subset of CBC for problem simplification. Unfolding,

forwarding, and other transformation rules may be used.

A. Unfolding Transformation

Given a set A of atoms, let Rep(A) = {a | (a A) & is a

substitution for usual variables) }. Let R, a be a QA

problem on CBC. Assume that:

1) Aq is a set of atoms such that a Rep(Aq) and Ap is a set of

atoms such that Rep(Ap) Rep(Aq) = .

2) D is a set of conjunction-based definite clauses in R that

satisfies the following conditions:

 For any conjunction-based definite clause C D,

head(C) contains only one atom and this atom

belongs to Rep(Ap).

 For any conjunction-based clause C R - D, each

atom occurring in lhs(C) belongs to Rep(Aq).

1) occ is an occurrence of an atom b in the right-hand side of

a conjunction-based clause C in R – D such that b

Rep(Ap).

2) UNFOLD(R, D, occ) is the set

(R – {C}) ({unfold(C, C, b) | C D}),

where for each C D, unfold(C, C, b) is defined as follows,

assuming that head(C) = [b] and is a renaming substitution

for usual variables such that C and C have no usual variable

in common:

 If b and b are not unifiable, then unfold(C, C, b) =

.

 If they are unifiable, then unfold(C, C, b) = {C},

where C is the conjunction-based clause obtained

from C and C as follows, assuming that is the

most general unifier of b and b:

 lhs(C) = lhs(C).

 rhs(C) = (rhs(C) - {b}) rhs(C).

Then MM(R) = MM(UNFOLD(R, D, occ)), and

consequently, by Theorems 2 and 3, (Models(R)) rep(a)

= (Models(UNFOLD(R, D, occ))) rep(a).

B. Forwarding Transformation

Let c be an atom conjunction [a1, , am] and c an atom

conjunction [b1, , bn]. Then let c c denote the atom

conjunction [a1, , am, b1, , bn]. Assume that R is a set of

range-restricted conjunction-based clauses, i.e., for each

conjunction-based clause C R, each usual variable that

occurs in lhs(C) also occurs in rhs(C).

 Fwd-1: Let c and d be atom conjunctions. Assume

that

1) R = {C1, C2} Rrest, where C1 = (c) and C2 = (d);

2) C = (c d).

Then MM(R) = MM({C} Rrest), and it follows

from Theorems 2 and 3 that for any usual atom a,

(Models(R)) rep(a) = (Models({C} Rrest))

 rep(a).

 Fwd-2: Let c1, , cm and d1, , dq be atom

conjunctions. Let e1, , en and a1, , ak be usual

atoms. Assume that

1) R = {C1, C2} Rrest, where

 C1 = (c1, , cm, [e1, , en]),

 C2 = (d1, , dq a1, , ak);

2) is a substitution for usual variables such that each atom

in [a1, , ak] occurs in [e1, , en];

3) C = (c1, , cm, ([e1, , en] d1), , ([e1, , en] dq

)).

Then MM(R) = MM({C, C2} Rrest), and it follows from

Theorems 2 and 3 that for any usual atom a, (Models(R))

rep(a) = (Models({C, C2} Rrest)) rep(a).

VI. EXAMPLE

The Oedipus problem, given in [3], is taken as an example.

Oedipus killed his father, married his mother Iokaste, and had

children with her, among them Polyneikes. Polyneikes also

had children, among them Thersandros, and Thersandros is

not a patricide. The problem is to find “a person who has a

patricide child who has a non-patricide child.” Assuming that

“oe,” “io,” “po,” and “th” stand, respectively, for Oedipus,

Iokaste, Polyneikes, and Thersandros, this problem is

represented as a QA problem Cs, prob(X), where Cs

consists of the following seven clauses:

CI: hasChild(oe, io) CII: hasChild(po, io)

CIII: hasChild(po, oe) CIV: hasChild(th, po)

CV: pat(oe) CVI: pat(th)

CVII: pat(Z), prob(X) hasChild(Z, Y), hasChild(Y,

X), pat(Y)

The clause set Cs is converted into a set R consisting of the

following conjunction-based clauses:

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

7

C1: [hasChild(oe, io)] C2: [hasChild(po, io)]

C3: [hasChild(po, oe)] C4: [hasChild(th, po)]

C5: [pat(oe)] C6: pat(th)

C7: [pat(Z)], [prob(X)] hasChild(Z, Y),

hasChild(Y, X), pat(Y)

The set R is successively transformed as follows:

 By unfolding at hasChild(Z, Y) in C7 with Ap =

{hasChild(X, Y)}, Aq = {prob(X), pat(X)},

and D = {C1, C2, C3, C4}, we obtain:

Ca: [pat(oe)], [prob(X)] hasChild(io, X), pat(io)

Cb: [pat(po)], [prob(X)] hasChild(io, X), pat(io)

Cc: [pat(po)], [prob(X)] hasChild(oe, X), pat(oe)

Cd: [pat(th)], [prob(X)] hasChild(po, X), pat(po)

 By unfolding at the hasChild-atoms in Ca, Cb, Cc, and

Cd, with Ap = {hasChild(X, Y)}, Aq = {prob(X),

pat(X)}, and D = {C1, C2, C3, C4}, we obtain:

Ce: [pat(po)], [prob(io)] pat(oe)

Cf: [pat(th)], [prob(io)] pat(po)

Cg: [pat(th)], [prob(oe)] pat(po)

 The conjunction-based clauses C1-C4 can then be

removed. The current conjunction-based-clause set

is {C5, C6, Ce, Cf, Cg}.

 By Fwd-2 with C5 and Ce, we obtain:

Ch: [pat(oe), pat(po)], [pat(oe), prob(io)]

 By Fwd-2 with Ch and Cf, we obtain:

Ci: [pat(oe), pat(po), pat(th)], [pat(oe), pat(po),

prob(io)], [pat(oe), prob(io)]

 By Fwd-2 with Ci and C6, we obtain:

Cj: [pat(oe), pat(po), prob(io)], [pat(oe), prob(io)]

 By Fwd-2 with Cj and Cg, we obtain:

Ck: [pat(oe), pat(po), prob(io), pat(th)], [pat(oe),

pat(po), prob(io), prob(oe)],

[pat(oe), prob(io)]

 By Fwd-2 with Ck and C6, we obtain:

Cm: [pat(oe), pat(po), prob(io), prob(oe)],

[pat(oe), prob(io)]

 The conjunction-based clauses C6, Ce, Cf, and Cg can

then be removed. The current

conjunction-based-clause set is the singleton{Cm }.

Obviously, MM({Cm}) rep(prob(X)) = {prob(io)}.

Thus Iokaste is the only answer to this problem.

VII. CONCLUDING REMARKS

Conventional Skolemization imposes restrictions on

solving QA problems in the first-order domain. Development

of a correct and efficient solver for a large class of QA

problems demands meaning-preserving Skolemization, which

converts a given first-order formula into a set of extended

clauses possibly containing function variables. This paper

has proposed a class of conjunction-based clauses with

function variables and has established their semantics. This

class of formulas forms a space for equivalent transformation

that allows a combination of top-down computation through

unfolding transformation and bottom-up computation through

forwarding transformation. It provides a basis for

construction of more general and more efficient QA-problem

solvers.

International Journal of Future Computer and Communication, Vol. 1, No. 1, June 2012

8

REFERENCES

[1] K. Akama and E. Nantajeewarawat, “Formalization of the Equivalent
Transformation Computation Model,” Journal of Advanced
Computational Intelligence and Intelligent Informatics, vol. 10, no. 3,
pp. 245-259, 2006.

[2] K. Akama and E. Nantajeewarawat, “Meaning-Preserving
Skolemization,” in Proc. of the 2011 International Conference on
Knowledge Engineering and Ontology Development (KEOD 2011),
Paris, France, pp. 322-327, 2011.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, the Description Logic Handbook. 2nd edn.
Cambridge University Press, 2007.

[4] C. L. Chang and C. L. Lee, Symbolic Logic and Mechanical Theorem
Proving. Academic Press, 1973.

[5] I. Horrocks, P. F. Patel-schneider, S. Bechhofer, and D. Tsarkov,
“OWL Rules: A Proposal and Prototype Implementation,” Journal of
Web Semantics, pp. 23-40, 2005.

[6] J. W. Lloyd. Foundations of Logic Programming. 2nd edn.
Springer-Verlag, 1987.

[7] B. Motik, U. Sattler, and R. Studer, “Query Answering for OWL-DL
with Rules,” Journal of Web Semantics, pp. 41-60, 2005.

[8] S. Tessaris, Questions and Answers: Reasoning and Querying in
Description Logic. PhD Thesis, Department of Computer Science, the
University of Manchester, UK, 2001.

