

Abstract—Defect remains in the whole life of software

because software is developed by humans and ‘to err is human’.
The main goal of well-organized software defect management
process is to produce quality software with the least number of
defects to reduce the impact of problems in the organization.
Defect management process includes three levels which are
defect detection, defect analysis and defect prevention to
eliminate and mitigate the potential defects. At first level test
the software work product until the entire defects are identified
and fixed. The second level is defect analysis in this level
previously identified defects are analyzed and time is spent to
look their root causes and why they were not detected earlier.
The ultimate goal of third level defect prevention is to prevent
the defects from recurring in the future. The research question
of this study is how to produce quality software with the least
number of defects? A well establish a defect management
process is one of the success factors of producing a software
system within the time and budget. In this paper author have
proposed a defect management process model and finds
observations by applying the proposed model in one of the case
organization. The major contribution of this study is to
establish a defect management process model in an organization
to reduce the number of defects and produce a quality software
product.

Index Terms—Defect management process model, ITIL
defect management model, defect detection, defect analysis,
defect prevention, radial analysis, ODC, MR classification,
ODC-CC, RCA, FMEA, FTA.

I. INTRODUCTION
Defect is destructive in all stages of software development.

A defect is a flaw, deficiency or inaccuracy in the software
product [1]. Defect remains in the whole life of software;
each defect which occurs in the software stages is the defect
in that software. Everything associated with defect is a
repeated process not a condition or situation. The IEEE
defines Error, Fault and Failure as Error: an individual action
that guide to inaccurate result. Fault: wrong or incorrect
action taking to solve the problem. Failure: inability of a
software work product function to meet the anticipated
requirements [1].

Establishing a defect management process is an attractive
way to improve the software quality. Early detection of
defect provides cost and time saving for software projects
because developers need to produce less new product
versions and bug fixes. Moreover, reduce the number of
defects in an application increases the level of customer

Manuscript received December 5, 2012; revised February 13, 2013.
Hafiz Ansar Khan is with Shaheed Zulfikar Ali Bhutto Institute of

Science and Technology Islamabad, Pakistan (e-mail:
ansar_1182@yahoo.com).

satisfaction, and reliable software is easy to sell to new
customers.

To manage software defects three levels are used defect
detection, defect analysis and defect prevention. At first level
test software work product until the entire defects are
identified and fixed. Although it is not possible to test the
software hundred percent means completely. However at this
level it is assumed to detect many defects as possible this can
be done through static analysis and automated testing tools.
The second level is defect analysis in this level previously
identified defects are analyzed and time is spent to look their
root causes and why they were not detected earlier. The Third
level is defect prevention in this process specific techniques
for example orthogonal defect classification (ODC) [2], [3]
are used to identify the defects and their root causes. The
ultimate goal of this defect prevention technique is to prevent
the defects from recurring in the future. The defect found in
the first two levels can also be used in defect prevention to
eliminate the root causes of defects [4].

In this paper the research question is how to produce
quality software with the least number of defects to reduce
the impact of problems in the organization? Previously most
of the research on defect management was paid attention to
software companies excluding the customer [5]. In this paper
the propose model also observes the defect management from
the customer's viewpoint.

The paper is structured as Section II describes related work.
Section III shows the propose model. Section IV illustrates
the simulation of the proposed model. Section V describes
the comparison of the proposed model with previous work.
And finally section 6concludes the study.

II. PROCEDURE FOR PAPER SUBMISSION
Any defect in the software represents a weakness in the

process. Unimportant defects are also no different than
critical defects. It’s a developer best fortune that prevents a
defect to cause a major failure [1]. Even the minor defects in
the software create an opportunity for the developer to learn
and improve the process by preventing potential major
failures. Defect remains in the whole life of software the
defect itself might not be a big problem; but the reality that
there was a defect is a big problem [1].

Identifying defects in the early phases of software
development leads to preventing defects in the later phases of
software [6]. The cost and time of a defect found in the later
stages of software development process can be very high [6].
Fix cost of later found defects gets higher as the software
development progress because of rework done in design,
development and testing stages. A software defect that has

Establishing a Defect Management Process Model for
Software Quality Improvement

Hafiz Ansar Khan

585

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

DOI: 10.7763/IJFCC.2013.V2.232

cost 1x to resolve in design phase might cost 100 x to resolve
after the software work product is released [7].

In Different studies different author has explored the
defect management process. Software Engineering Institute,
Information Technology Infrastructure Library and Quality
Assurance Institute describe different types of defect
management models [5]. Quality Assurance Institute
describes that defect management includes six essential
elements which are discover a defect, defect prevention, base
lining the defects, resolution of defect, defect management
process improvement, and problem reporting [5]. The IBM
defect prevention model has focused on defect prevention
techniques which are defect analysis and defect root cause
analysis etc.

A. Defect Prevention
Defects are introduced in the software system somewhere

in requirement, design and development phase. If a software
defects can be indented out of the software system this will
never need time and money to find and fix [5]. Microsoft
Encarta 2007 defines the prevention as an activity which
stops someone to do something or stop something to do an
action [8]. Many defect prevention techniques for example
FMEA and FTA are used to prevent defects. FMEA is a
technique which concentrates on possible failure modes does
not extremely focus on the potential failure root causes
events, but the second prevention technique FTA first found
potential failure modes and then deeply go into all potential
root causes [8]. It will be more effective to perform the
FMEA and FTA at the start of the project this will reduce the
time and cost spend to fix the defects in the later stages. In
CMM at level5 defect management is considered as a key
process area to plan defect prevention activities [9].

B. Defect Analysis
The main goal of defect analysis techniques is to analyze

defects, identify their root causes and then developing the
ways to reduce these defects. Defects are analyzed by using
the knowledge learns from the previously discovered defects.
Examples of defect analysis techniques are radial analysis
[10], orthogonal defect classification (ODC) [2-3],
orthogonal defect classification computational code
(ODC-CC) [2-3], Modification Request (MR) Classification
[11], and root cause analysis (RCA) [8].

C. Limitations of Previous Work
Now different organizations are using defect management

model presented by the IT Infrastructure Library (ITIL). But,
ITIL model does not describe how to carry out testing and
defect management activities in IT service management [5].
Secondly this framework does not consider the customer as a
relevant participant of the defect management process.

D. ITIL Model Challenges
Jantti Marko and Miettinen Aki in [5] describe different

challenges to ITIL based processes. The problem
management processes challenges described in [5] are:

The number of known error idea is not detectable in the
existing problem management process

1) No baseline available for known defects

2) It is not easy to combine the ITIL concepts with already
existing organization defect management system

3) Defect recorded have many data fields which are hardly
ever used

4) The association between testing support is ambiguous
(reported defects should have a link to test cases)

5) It is not easy to close many defects with one release
because customized versions of product used by many
customers

6) In ITIL it is difficult to define right frequency of
delivering the defect fixes to different customers

E. Defect Classification Challenges
Various defect classification schemes for example ODC,

MR classification and ODC-CC have been proposed
previously but none of them become a practice [12]. It is
found in different studies that defect classification schemes
are difficult to use as a general in practice [13, 14, 15]. They
can be used in a specific environment or domain. Stefan
Wagner in [12] proposes a set of challenges to defect
classification schemes which are

1) Interconnection of defects with different software
artifacts The existing classification schemes are
available in different dimensions but it is not clear what
are the necessary dimensions

2) On what factors defect type distribution depends. Do we
have domain specific defect type distribution?

3) The work done on defect classification schemes partly
related to software quality models

ODC significant effects on the economics of root cause

analysis by reducing the time and it also cover larger defect
space particularly when the defect volume is large and the
skills of the engineering team are limited [16]. ODC Improve
software quality by using readily available data to decrease
defects injected and increase defects detected.
The main limitations found in ODC are:

1) ODC cannot classify few defects such as GUI-type and
data-type [1]

2) Normally ODC is useful in an organization which has a
strong measurement system [4]

3) ODC require the capability to constantly group and
analyze data over time; numbers of organizations are at
lower maturity levels and they don't have this capability
[2]

4) Updating of defect types and associated defect triggers
makes it complicated to keep track of source defect data
over a long period of time [2]

III. PROPOSE MODEL
In Different studies different author has explored the

defect management process. Software Engineering Institute,
Information Technology Infrastructure Library and Quality
Assurance Institute describe different types of defect
management models [5]. In this study authors have tried to
propose a defect management process model. The propose
model consist of three subparts which are a collection of
defect data, defect analysis and prevention and last part is
defect resolution and continuous improvement. Each
component of the propose model is described below

586

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

Fig. 1. Software defect management model

A. Help Desk, QA and Project Team
IT organization should collect the defect data from help

desk, QA and project team members to achieve a good first
time defect fix rate. The goal to collect the defect data from
help desk, QA and project teams is to resolve many defects as
early as possible before delivering the product to the actual
customer.

B. Proactive/Reactive Defect management
 No doubt the most excellent approach to defects is to

eliminate them as they found. This can be only possible if a
defect prevention techniques and processes are used by the
organization. The goal of defect prevention is to eliminate the
defects altogether so that it cannot re-occur in the future. The
primary objective of proactive defect management is to
discover and resolve known defects as early as possible
before the occurrence of any major problem related to them.
Once the defects discovered try to eliminate every defect. For
defects that cannot be eliminated try to reduce its impact. The
reactive defect management process focuses on identifying
the causes of underlying reported problem.

C. Defect Control Activity
Defect control activity starts when the analysis of defect

data discloses repetitive problems or the analyzed defect does
not match with any of the appearing problem or incident.

D. Identify and Record Defect
When a defect reveals repetitive problems then identify all

the defects and record them in the defect management system.
The defect record needs to be linked with relevant incident or
problem. This will help to identify the defect solution or the
work around in the future. A defect has no meaning until the
found defect reported and also the developer should
acknowledge that the defect is found valid.

E. Classify and Categorize Defect
 Different classification schemes are used to classify the

defects for example ODC, ODC-CC, MR classification and
RCA. Defects are classified by category, priority, urgency
and impact. The possible software defect categories for
example can be functional, interface and algorithm etc. The

impact of the defect is its effect on the organization business
and the priority is based on urgency and impact of the defect.

F. Defect Root Cause Analysis
After classification and categorization of defects

investigate and diagnose the underlying causes of defect.
Different defect analysis techniques, methodology and
standard processes are used for root cause analysis.

G. Create Request for Change
Create a request for change to the development team to

implement permanent solution for the identified defect.

H. Defect Resolution
 Once the developer acknowledges that the found defect is

valid then the resolution process starts. While resolving the
defect the developer should keep in mind the importance of
fixing a defect. After resolution of defects developer must
notify to all related parties about the defect status.

I. Monitor Defect Management Process
Project management should continuously monitor the

defect management process. Project management should
aware the progress of the defect resolution process and
impact of defects on customers. The monitoring should be
done based on actual requirements defined in the software
requirement specification document.

J. Process Improvement
Most of the organizations ignored this process, although

this process is one of the big parts of payback. The
participants should go back to the phase from where the
defect originated and brainstorm what caused the defect.
After that they have to review the validation process in which
the defect should be caught earlier. This step will not only
improve the review process but in fact it will also strengthen
the participant’s capabilities towards organization business
logic.

IV. SIMULATION OF PROPOSED MODEL
The authors have applied the propose model in case

organization name as ‘Moftak Solutions’ and simulate the

587

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

result of model in the form of chart1 and chart2. Below
chart1 shows the relationship between product builds number
and defect density where x –axis is the product builds number
and y-axis is the defect density. In chart1 first build is the
‘baseline’ which shows the statistics of the previous round of
analysis. Baseline is helpful to begin the defect analysis
between different software releases. In ‘baseline’ product
defect density was 6.0 but after applying the propose model
in build 1, 2, 3 and 4 it is noticed that the defect density is
reduced to 4.3, 3.5, 3.2 and 3.1 in each build respectively.

Chart 2 shows the relationship of ‘Open Defects’ and ‘Kilo
Line of Code (KLOC)’ used in each build. In the baseline
there were 58 kilo lines of code, 72 KLOC in build1, 78
KLOC in build2, 82 KLOC in build3 and 85 KLOC in build4.
In the first build there were 20 open defects and in build2
they reduced to 12, in build3 they further reduced to 5 and in
the last build4 there were only 2 open defects. This shows the
performance improvement.

Chart2

0

10
20

30
40

50
60

70
80

90

1 2 3 4 5

Open Defects

K
LO

C Open Defect
KLOC

A. Result
Table I represents the result of four builds. The first row of

table ‘baseline’ shows the statistics of previous round of
analysis. The build number is a unique number which
identifies the software build. In each build of software ‘Open
Defects’ shows the number of defects which are reported in
that build and ‘Fix Defect’ shows that how many defects are
fixed in that build. Known defects in a software builds are
identified by using the following formula

Known Defects= KDpre + DRcur - DFcur

where ‘KD’ represents the number of known defects in a
previous build, ‘DR’ stand for number of defects reported in
a build and ‘DF’ represents the number of defects fixed in a
build. Defect density can be easily calculated once the
numbers of known defects are found in a build. The defect
density is calculated by using the following formula

Defect Density= Number of Known defects/KLOC

where ‘KLOC’ stands for thousands of lines of code.

V. COMPARISON OF WORK
Different organizations are using defect management

model presented by the IT Infrastructure Library (ITIL) [5].
The major weakness of ITIL model is that it does not
consider the customer as a relevant participant of the defect
management process. Secondly it also does not specify how

to carry out testing and defect management activities in IT
service management [5]. It is not easy to combine the ITIL
concepts with already existing organization defect
management system [5]. The big challenge of ITIL model is
lack of performance metrics and knowledge [5].

 As comparison to the ITIL model the propose model is
easy to use in an organization and secondly it strengthen the
organization defect management and review process. In ITIL
model customer didn't consider as a relevant participant of
the defect management process but in the propose model
customer is considered as an active part of the defect
management process. Most of the organizations ignored the
improvement process which is considered as a process in the
describe model because this process is one of the big parts of
payback.

TABLE I: REPRESENTS THE RESULT OF FOUR BUILDS

Build
Open
Defect

Fix Defect
Known
Defect

KLOC
Defect
Density

Baseline ----- ----- 350 58 6.0

1 20 58 312 72 4.3

2 12 24 274 78 3.5

3 5 12 267 82 3.2

4 2 7 262 85 3.1

Total=39 Total=101

VI. CONCLUSION
A well establish defect management process is one of the

success factor of producing a quality software system. To
manage software defects three levels are used defect
detection, defect analysis and defect prevention. Currently
most of the organizations are using ITIL defect management
process model but the major challenges of ITIL model are
lack of performance metrics and less participation of
customer in the defect management process. In this study
authors have tried to propose a defect management process
model. The authors have applied the proposed defect
management process model in one of the case organization
and found that the propose model is easy to use and secondly
it strengthens the organization defect management and
review process. The major contribution of this study is to
establish a defect management process model in an
organization to reduce the number of defects and produce a
quality software product.

REFERENCES
[1] A. Gupta, J. Y. Li, R. Conradi, H. Rønneberg, and E. Landre, “A case

study comparing defect profiles of a reused framework and of
applications reusing it,” August 20, 2008, Springer.

[2] A. A. Shenvi, “Defect prevention with orthogonal defect
classification,” ISEC’09, February 23-26, ACM, India, 2009.

[3] B. Robinson, P. Francis, and F. Ekdahl “A defect-driven process for
software quality improvement,” USA: New York, ACM, 2008.

[4] A. Andrews, P. Runeson, C. Andersson, T. Thelin, and T. Berling,
“What do we know about defect detection methods?” IEEE Software,
May/June 2006.

588

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

[5] J. Marko and M. Aki, “Implementing a software problem management
model, a case study,” 2006, Springer Link.

[6] N. Agrawal and P. Jalote, “Using defect analysis feedback for
improving quality and productivity in iterative software development,”
March 27, ACM, 2006.

[7] R. Basili and B. Boehm, Software defect reduction top 10 list, Los
Alamitos, CA, USA: IEEE Computer Society Press, January 2001.

[8] M. McDonald, R. Musson, R. Smith, D. Bean, D. Catlett, L. A. Kilty,
and J. Williams, The practical guide to defect prevention, Washington:
Redmond, Microsoft Press, ch. 11, 2008.

[9] C. P. Chang and C. P. Chu, “Improvement of causal analysis using
multivariate statistical process control,” January 23, 2008, Springer.

[10] C. Henderson, “Managing software defects: Defect analysis and
traceability,” vol. 33, July, 2008,.

[11] M. Leszak, D. E. Perry, and D. Stoll, “A case study in root cause defect
analysis,” June, ACM, 2000.

[12] S. Wagner, “Defect classification and defect types revisited,” July 20,
2008, Seattle, Washington, USA.

[13] J. Duraes and H. Madeira, “Defination of software fault emulation
operators a field data study,” in Proc. 2003 International Conference
on Dependable Systems and Networks, 2003, IEEE Computer Society.

[14] B. Freimut, C. Denger, and M. Ketterer “An industrial case study of
implementing and validating defect classification for process
improvement and quality management” in Proc. 11th IEEE

International Software Metrics Symposium (METRICS '05), IEEE
Computer Society, 2005.

[15] S. Wagner, J. Jurjens, C. Koller, and P. Trischberger, “Comparing bug
finding tools with reviews and tests,” in Proc. 17th International
Conference on Testing of Communicating Systems (TestCom'05), 2005,
vol. 3502, Springer.

[16] D. Kelly and T. Shepard, “A case study in the use of defect
classification in inspections,” in Proceedings of the 2001 Conference of
the Centre for Advanced Studies on Collaborative Research, Toronto,
Ontario, Canada, ACM, 2001.

589

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

Mr. Hafiz Ansar Khan was born at Khushab,
Punjab, Pakistan, in 1983. The author has passed
MS in software engineering from Shaheed Zulfikar
Ali Bhutto Institute of Science and Technology
(SZABIST), Islamabad, Pakistan in 2011. He got
his graduation degree BS in software engineering
from University of Engineering and Technology
Taxilia, Pakistan in 2007. Currently author is
working in OA Systems, Islamabad, Pakistan as a
Software Quality Assurance Engineer. Previously

author had work three years in Moftak Solutions as a Quality Assurance
Engineer. The author has total five years’ experience in Software Quality
Assurance field.

