

Abstract—Denial of Service (DoS) and Distributed Denial of

Service (DDoS) attacks are attempts to make a server resources
unavailable to its intended users. SYN flooding attack is one
type of DDoS attack. In SYN flooding attack, the attacker sends
flood of SYN packets to victim server. This paper focus on
effective detection of SYN flooding attack. The aim of this paper
is to compare the results of detection of DDoS attack in both
centralized and distributed approaches. The proposed ap-
proach is distributed detection of DDoS attack which reduces
traffic in the network and load on server which is very high in
centralized detection. The experiments are conducted in Net-
work Simulator 2 (NS2) to validate our distributed detection of
DDoS attack . The experiments are conducted in Centralized
and Distributed approaches. The total actual victims found by
centralized approach is 78.75 % and the total number of actual
victims found by our distributed approach is 77.5 %. In both
centralized and distributed approaches the results matched well.
The traffic in network and load on the central DDoS monitor in
our distributed approach is less, which encourages research in
distributed detection of SYN flooding attack instead of centra-
lized approach.

Index Terms—DDoS Attack and SYN flooding attack.

I. INTRODUCTION
Denial of Service (DoS) and Distributed Denial of Service

(DDoS) attacks are attempts to make a server resources un-
available to its intended users. Information Security have
three fundamental objectives: they are Information Integrity,
Confidentiality and Availability. DoS attack is an attack on
availability. In this attack the attacker makes the server busy
in processing illegitimate requests thereby making server
resources unavailable for legitimate clients. In DDoS attack,
multiple DoS attacks are carried out from several agents
(Zombies) at a time on the victim (target server).

A. DoS Attack
In DoS attack attacker sends flood of requests to the victim,

thereby making the victim(target server) in a position to not
serve for legitimate clients. The DoS attack can be carried out
in various forms such as crashing servers, crashing routers,
overwhelming the network with high traffic, damaging
server critical resources (processing time, memory) etc. DoS
attack victim can be either server, operating system, protocol
which is used in network communication, network band-
width, disk space, routing information etc. If the victim is
server then we can have various types of DoS attacks like
smurf attack [1], ping of death [2] etc. If the operating system
is the victim then the attack is carried out by knowing the

Manuscript received January 15, 2013; revised April 2, 2013.
Santhosh Kumar Karre is with IBM India Software Labs, Bangalore, In-

dia. As part of my job at IBM, I am involved in Network management
product development.

vulnerabilitys in the design or implementation of operating
system. DoS attack can be performed by knowing the vul-
nerabilitys in the protocol thereby making protocol not
working. SYN flooding attack is a result of weakness in TCP
3-way handshake procedure.

B. DDoS Attack
DDoS attack is an extension of DoS attack. Wherein the

attackers starts attacking the victim with DoS attacks at the
same time in coordination.

In DDoS attack there is one master(who is actual attacker)
and number of attacking agents (zombies). Master is re-
sponsible for issuing control commands for zombies, and the
zombies are responsible for generating actual attack traffic.
The Fig. 1 shows the schematic diagram of DDoS attack. The
more number attacking agents makes that when compared to
DoS attack there is less probability for the zombies to get
detected by victim.

Fig. 1. DDoS attack

There are a number of mechanisms to carry out DDoS at-

tack, such as TCP SYN flooding [3], UDP flooding attack [4],
Ping of death [1] and DNS attack [5]. In this paper we will
concentrate only on SYN flooding attack.

C. SYN Flooding Attack
The SYN Flooding attack is result of weaknesses in TCP

Protocol design. It uses the flaws in the TCP 3-way hand-
shake mechanism [5]. The TCP 3-way handshake mechanism
is shown in Fig. 2. In SYN flooding attack, the attacker sends
flood of SYN packets to victim server with spoofed source IP
addresses [3]. Server stores the state information of each of
these attack connections. State information includes, the
source IP address, source port, destination IP address and
destination port etc. Server responds with SYN-ACK packets
which are destined for spoofed IP addresses, so attacker does
not receive SYN-ACK packets. It causes the wastage of
server resources in storing connection information of half
open connections (Half open connection is a connection
which is established from only one side). The victim server is

Distributed Detection of DDoS Attack

Santhosh Kumar Karre

628

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

DOI: 10.7763/IJFCC.2013.V2.241

629

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

busy in processing SYN packets which are originated from
attacker, thus server is not in a position to serve legitimate
clients.

Fig. 2. TCP 3-way handshake

D. Prior Work for Detection of DDoS Attack
We can fight DDoS attacks either by detecting them or

defense by preventing them in the first phase. In this paper,
we focus only on DDoS detection mechanism, in particular
detecting SYN flooding attacks.

In order to detect attack traffic, the detection system should
be able to distinguish between the normal traffic and attack
traffic. DDoS attack detection can be done in various ways
such as, Pattern Detection [6], Anomaly Detection [7], Third
party detection [8] and Packet Marking [9] etc. For example
in [10] the authors I.B.Mopari, S.G.Pukale and M.L.Dhone
assumed that attackers can not modify hop count. In their
approach, they used TTL field for calculating hop count. But
in fact if the attacker spoofs the initial TTL values, then the
proposed algorithm may not work properly. In [11] Yoohwan
Kim, d Ju-Yeon Jo, Jonathan Chao and Frank Merat the
blocking of TCP SYN flooding attack is done in a centralized
way, so even if the attacker want to knockout the router,
attacker can overwhelm the router with flood of spoofed IPs,
thereby making the router to not work properly, so the de-
tection system for DDOS attack detection may fail. In [12]
Yonghua You, Mohammad Zulkernine and Anwar Haque,
detection of DDOS attack is achieved by calculating distance
from TTL value, but it is always not possible to calculate true
distance from TTL. In [13] Tao Peng, Christopher Leckie and
Kotagiri Ramamohanarao, detection of DDOS attack is done
by considering anomalies in source IP address. Anomalies in
source IP addresses Can Not Reflect the SYN flooding DDoS
attack, so it can not detect syn flooding DDoS attack.

The Ganguly et al. [14] proposed a solution for detection
of DDoS attack, our proposed solution is an extension of
Ganguly et al. work. In their approach they used data stream
algorithm to detect DDoS attack. The advantage of data
stream algorithms is that they uses less memory and it re-
quires processing time to get information from large pool of
data. The advantages of their proposed solution are we can
monitor many servers at a time for DDoS attack, it requires
less processing time and less memory. The only problem with
their et al. work is that it causes more traffic in the network

and it leads to more processing overhead on central DDoS
Monitor System.

II. PROPOSED METHOD
In this paper, we propose a technique that reduces both the

traffic in the network and load on the DDoS attack moni-
toring server which is very high in [14] approach. Our pro-
posed solution is an extension of Ganguly et al. work. The
problem in Ganguly et al. is that, tuples (Source, destina-
tion,#1) for all connections in the ISP have to be sent to a
centralized DDoS monitor where the DDoS detection algo-
rithm is run. This results in a high network overload, and high
processing overhead at the DDoS monitor.

We proposed a solution which can be used for tracking
SYN flood attack effectively. Our solution is distributed
detection of DDoS attack. In our approach we used count min
sketch algorithm to keep track of top-K destinations which
are having maximum number half open connections. The
advantage of count min sketch is that it allows deletion of
legitimate connections from the pool of observation. Our
approach is as follows: for each of incoming SYN packet the
count for that destination is incremented by 1 and for each of
the ACK from a destination count for the destination is
decrements by 1. Each router in the network stores (Source,
Destination, count of half open connections) . The Count min
Sketch algorithm runs on each router in the network. The
input for count min sketch is collection of such tuples. The
output is top K destinations which having maximum number
of half open connections.

Fig. 3. TCP 3-way handshake

Outputs of all routers send to one main DDOS attack

monitoring server. DDOS attack monitoring server merges
outputs from all routers in the network and it runs DDOS
attack detection algorithm on merged output. As the size of
output produced by router’s DDOS attack detection algo-
rithm is very low when compared with total size of all tuples
for each connection in the network, the traffic in our ap-
proach is reduced and the processing overhead on the main
DDoS attack monitor is also reduced. The block diagram of
our proposed method is shown in Fig. 3.

We believe that a frequency of half open connection for a

destination IP address provides a very robust indicator of
potential DDoS activity. So the problem, is seeks to find the
top-k destinations connected to the most of the half open
connections. As Count min Sketch synopses incur a small
(logarithmic) number of steps to process each streaming
update. Our algorithm is guaranteed logarithmic time to find
an approximate set of top-k destinations (and, corresponding
distinct frequencies) that is provably close (with high prob-
ability) to the actual top-k set. As it is taking less time it can
be readily deployed to monitor large networks transmitting
large volumes of IP packet data.

In our approach we used data stream algorithms such as
count min sketch and Misra Gries Algorithm. In addition to
these algorithms we used heap sort algorithm to maintain
top-K destinations. In this next section we discuss count min
sketch and Misra Gries algorithm.

A. Count Min Sketch
Count min sketch was developed by Graham Cormode and

S.Muthu Krishnan [15]. It is used to answer frequency related
queries in the data stream processing. Count min sketch is a
variant of Bloom Filter [16]. It is used to store and retrieve
the frequencies (counts) of input elements efficiently. The
name of count min sketch is derived based on the two oper-
ations which are performed in count min sketch. The first
operation is counting frequency of input elements. The
second operation is computing minimum. Count min sketch
maintains a 2-D array of size w # d, where w is the width
(number of columns in array) of array and d is depth (number
of rows in array) of array. Count min sketch maintains d hash
functions H1, H2, H3... Hd. Each of these d hash functions is
associated with one row in count min sketch array as follows:
function H1 is associated with first row, function H2 is asso-
ciated with second row, function H3 is associated with third
row etc. The Fig. 4 shows the schematic diagram of count
min sketch. The input parameters for count min sketch are
accuracy (ε), certainty (δ). The hash table size and number of
hash functions required for count min sketch are calculated
from the input parameters ε and δ as follows:

Hash table size (w) = e/ε.
Number of hash functions (d)= ln 1/δ.

Initially all entries in the count min sketch array are initia-
lized to zero, which means that counts of all input elements is
initialized to zero. The d hash functions are used to insert
frequencies of elements into array and deletion of frequencies
of elements from array. The update procedure for inserting
(or deleting) an element to (from) count min sketch is as
follows:
 1) Update Procedure: To insert an element X into count

min sketch array, the procedure is as follows: we cal-
culate hash values of X w. r. t all hash functions H1(X),
H2(X), H3(X), ... Hd(X). The count of counters which are
at ithrow, Hi(X)th column of (where i=1, 2, 3, ..., d) count
min sketch array are incremented by 1. To delete an
element X from count min sketch array, we follow same
procedure as insertion procedure of count min sketch,
but instead of incrementing value of counters we
decrement the value of counters by 1.

 2) Procedure To Answer A Query: The query for count
min sketch is finding the frequency of an input element.

The procedure to find frequency of an element X is as
follows: First we calculate the hash values of X w.r.t all
d hash functions. Next the minimum count among all
counts which are at calculated hash values is taken as
true count for that element. The proof of algorithm
correctness can be found in [15].

Fig. 4. Count min sketch

B. Misra Gries Algorithm:
Misra Gries algorithm is used to find the frequent elements

in an input data stream or input array. The input for the al-
gorithm is set of elements in a data stream or an array of
elements. The parameter for Misra Gries algorithm is a con-
stant number K. The output of the algorithm is set elements
which are having frequency greater than N/K, where N is
number of elements already inserted into algorithm. The
basic idea of Misra Gries algorithm is Pigeon hole principle.
Lets recall the Pigeonhole principle. There are n pigeons, m
holes and m < n. This implies that there exists at-least one
hole which is having ≥ 2 pigeons in it. The basic idea of this
algorithm can be generalized for K > 2. The detailed proof of
the Misra Gries Algorithm can be found at [17], [18].

III. EXPERIMENTS AND RESULTS
We have conducted two experiments to check validity of

our approach, of which one experiment is done in Network
Simulator 2 (NS2) simulator [19]. The experiments are
conducted by considering various network topologies each
with different sizes. In each trial of experiment network is
built randomly, The random parameters in our experiments
are as follows: topology of network, number of agents at-
tached to every node, start time of each traffic generator and
end time of each traffic generator.

A. Experiment 1
We have conducted this experiment to compare results in

both distributed approach and centralized approach for de-
tecting top destinations with maximum number of half open
connections. This experiment is conducted to simulate the
idea (insertion of all connections into pool of observation and
deletion of legitimate connections from pool of observation)
of Ganguly et al. [14]. In this experiment to find top desti-
nations we used count min sketch algorithm. We conducted
this experiment using NS2 Simulator [19]. The experimental
setup is as follows: In each trial of experiment, we built
network with various random parameters. The random pa-
rameters in this experiment are as follows: The links between
nodes in the network, number of agents attached to a node,
the start time and end time of traffic generator. The sizes of
network topologies used in this experiment are 60, 120, 180
and 210 nodes. In this experiment, at each node in the net-

630

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

work we have used a 2 D array of size w×d (count min sketch
array). The count for destination is incremented by 1 for each
of SYN packet towards the destination, we decrement the
count of a destination by 1 for each ACK towards destination.
The procedure for updating count of a destination is given in
section 2.1. The count of the count min sketch is given as
input for the heap sort algorithm, heap sort algorithm takes
destination id and count of the estimation as input. The tuple
(destination id, destination count) is treated as a single data
structure. The heap tree is constructed by taking these data
structures as nodes of the tree. The heap sort algorithm al-
ways maintains the max heap property on the destination
count.

The experiment procedure is as follows: Initially we se-
lected 4 nodes as victim nodes of DDOS attack. We noted the
nodes which are chosen as attack victims, then we ran de-
tection of DDOS Attack algorithm in both distributed ap-
proach and centralized approaches independently. The output
of detection algorithm is 4 nodes which are victims of DDOS
Attack. The nodes which are reported by detection algorithm
are may or may not be actual victim of DDOS Attack. We
noted down victims reported by algorithm. We calculated the
number nodes which are actual victims of DDOS Attack. The
value for number nodes which are actual victims of DDOS
Attack can be 4 in best case (where all the reported nodes are
actual victims of DDOS Attack), and it is 0 in worst case
(where none of reported nodes are victims of DDOS Attack).
To get results of detection approach accurately, for each size
of we ran experiment in 5 trails. The sum of results of 5 trails
is taken as result of that size input. In Fig. 5 X-Axis
represents the size network and Y- Axis represents total
number actual victims found by detection algorithm for that
particular size. So in best case the value of sum of actual
victims reported by algorithm is 20 and in worst case it 0. The
experiments are conducted for 4 different sizes of topologies,
so the maximum number actual victims found by algorithm in
either of the approach can be 80 (4× 20) in the best case. The
minimum number actual victim found by either of the ap-
proach is 0 in worst case (which means that our algorithm can
not found any victims correctly).

Fig. 5. Comparison of centralized and Distributed detection of DDoS attack

using count min sketch

The above experiment is conducted both in centralized

approach and distributed approach independently. We plot-
ted the results of detection of DDOS attack in both ap-
proaches in Fig. 5. In Fig. 5 the thick lines represents results

pertaining to centralized approach and dashed lines
represents results pertaining to distributed approach. The
total actual victims found by centralized approach are 63,
which is equal to 78.75 % and the total number of actual
victims found by our distributed approach is 62 which is
equal to 77.5 %. The results in both approaches match in
most of the cases as shown in Fig. 5. In Fig. 5 above two lines
represents the detection values of centralized and distributed
approaches, and below lines represents false positives of
centralized and distributed detection approaches. The traffic
in our approach is less, because we are sending results of
routers to the Central DDoS monitor.

B. Experiment 2
This experiment is a static one, where we generate only

arrays as input for the Misra Gries algorithm. To simulate the
event that some legitimate connections might also be open at
the time of making the measurement in real, we deliberately
put every tuple in the array with a small probability and the
attack connections are inserted with probability 1. This
serves as false positives. we have used Misra Gries algorithm
to detect victims of DDoS Attack.

The setup for this experiment is as follows: We con-
structed network by using various random network parame-
ters. The random features in this experiment are topology of
network, number of connections to each node and the number
of open connections sent from node, source and destinations
of connection. We have conducted this experiment by vary-
ing size of topology in the network. For a fixed size topology
we varied percentage of legitimate that goes into Misra Gries
algorithm. We have considered three different sizes of to-
pology (60, 120, 240 nodes). We considered three different
percentages (5, 40, 80) by which legitimate connections are
inserted into Misra Gries algorithm. To validate our distri-
buted detection approach we conducted the same experiment
with various possible combinations of size of topology vs
percentage of legitimate connections. So we will get 9 dif-
ferent combinations of size of topology vs percentage of
legitimate connections. In Fig. 6 X-axis represents the size of
topology, Y - Axis represent percentage of legitimate con-
nections and each point in Fig. 6 resembles a combination of
size vs percentage of experiment.

The experiment procedure is as follows: Initially we se-
lected 3 nodes as victim nodes of DDOS attack. We noted the
nodes which are chosen as attack victims, and then we ran
detection of DDOS Attack algorithm in both distributed
approach and centralized approaches independently. The
output of detection algorithm is 3 nodes which are victims of
DDOS Attack. The nodes which are reported by detection
algorithm are may or may not be actual victim of DDOS
Attack, it is because of false positives which we inserted
wanted. We noted down victims reported by algorithm. We
calculated the number nodes which are actual victims of
DDOS Attack. The value for number nodes which are actual
victims of DDOS Attack can be 3 in best case (where all the
reported nodes are actual victims of DDOS Attack), and it is
0 in worst case (where none of reported nodes are victims of
DDOS Attack). To get results of detection approach accu-
rately, for each combination of size vs percentage we ran
experiment in 5 trails. The sum of results of 5 trails is taken as

631

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

result of that combination. In Fig. 6 Z - Axis represents the
sum of number of actual victims reported by detection algo-
rithm. So in best case the value of sum of actual victims
reported by algorithm is 15 and in worst case it 0.

The above experiment is conducted both in centralized
approach and distributed approach independently. We plot-
ted the results of detection of DDOS attack in both ap-
proaches in Fig. 6. In Fig. 6 the thick lines represents results
pertaining to centralized approach and dashed lines
represents results pertaining to distributed approach. The
results in both approaches match in most of the cases as
shown in Fig. 6. As expected, for high percentage insertion of
legitimate connections the detection of victims which are
under DDOS attack is low. For low percentage insertion of
legitimate connections the detection of victims which are
under DDOS attack is high. The plotted results shows that
when the percentage of legitimate connections having half
open connection are less, the centralized approach of detec-
tion of DDOS Attack algorithm works well, but when per-
centage of legitimate connections having half open connec-
tion are increases, the distributed approach of detection of
DDOS Attack algorithm works well when compared with
centralized approach.

Fig. 6. Comparison of centralized and Distributed detection of DDoS attack

using Misra Gries algorithm

IV. EXPERIMENTS AND RESULTS
Our proposed detection approach aims to reduce traffic in

the network and load on the DDOS monitor which is very
high in centralized detection approach. We conducted expe-
riments in NS2 simulator to compare results in centralized
and distributed approaches for detecting DDoS attack. The
total actual victims found by centralized approach is 78.75 %
and the total number of actual victims found by our distri-
buted approach is 77.5 %. The traffic in our distributed ap-
proach is less, because we are sending results of routers to the
Central DDoS monitor instead of sending all tuples to Central
DDoS monitor. The distributed approach decreases traffic on
the network and computational overheads at the central
DDoS monitor, we believe that it could be an interesting
alternative to explore.

ACKNOWLEDGMENT
I am deeply indebted to my professor Dr. M.V. Pandu-

ranga Rao for his constant guidance and support right from
my problem selection to experimentation. He patiently lis-
tened to all the problems I faced during the course of this
work and appropriately guided me with his full support.

I thank to my friend M.Srinivas for his friendly support,
for his help in writing this paper and who provided valuable
suggestions in improving this paper.

REFERENCES
[1] S. Kumar, “Smurf-Based Distributed Denial of Service (DDOS) Attack

Amplification in Internet,” Internet Monitoring and Protection, Inter-
national Conference on, pp. 25, 2007.

[2] Ping of Death. [Online]. Available:
http://linuxmafia.com/faq/Security/ping-of death.html

[3] S. Kumarasamy and A. Gowrishankar, “An active defense mechanism
for Tcp Syn Flooding Attacks,” CoRR, vol. abs/1201.2103, 2012.

[4] R. Xu, W. L. Ma, and W. L. Zheng, “Defending Against Udp Flooding
by Negative Selection Algorithm Based on Eigenvalue Sets,” in Proc.
of the Fifth International Conference on Information Assurance and
Security, 2009, pp. 342–345.

[5] J. Mirkovic and P. Reiher, “D-ward: A Source-end Defense Against
Flooding Denial-of-Service Attacks,” IEEE Transactions on De-
pendable and Secure Computing, vol. 2, pp. 216–232, 2005.

[6] The Open Source Network Intrusion Detection System. [Online].
Available: http://www.snort.org/

[7] J. Yan, S. Early, and R. Anderson, “The xenoservice a distributed
defeat for distributed denial of service,” in Proceedings of ISW 2000,
2000.

[8] B. S. L. M and T. Taylor. Icmp Traceback Messages. (2003). [Online].
Available: http://ietf.org/ internet-drafts/draft-ietf-itrace-01.txt.

[9] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical Net-
work Support for IP Trace back,” 2000, pp. 295–306.

[10] I. B. Mopari, S. G. Pukale, and M. L. Dhone, “Detection and Defense
Against Ddos Attack with IP Spoofing,” in Proc. ICAC3 ’09, 2009.

[11] Y. Kim, J.-Y. Jo, J. Chao, and F. Merat, “High Speed Router Filter for
Blocking Tcp Flooding Under Ddos Attack,” 2003.

[12] Y. You, M. Zulkernine, and A. Haque, “A distributed defense frame-
work for flooding-based ddos attacks,” ARES. IEEE Computer Society,
2008, pp. 245–252.

[13] T. Peng, C. Leckie, and K. Ramamohanarao, “Detecting Distributed
Denial of Service Attacks Using Source IP Address Monitoring,” in
Proc. of the Third International IFIP-TC6 Networking Conference,
2002, pp. 771–782.

[14] S. Ganguly, M. N. Garofalakis, R. Rastogi, and K. K. Sabnani,
“Streaming Algorithms for Robust, Real-Time Detection of Ddos At-
tacks,” in Proc. ICDCS, 2007, pp. 4.

[15] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” J. Algorithms, vol. 55,
no. 1, pp. 58–75, 2005.

[16] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, July 1970.

[17] A. Chakrabarti, Cs85: Data Stream Algorithms Lecture Notes, Fall
2009.

[18] J. Misra and D. Gries, “Finding repeated elements,” Sci. Comput.
Program, vol. 2, no. 2, pp. 143–152, 1982.

[19] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
1st ed. Springer Publishing Company, Incorporated, 2008.

Santhosh Kumar Karre did M. Tech in Computer
Science and Engineering from Indian Institute of
Technology Hyderabad, Andhra Pradesh, India in
2011. I did my B.Tech in Computer Science and
Engineering from Srinidhi Institute of Science and
Technology Hyderabad, Hyderabad, Andhra Pradesh,
India in 2009.
 He is currently working in IBM India Software
Labs, Bangalore, India. As part of his job at IBM, he is

involved in Network management product development.

632

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

