
  

  
Abstract—The main purpose of this paper is to analyze the 

state of the art of search engines in e-learning platforms, and to 
elaborate a new model that exploits its best suggestions to 
perform an efficient and precise search. The algorithms, 
architecture and system use of this model are discussed, 
presenting a global vision of the search component. 
 

Index Terms—E-learning, search engine, pre-query,  
post-query,  ranking metrics, search modules.  
 

I. INTRODUCTION 
In the last decade, the e-learning technology grew and 

developed notably. This new way of teaching, made of online 
courses and multimedia material, exploits the potential of the 
Internet to supply a personalized and interactive learning, and 
is placing side by side the traditional one. 

The whole e-learning system is built on a platform called 
Learning Management System (LMS), which is installed on a 
server and manages the contents through a Learning Content 
Management System (LCMS). Every elementary didactic 
unit is a Learning Object (LO): text documents, multimedia 
contents and audio/video streaming are examples of it. It is 
the basic component that allows the student to learn. 

When a LMS platform starts increasing and gaining 
importance, the existence of a precise and efficient search 
engine becomes necessary. The system must be able to 
provide, after a user’s query, the most significant LOs about a 
certain argument. This is not only a form of help to the user, 
but also an interdisciplinary instrument: the search connects 
contents of different subjects, making the student’s culture 
richer. 

This work will analyze the existing search engines in 
Section II (State of the Art), and will develop the structure of 
a new one, discussing its algorithms in Section III 
(Methodology) and its architecture in Section IV 
(Architecture). Section V (System Use) presents a global 
vision of the system, and Section VI (Conclusions and Future 
Work) concludes the paper.  

 

II. STATE OF THE ART 
In order to make an efficient search, several operations 

must be performed. Some of them are needed to organize the 
LOs, so they must be executed before the user’s query (we 
can call them pre-query operations); some others carry out 
the search on these LOs, and are executed after the query 
(post-query operations). 

We will now analyze these operations, as they have been 
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proposed by different authors, pointing out various principles 
and summing up the state of the art. 

The pre-query operations arrange and catalogue the LOs in 
a data structure that allows an easy and quick search for them. 

The first thing to do is to create semantics of the e-learning 
domain. As [1] suggests, the ideal is to use a tree structure 
based on the resources hierarchy: in this way, LOs will be in a 
kinship. It is also possible to use the reusability [2] trees 
described by [3] to register as child nodes LOs obtained 
modifying others. 

Once the domain semantics is created, a weight to each 
object must be assigned. [3] and [4] proposed some weight 
metrics based both on metadata inserted by the authors 
(information about the file) and on citation of users during 
the time (e.g. download frequency). Combining these values, 
it is possible to compute the importance degree of a LO [5]. 
On the objects that are text documents, [6] and [7] suggest a 
series of operations turned to extract the most significant 
terms: the phases of tokenization, stop words filtration and 
stemming. The n terms with the highest frequencies are 
selected and added to the LOs metadata. 

[1], [7] and [8] consider fundamental a clusterization of the 
LOs in macro-groups. Some specific clustering algorithms 
exist that measure similarities among different objects and 
group them into categories. 

Lastly, it is useful to trace a profile of the registered users, 
noting down interests and consulted documents, so that the 
sorting of the search results will be personalized. [1] 
proposes to create this profile with a “Bottom-up Pruning” 
algorithm, that selects the visited LOs from the e-learning 
tree; [8] suggests to generate the semantics as an ontology [9]. 
[1] uses than these information to find a recommended 
cluster for the user. Also, in [10]’s opinion, user’s 
performance must be registered in the profile; in order to 
supply additional material and strengthen the study program 
in case it is needed. 

The post-query operations have to look for the LOs that 
most satisfy the query, and sort them by significance. 

Before the search, [11] proposes a pre-processing of the 
query similar to that one made on text documents, in order to 
extract the terms and validate them in the dictionary. Also, 
synonyms of the words can be implicitly added to the query 
or suggested to the user [3], in order to amplify the search. [6] 
Suggests weighing the keywords on their appearance order, 
in order to give more importance to the firsts. 

This modified query must be matched with the LOs; all the 
documents that have keywords in common with it must be 
selected, and then sorted by significance. This last operation 
is called re-ranking [12] and, according to [3], has to be based 
on different factors: similarity with the query, number of 
occurrences, weight of the LO, interests in the user profile 
and recommended cluster. The ordered results are finally 
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returned to the user that carried out the search [13]. 
The user’s profile must now be updated, in order to trace 

an evolution of it [8]. [7] also proposes to monitor it 
periodically, to detect possible shifts of interests. 

Finally, in order to test the quality of the search engine, it is 
possible to follow the suggestion of [3], consisting in asking 
to the user some feedback about the relevance and precision 
of the search. 

 

III. METHODOLOGY 
Analyzed this state of the art, we exploit now its best 

suggestions to elaborate an algorithmic procedure that will 
perform the search. We distinguish between the cataloguing 
operations and the search of LOs.  

A. Pre-Query Operation 
The first step in the pre-query phase consists of 

cataloguing the LOs in a ordered structure. To represent the 
domain, we use a tree like that in Fig. 1. 

The college is the root, so there is a tree for each different 
university. Inside the college, we distinguish between 
different disciplinary fields, that are composed of one or 
more courses. Every course supplies didactic material, the 
LOs [14]. Usually a LO is a leaf node of the tree, but it can 
also have children if there are other objects obtained deriving 
or modifying it. 
 

To assign a weight to the LOs, we make use of the 
following metrics:  

 A just inserted object has weight 0 
 The more a document is downloaded, the more it 

weights 
 The more time passes without a download, the more 

the weight decreases 
 at the same weight, a parent weighs more than its 

child 
 
The cases a and d are assigned at the beginning, whereas 

the other two must be periodically updated in the platform. 
So, it is necessary to establish the following weights: 

 α: weight increased after a download 
 β: weight decreased after the going over of a temporal 

limit t 
 γ: how much a parent weighs compared to its child 
 t: temporal value after which a LO starts to lose 

weight 
Every learning document is characterized by some 

keywords, terms inserted by the author as metadata [15] and 
considered representative of the content. 

In the case of text documents, the keywords list can be 
extended adding the n most significant terms of the content. 
This process is called text segmentation and it is composed of 
the following phases: 

 Tokenization: all the adjacent strings of 
alphanumerical characters, called tokens, are 
extracted from the document 

 Stop words extraction: all the words that are not 
significant for the document content are deleted 

 Stemming: the terms are reduced to their root form 

An example of application of this process is shown in Fig. 
2. After it, the most recurring terms must be added to the LO 
keywords. 

We represent in the domain tree disciplinary fields and 
courses; however, there would be a better indexing grouping 
the LOs in some macro-arguments inside the courses too. We 
use clusters for this.  

We create them manually rather than automatically: an 
expert of the disciplinary field (a professor) is able to identify 
some macro-arguments in its subject better than those that 
would find an algorithm based on keywords extraction. 

So, once created the clusters, the LOs must be catalogued 
among them. We propose an algorithm based on a 
comparison between keywords, that assigns a document to 
the cluster with which it finds more similarities. 

 
Fig. 1. The domain tree 

 
Every user that is registered in the platform has a profile 

containing the list of the documents that he consulted or 
downloaded and a list of weighed keywords. The purpose of 
the profile is to mark the user’s interests, in order to be able to 
consider them during the re-ranking of the query results [12]. 

 
Fig. 2. The process of text segmentation 

 
The list of the user’s interests is updated with the metadata 

of the consulted LOs after the search. Once created it, the 
clusterization algorithm can be applied to assign a 
recommended cluster to the user. During the post-query 
re-ranking, the objects that belong to that cluster will weigh 
more [16], and this will personalize further on the search. 

If the e-learning system registers the grades in single 
courses too, the student’s performance can be measured in 
the profile. If these performance result inferior to the average, 
it is possible to give emphasis to material considered 
integrative by the professor. The functioning is described in 
Fig. 3. 

674

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013



  

B. Post-Query 
The phases up to now analyze organized the environment 

in which to execute the searches. Now we must focus on the 
real search, made on the user’s queries in the constructed 
environment. 

Before examining the objects, the query must be processed 
in a way similar to the one applied to the text documents: the 
phases of stop words elimination and stemming. 

To check if the user wrote correctly the terms, the obtained 
words must be validated in a dictionary. There, synonyms of 
the terms can be found too, and added to the keywords of the 
query: the search range will be wider. 

The matching phase is simply a comparison between the 
keywords extracted from the query and the keywords that 
characterize every LO.  

Every time that a document has got at least one 
correspondence with the query, it is selected. In this way, we 
get a not-ordered list of results. 

 
Fig. 3. Operations on performances 

 

 
Fig. 4. Query pre-processing 

 
The list of results returned from the matching phase must 

be ordered by relevance. This operation is called re-ranking.  
We want to order considering the following metrics: 
Number of similarities between the keywords of the query 

and those of the object 
Weight of the query keywords 

Kinship among the LOs  
Weight of the Los 
Interests in the user profile 
Belonging of the LO to the recommended cluster 
Let us use the following parameters: 
count_query: integer number that counts how many of the 

n query words are present in the document 
count_occ: number that counts the occurrences of query 

words in the document, considering their weight based on the 
order in the query 

LO_weight: field present in every LO that shows its weight 
considering kinship and number of downloads 

usr_intrs: variable that indicates the percentage of 
similarities among the LOs keywords and those in the user 
profile 

rec_cluster: variable that is equal to 1 if the LO belongs to 
the recommended cluster; 0 otherwise. 

Most variables can be easily calculated. About count_occ, 
let us suppose that the query term has a weight w converted in 
a range between 0 and 1, and that every occurrence occ of the 
term in the document weighs 1. Now we perform the search 
for all terms and compute count_occ as ∑ ⋅

terms
vocc )(  

urs_intrs, instead, is a variable between 0 and α, where α can 
be 1 or a different number depending on the importance that 
one wants to give to the user profile. 

Connecting all these parameters, we compute a new 
weight for each object: 

 

r)rec_cluste(γusr_inrs)(βLO_weight)(α
count_occ)ry(count_queightranking_we

⋅+⋅+⋅+
+⋅=   (1) 

 
where α, β and γ can change depending on how much weight 
one wants to give to each parameter. 

Once calculated the ranking weight for each LO, we use a 
generic sorting algorithm to order the results from the highest 
to the lowest, and the resulting list is returned. 

At the end of the search, the metadata of the consulted LOs 
must be added to the user profile. 

To trace an evolution of it and detect possible shifts of 
interest, it is possible to count in a variable the time spent 
from inserting the keyword in the profile, and decrease by a 
factor of α keyword weight every time that a certain time 
limit is reached. 

To analyze the efficiency of the search engine, it is 
possible to ask for feedback from the users. 

We determine two kinds of feedback: 
Most significant result: the user is asked to indicate the 

most significant result, and the weight of this result is 
updated adding a factor of α 

Quality of the result: the user is asked to give a positive or 
negative opinion about the given results; in case of negative 
the weight of the first n returned results is decreased by a 
factor of  β  

Conclusions can be taken also computing the top-n recall 
and top-n precision parameters, defined in the following 
way: 
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In the end, following the suggestion of [3], we assign to the 
keywords a weight w(i), where i is the position of the word 
among n terms, counting from the last one: in this manner a 
term will have much more emphasis the earlier it has been 
inserted in the query. An example of application of the query 
pre-processing is shown in Fig. 4. 

entsvant documer of reletotal numb
tsts n resuln the firsocuments irelevant dnumber of n recalltop =−

  (2) 



  

n
tsts n resuln the firsocuments irelevant dnumber of isiontop_n prec =   (3) 

 

IV. ARCHITECTURE 
The LMS platform in which to execute the search is 

supposed to be already implemented. It can have different 
architectural styles; the most common for the e-learning 
systems are repositories, the client-server architecture and the 
n-tier architecture. 

The chosen architecture is composed by different modules. 
Their choice depends on the author of the platform, but some 
of them can be found in every e-learning system: the database, 
the Learning Content Management System, the LMS, the 
web server and the user interface. 

We implement the search engine module as a component 
that belongs both to the LMS and the LCMS. It is made of 
three modules, as shown in Fig. 5: the LOs cataloguing, 
which is a part of the LCMS because needs to interact with 
the database, the effective search engine and the user profile, 
that belong to the LMS. 

The cataloguing module must organize the LOs in the 
database: it creates the domain tree, assigns a weight to the 
objects, performs the text segmentation and the clusterization. 
It should be independent and separate from the others, and it 
should come into action after every alteration of the domain. 

The user profile module is independent too. It contains 
personal data and marks of the exams, and is connected to 
several other modules of the system. The search engine 
module exploits it adding interests, inserted queries and the 
recommended cluster, and use them in the re-ranking phase. 

In the end, the search engine module is the most important 
component for the search. It processes the query and then 
enters in the database (which has been ordered by the 
cataloguing module) through the LCMS. The results are 
ordered depending on LOs weights and contents in the user 
profile, and the profile is evolved. 

 
Fig. 5. The search engine architecture 

 
Most of the steps of these three modules are hidden to the 

user, because of the information hiding principle. The student 
can consult his profile, the LOs and the result of the search, 
but all the implementation details are not showed to him. 

V. SYSTEM USE 
Fig. 6 summarizes the steps of our article. We now make 

an example of how our search engine altogether works, 
showing the interactions between the different components. 
We have a platform with some catalogued e-learning material, 
and a list of users registered on it; each one of them has its 
own profile.  

Let us consider a user that writes a query in the search 
engine bar, through a specific interface. Our system receives 
it as a list of terms, and processes them extracting the 
significant words, checking their correctness, adding 
synonyms and weighting them. 

The result is a set of keywords, that must be matched with 
our whole e-learning system. We organized colleges, courses 
and didactic material in a tree, and gave to each LO a weight, 
a list of keywords and a cluster. The task of the system now is 
to browse these objects and to select those that have 
keywords in common with the terms processed from the 
query. 

These are our first, partial results. Now they must be 
re-ranked, i.e. sorted in order to give more importance to the 
most relevant and significant ones. Our re-ranking algorithm 
is based on five parameters: similarities between the LO and 
the query, weight of the object, kinship of objects, pertinence 
with the user profile and belonging to the recommended 
cluster. 

What we get now is a ordered list of results, that is returned 
to the user.  

In the end, we will update the user profile and ask for 
feedback that will in case re-distribute the LOs weights.  

From the user’s point of view, the e-learning platform 
received his query and returned to him the list of the most 
relevant, related LOs. 

 
Fig. 6. The whole search engine process 
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VI. CONCLUSION AND FUTURE WORKS 
We have described the phases and architectures of a search 

engine whose purpose is to return precise and relevant results 
in e-learning systems. 

The “UnitelSardegna” Consortium, in collaboration with 
the University of Cagliari (Italy), is actually developing an 
e-learning system that supplies online distance courses and 
promotes formation activities and long life learning courses. 
The existent platform will be integrated soon with the search 
engine that we are creating, based on the principles discussed 
in this paper. The purpose is to improve the search that in the 
e-learning platforms is usually wanting in precision and 
details. 

The next step of our research is to implement it, in order to 
analyze the quality of the results and to compare it with the 
performance of other search engine systems. Future 
progresses will be treated in our next articles.  

REFERENCES 
[1] L. Zhuhadar, O. Nasraoui, R. Wyatt, and E. Romero, “Automated 

Discovery, Categorization and Retrieval of Personalized Semantically 
Enriched E-learning Resources,” in Proc. IEEE International 
Conference on Semantic Computing, 2009 

[2] T. K. Shih, C. C. Chang, and H. W. Lin, “Reusability on Learning  
Object Repository,” in Proc. of the 5th Int. Conf. on Web-based 
Learning, pp. 203-214, 2006 

[3] N. Y. Ten, T. K. Shih, L. R. Chao, and Q. Jin, “Ranking Metrics and 
Search Guidance for Learning Object Repository,” IEEE Transactions 
on Learning Technologies, 2010 

[4] H.W. Lin, M. T. Tzou, T. K.Shih, C. C. Wang, and L. C. Lin, “Metadata 
Wizard Design for Searchable and Reusable Repository,” in Proc. of 
Int. Conf. on SCORM, 2006 

[5] J. R. Hilera, S. Oton, A. Ortiz, L. D. Marcos, J. J. Martinez, J. A. 
Gutierrez, J. M. Gutierrez, and R. Barchino, “Evaluating Simple Query 
Interface  Compliance in Public Repositories,” in Proc. of the 9th IEEE 
Int. Conf. on Advanced Learning Technologies, pp. 306-310, 2009 

[6] Y. Anistyasari and R. Sarno, “Weighted Ontology for Subject Search in 
Learning Content Management System,” in Proc. International 
Conference on Electrical Engineering and Informatics, 2011 

[7] J. C. Prates and S. S. M. Siqueira, “Using educational resources to 
improve the efficiency of the Web searches for additional learning 

material,” in Proc. of 11th IEEE International Conference on Advanced 
Learning Technologies, 2011 

[8] O. Nasraoui and L. Zhuhadar, “Improving Recall and Precision of a 
Personalized Semantic Search Engine for E-learning,” in Proc. of 
Fourth International Conference on Digital Society, 2010 

[9] M. Roya, R .Chang, and X. Qi, “Learning From Relevance Feedback 
Sessions Using A K-Nearest-Neighbor-Based Semantic Repository,” 
IEEE Int. Conf. on Multimedia and Expo, pp. 1994-1997, 2007 

[10] D. Celik, A. Elci, and E. Elverici, “Finding Suitable Course Material 
through a Semantic Search Agent for Learning Management  Systems 
of Distance Education,” in Proc. of 35th IEEE Annual Computer 
Software and Applications Conference Workshops, 2011 

[11] A. N. Segura, M. M. Prieto, and C. C. Vidal, “Query Expansion based 
on Domain Ontology for Learning Objects Search,” 2010 

[12] X. Ochoa and E. Duval,; “Relevance Ranking Metrics for Learning 
Object,” IEEE Tran. on Learning Technologies, vol. 1, no. 1, 2008 

[13] V. Raykar, R. Duraiswami, and B. Krishnapuram, “A Fast Algorithm 
for Learning Large Scale Preference Relations,” in Proc. 11th Int’l 
Conf. Artificial Intelligence and Statistics (AISTATS ’07), vol. 2, pp. 
388-395, 2007 

[14] A. E. Saddik, S. Fischer, and R. Steinmetz, “Reusable Multimedia 
Content in Web-Based Learning Systems,” IEEE Multimedia, vol. 8, 
no. 3, pp. 30-38, 2001 

[15] M. Kastner and G. Furtmüller, “Operationalization of the Metadata 
Element “Difficulty”,” in Proc. of the 7th IEEE Int. Conf. on Advanced 
Learning Technologies, pp. 608-612, 2007 

[16] N. Y. Yen and L. R. Chao, “Re-Ranking Mechanism for Learning 
Resources,” in Proc. Int. Conf. on Hybrid Learning, 2009 

 
 

 was born in Cagliari, Italy on December, 
9 1960. He received the Dr. Ing. degree in engineering 
(cum laude) in 1985 from University of Cagliari, Italy. 
Currently is an Associate Professor of Computer 
Science at University of Cagliari (Italy), Director of 
UnitelSardegna Consortium and Head of the degree 
course of Computer Science at University of Cagliari.
He is Coordinator of National and European 
Development Projects. He has research interests 
actually in the area of Computer Network, Cloud 

Computing and E-learning.  
Prof. Fenu has authored about 80 scientific articles in national and 

international conferences and journals. 
 
 

 
 

677

International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013

Gianni Fenu




