
  

  
Abstract—Up to date, many advances have been made to 2D 

face recognition (2D FR) due to its broad range of applications 
in security and commercial areas as well as in smart devices. 
However, 2D FR is still quite vulnerable under unconstrained 
conditions of the image acquisition process. To overcome 2D FR 
limitations, researchers shift to 3D face recognition technology 
but this technology is computationally expensive and 
inapplicable to real-world face recognition systems. Multimodal 
2D-3D face recognition can combine the strength of both 2D 
and 3D modalities. In this paper a multimodal 2D-3D face 
recognition approach has been proposed based on geometric 
and textural characteristics of 2D and 3D modalities. The 
conducted experiments show that the proposed approach 
achieved promising results with illumination and head pose 
variations. The performance is evaluated using the landmark 
Bosphorus facial database 
 

Index Terms—2D-3D face recognition, geometric invariants, 
local binary pattern (LBP), k-nearest neighbor (kNN). 
 

I. INTRODUCTION 
In 2D face recognition systems, three challenges have 

consistently caused problems to the robustness and reliability 
of such systems. These challenges namely head pose 
(viewpoint) differences, illumination changes, and facial 
expression variations as reported by many researchers [1], [2], 
and such challenges have consequently motivated many 
researchers to trend towards 3D face recognition. On the 
other hand, 3D face images acquisition by laser scanners and 
digitizers is still quite expensive and impractical for 
most real-time  applications even these devices gradually 
become cheaper and faster. Thus, 2D-3D face recognition 
can exceed the limitations of both 2D face sensitivity against 
pose and illumination, and the inapplicability of 3D capturing 
process. Thus the main objective of multimodal 2D-3D face 
recognition approaches is to offer a robust system with 
satisfactory performance while keeping the system practical. 

 

II. RELATED WORK 
As a new trend in face recognition area, Multimodal 

2D-3D face recognition has recently received more attention 
and a great deal of research effort has been dedicated to this 
direction of face recognition (FR). The efficient fusion of 
both sources of information; texture (2D) and shape (3D) can 
increase the overall performance of FR which is critical in 
many security and commercial recognition systems [3], [4].  

Many approaches have been proposed to utilize the 
information of both 2D and 3D modalities for recognition. 
These approaches have demonstrated that the performance of 
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multimodal systems outperforms significantly the 
performance of using either 2D or 3D alone [3][5].  

Some of multimodal systems do the fusion in early stages 
while others do the fusion with the last stages of recognition. 
As example of the fusion of 2D and 3D modalities on the 
score or decision level, Hüsken et al. [3] developed a 
successful 2D+3D face recognition technique called 
hierarchical graph matching (HGM). HGM algorithm is 
applied to both 2D (texture) and 3D (depth) images and the 
fusion on the score level (the weighted sum of the matching 
scores) of both modalities shows a higher recognition rate.  
96.8% of recognition rate is stated on FRGC dataset.  

Lu et al. [4] proposed an approach that integrated the shape 
and texture modalities for recognition in which five 2.5D 
scans of the subject with different views are registered by 
Iterative Closest Point (ICP) and merged to construct 3D face 
models for enrollment. A set of feature points is extracted for 
the purpose of alignment between the 2.5D test scan and 3D 
model and to perform surface matching using a 
point-to-plane distance metric. During the surface matching 
stage, for each test scan, an intensity image is dynamically 
generated and another matching process namely appearance 
-based matching is performed using the linear discriminant 
analysis (LDA). Finally, the matching scores obtained by the 
two matching components are combined to make the final 
decision. A multimodal recognition rate of 99% and 77% is 
achieved for neutral faces and for smiling faces, respectively 
using a database of 200 gallery and 598 test faces. It is noted 
that the recognition rate is dropped down with expressed 
faces (smiled) as well as other facial expressions are not 
included.  

A mixed 2D-3D information approach for face recognition 
is proposed by Tang et al. [6] in which a new method namely 
HaarLBP is presented for 2D faces representation in which 
the faces decomposed into four regions using 2D Haar 
wavelets and then local binary patterns (LBP) technique is 
applied to extract face features. The 3D morphable model 
(3DMM) is employed to create the virtual 3D faces. Then, 
five geometrical features from the virtual 3D faces are 
extracted to assist the face recognition. The 2D HaarLBP 
feature is integrated with the five geometric features of 
virtual 3D faces using a linear weighted scheme and the 
nearest-neighbor classifier (NN) is employed to perform the 
recognition task. The fusion results of 92.5% and 93.0% are 
stated on ORL and JAFFE2, respectively.  

As attempt to build practical and robust face recognition 
systems, a few recent approaches have been proposed to use 
3D images for enrollment as reference data while performing 
the identification or authentication using 2D images as probe 
data.   Among those, Riccio & Dygelay [7] defined an 
approach in which both a 3D model and a frontal 2D image 
are acquired to enroll a person, while during testing in the 
form of verification and identification only a 2D image is 
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Fig. 5. Examples of five points configuration on 3D face models 

 
For all the views of the object, the value of the functions fB 

and fb is zero (ideal) or close to zero. The recognition stage 
can be summarized by the following steps: 
 

1) For each enrolled 3D face model, the coefficients of  fB 
function are computed during the enrollment phase (we 
compute the Gramian matrix B which returns a 3x3 
matrix) and stored as a biometric key for the subject. 

2) For each of the true-list subjects, who selected from the 
whole enrolled facial dataset by the previous stage using 
geometric-texture features, the corresponding 3D 
invariants are checked. 

3) To check the 3D geometric invariants of candidate 
subjects, the corresponding B matrix is loaded, then the 
2D points on the input images (e.g. the center of the 
eyes, the tip of the nose, the corner of the mouth) are 
obtained and normalized by subtracting the coordinates 
of the first point:  

xp = [ x(2) x(3) x(4) ] - x(1);  yp = [ y(2) y(3) y(4) ] - y(1); 

4) Finally, the function fB and fb are checked to make the 
decision 

5) If the value of these functions is zero or close to zero, 
the 2D image is considered as a view of the model 
represented by the B matrix. In other words, the 2D test 
image belongs to the subject represented by the B 
matrix we have computed in the enrollment phase, 
otherwise the image is not identified. 

H. Datasets  
These experiments have been performed on landmarked 

Bosphorus database. Bosphorus database is a 2D-3D face 
database with a variety of facial expressions and facial 
occlusions. Furthermore, Bosphorus database is rich with 
head pose variations which is a concern of this work.  
 

IV. EXPERIMENTATIONS  
Experimental results obtained using Bosphorus database 

are encouraging. Comparing with traditional 2D face 
recognition methods, the proposed asymmetric face 
recognition method provides better performance; while 
compared with 3D shape based ones, it reduces the high 
online cost and the inconvenience of data acquisition and 
computation. 

A. Results  
As the main purpose of the combination 2D and 3D 

modalities is to overcome the pose variation problem in face 
recognition systems. Several experiments with different 
in-plan and out-of-plan facial images are carried out to 
demonstrate the robustness of the proposed approach. Table 2 
shows the recognition rate using 2D as probe and 3D as 
gallery with frontal facial images. Based to the result of the 
model-based projective invariant functions fB and fb, the 

query image can be decided either identified where this result 
is zero or close to zero (i.e. ൑ 0.03  according to observation 
of the results) otherwise not identified. Fig. 7 illustrates the 
performance of the recognition of frontal images.  

 
TABLE II: THE RECOGNITION RATE WITH FRONTAL FACIAL IMAGES 

No of images 2D-2D Matching 2D-3D Matching  
50 87 90

100 83 88
200 83 85
300 80 85

 

 
Fig. 7. The performance of the Recognition of Frontal Images 

 
With respect to head pose, we have taken into 

consideration in-plan rotations with 30 degree left, 30 degree 
right, 45 degree left, 45 degree right, 60 degree left, and 60 
degree right. Table 3 shows the performance of 2D-3D face 
recognition with pose variations using 300 subjects of 
Bosphorus database.  

 
TABLE III: THE PERFORMANCE OF 2D-3D FACE RECOGNITION WITH POSE 

VARIATIONS 

In-plan View Recognition Rate 

30 degree left/right view 91.2 

45 degree left/right view 86 

60 degree left/right view 82.4 

 

V. CONCLUSION AND FUTURE WORK 
 In this paper, we investigated the advantage of integrating 

2D and 3D modalities to increase the performance of face 
recognition with pose variations. First, 2D geometric 
invariants and texture information are combined to shorten 
the candidates list namely the true-list. Then, the B matrix of 
corresponding 3D models is loaded which computed and 
stored during the enrollment phase. Afterwards, the 2D 
points on the input image are applied to the model-based 
projective invariant functions and the decision is made 
depend on the result of these functions (i.e. zero or closed to 
zero there a match, otherwise no match). Experimental 
results show that the proposed approach can enhance the 
recognition rate with the presence of pose variations.  Other 
geometric invariants such conic invariants and angles are 
shifted to be investigated in future work and occluded faces 
need further investigation as well. 
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