

Abstract—WebRTC enables web browsers with real-time

communications capabilities via JavaScript APIs. But when the

number of the participants increases, the bandwidth and CPU

requirements have become a serious issue in a push based mesh

network. In this paper, we propose a P2P-MCU approach for

multi-party video conferencing that efficiently supports both

ordinary smart mobile phones and PCs. In our approach, a

MCU module is integrated into the browser to mix and

transcode the video & audio streams in real time. And when the

browser acts as the MCU node leaves the conference session

without notice, another candidate browser can take over the

control immediately, and the ongoing WebRTC conference can

be seamlessly recovered with our MCU selection algorithm. In

addition, our approach works under the 3G symmetric NAT

networks by using some UDP hole punching method. Our

P2P-MCU solution reduces 64% CPU usages and 35%

bandwidth consumptions for each participant compared to the

mesh-network solution in our eight-party WebRTC conference

experiments. Although the P2P-MCU module may introduce

some delay (<500ms), the delay is stable and perceptually

almost neglectable.

Index Terms—MCU, P2P, video conference, WebRTC.

I. INTRODUCTION

Driven by the widespread fixed and mobile broadband

networks, there is a trend to have real time multi-party video

conferences at any time/place. To meet the emerging

requirements, WebRTC [1] (Web Real-Time

Communications) received a great interest since the API is

inherently supported by many new versions of popular

browsers, i.e. Google Chrome and Mozilla Firefox. However,

since WebRTC is initially designed for browser to browser

communication, even for a small scale group, the multi-party

conference model may be either complicated or expensive.

In particular, to support N conference participants with a

pure Mesh network, there will be N*(N-1)/2 links. The

bandwidth/device capability requirements will increase

quadratically to the number of the participants in the

conference. Accordingly, a MCU [2] (Multi point Control

Unit) server is introduced to reduce bandwidth consumption

by mixing the media received from users in the conference

into a single stream to each participant. However, MCU

server, typically based on a fixed and pre-configured

hardware, is often quite costly and it consumes significant

amount of bandwidth.

Manuscript received January 25, 2014; revised March 23, 2014.

Kwokfai Ng, Manyan Ching, and Yang Liu are with Hong Kong Applied

Science and Technology Research Institute Company Limited, HK (e-mail:

micng@astri.org, rachelc@astri.org, yangliu@astri.org).

Tao Cai, Li Li, and Wu Chou are with Huawei Technologies Co., Ltd,

Shenzhen, China (e-mail: t.cai@huawei.com, Li.NJ.Li@huawei.com,

Wu.Chou@huawei.com).

In this paper, we describe our approach to peer-to-peer

MCU (P2P-MCU) that tackles the abovementioned issues.

Moreover, in our approach, the MCU is integrated in a

browser at the client side, and this specific client is called

MCU host. Accordingly, the media flows in the conference

run in a P2P manner between the MCU host and web

browsers. The proposed approach is implemented and we

demonstrate the web applications that we developed for an

eight party WebRTC conferencing including mobile clients.

The contributions of this paper are: firstly, we design a

P2P-MCU architecture working with current WebRTC

protocols; secondly, we propose a MCU host determination

strategy to dynamically and optimally place the MCU host at

the web browsers; finally, we implement an efficient UDP

punching [3] method for mobile users behind firewall/NAT

to participate in the conference. Experiments with a mixture

of mobile and PC users under various configurations are

conducted. The results indicate that our approach is feasible

and efficient for multi-party conferencing through WebRTC.

The rest of this paper is organized as follows. Section II

presents our P2P-MCU approach to multi-party conference

application. Section III illustrates various communication

models with our P2P-MCU approach. In Section IV and

Section V, we study the strategy for MCU host determination

and UDP punching to support mobile clients. Section VI, the

implementation details and experimental results are

presented. Section VII summarizes the work and concludes

with some future directions.

II. DEPLOYMENT MULTIPLE USER CONFERENCE

APPLICATION

A. General View

Fig. 1. Centralized server for video chat.

WebRTC browsers that want to join a conference can be

connected in a variety of ways. For simplicity, we use a

A P2P-MCU Approach to Multi-Party Video Conference

with WebRTC

Kwok-Fai Ng, Man -Yan Ching, Yang Liu, Tao Cai, Li Li, and Wu Chou

319

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

DOI: 10.7763/IJFCC.2014.V3.319

centralized web server to handle signaling between WebRTC

capable browsers as illustrated in Fig. 1. The connections

between signaling server and browser are based on

WebSocket [4]. However, XHR/JSONP Polling can replace

WebSocket connection in restricted environment such as 3G

environment. Business logics are programmed in JavaScript.

In a full mesh conference, peer connections are established

between each pairs of participants in the conference room. In

our proposed solution, one participant only has to establish a

connection to the MCU Host which maintains the MCU

session. Consequently, it is not necessary for the remaining

participant browsers to run any MCU. The maximum number

of participants is subject to the processing power of MCU

host.

B. Signaling Server

In this section, we summarize the functionality and

characteristics of signaling server used by multiple user video

chat. A signaling server provides administration of individual

conference room. A conference room has a participant list. A

participant can create a new room, join a room and leave a

room. Every time the participant presence is changed, all the

participants in the room will be notified by message.

Because both browsers may be behind NAT, they may not

be able to communicate directly. A signaling server works by

routing messages between participants in a conference room.

The examples of such messages are browser capabilities, type

of NAT it has, video frame rate preference, SDP [5] (Session

Description Protocol) message, WebRTC ICE [6] candidates

and so on. Each message includes unique identity of

participant. Participant can send private to each other or

group messages to all participants in the same room.

C. Peer-to-Peer MCU

In our proposed approach, we introduce P2P-MCU.

P2P-MCU is the implementation of a distributed MCU using

a peer-to-peer (P2P) architecture. P2P eliminates centralized

media servers and the complex infrastructure investments.

Unlike traditional video conferencing server, MCU host runs

in a desktop browser which is normally behind a NAT. To

overcome NAT connectivity restrictions, P2P-MCU module

uses Session Traversal Utilities for NAT (STUN) [7] to

discover correct public address that NAT allocates for UDP

traffic between the local and external hosts.

MCU provides encoding/decoding of individual RTP [8]

streams and mixing of RTP streams. MCU assigns

audio/video encoder and decoder which are capable to

decode RTP streams from the participant.

Fig. 2. Mixing video streams into a video stream.

In video mixing, all participants would see the same mixed

video. The process starts with video decoding which decodes

RTP payloads into video frames. Then, a video mixer mixes

all video frames from different participants into one stream of

video frames as illustrated in Fig. 2. Finally, individual video

encoder encodes mixed video frames back into RTP payloads

for each participant.

Fig. 3. Mixing audio streams into individual audio streams.

Mixing all participant audios into one stream would result

in voice echoing back. To avoid this, each participant would

have his own mixed audio stream which does not contain his

own audio. First, audio decoders decode RTP payloads into

audio samples. Then, an audio mixer mixes audio samples

into individual streams of audio samples as illustrated in Fig.

3. Finally, individual audio encoder encodes corresponding

audio samples back into RTP payloads.

D. Brower Integration

In this section, we summarize integration of MCU into the

WebRTC architecture to enable rapid development and

deployment of video conference application via JavaScript

API. In our proposed solution, we expose P2P-MCU and

STUN client library ability to JavaScript for easy

manipulation by web applications (Fig. 4). They are MCU

session controller and NAT detector.

Fig. 4. Architecture of modified browser.

Fig. 5. Example of communication between MCU and participant via a

signaling server.

MCU session controller is exposed as JavaScript API

library to facilitate extension and modification of application

logics. It controls the P2P-MCU module and encapsulates

functionality of MCU conference room, include creating a

conference room, adding participant to room and removing

participant from the room.

It works by processing SDP offer and answer messages

generated by and exchanged between WebRTC browsers via

a signaling server as illustrated in Fig. 5.

320

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

NAT detector encapsulates functionality of the STUN

client and exposed as JavaScript API library. A STUN client

discovers the presence of a NAT and detects the type of NAT

behind which the browser is hosting.

WebRTC Peer Connection object use ICE mechanisms to

traverse layered NAT devices between the web browsers. If a

direct connection is impossible because the browsers are

behind symmetric NATs, traffic is routed via a TURN [9]

relay server as a fallback, which may increase latency. By

determining the type of NAT, we can guarantee MCU session

not hosting behind symmetric NAT, and eliminate the

involvement of TURN relay.

III. COMMUNICATIONS

A. One-to-One Video Chat

Fig. 6. Scenario involving one desktop client and mobile client.

In our proposed model, we assume a conference room has

at least one browser that is integrated with MCU and is not

behind symmetric NAT. We develop logic responsible to

select the most appropriate participant to host a MCU session.

The MCU host invites all participants in the room to establish

peer connections to the MCU session. Once peer connections

are established, video and audio streams from both peers are

routed to MCU session. Multiple video and audio streams are

mixed into a video stream and individual audio streams and

routed to all participants (Fig. 6).

B. 3-Way Video Chat

Fig. 7. Scenario involving two desktop client and mobile client.

When a participant joins a room at any time, the browser

hosting the MCU session will invite the new participant to

establish a peer connection (Fig.7 left). When a MCU host

leaves the room at any time, the next appropriate participant

will be elected to host a new MCU session and re-invite all

participants in the room (Fig. 7 right). If there is no

appropriate participant to host the session, the video chat is in

pending mode. Multiple video and audio streams are always

mixed in a MCU session.

C. Eight-Peers Video Chat

In the real word, different devices would have different

capabilities. Mobile devices have less processing power,

bandwidth, memory capacity, and screen size than desktop

computers. Standard definition video suited for desktop

computers is too demanding for mobile devices. In order to

support heterogeneous devices, different devices should

receive video and audio streams in their preferred profile.

In WebRTC, the basic method to support multiple

participants is to use multiple Peer Connection objects, one

for each participant. But this method is difficult to mix the

streams into one and encoded it for different media profiles.

In our approach, MCU host has sufficient processing power

and network bandwidth to mix and deliver media streams for

each participant in preferred profile directly as illustrated in

Fig. 8.

Fig. 8. Scenario involving heterogeneous desktop clients and mobile clients.

IV. MCU HOST DETERMINATION

After the MCU is integrated in the browser as described in

previous section, the important question is how to select a

proper MCU host in the system to coordinate the conference

effectively.

In theory, any browser in the system can be selected to

perform MCU as long as it satisfies the MCU host

requirements. But in practice, to make the selection

efficiently, we assume MCU belongs to one browser in the

conference in this paper.

In addition, a network control unit is needed to coordinate

the signaling and information during the MCU host

determination procedure. In our practice, the signaling server

is one good candidate for the control unit.

Accordingly, there are three steps to determine the MCU

host:

In details, for Step 1 and 2, the information includes

network information and user information. The network

information may include the network load information and

topology information if necessary, while the user information

may include the terminal type, whether or not the user is

behind a firewall, and the terminal capability if necessary.

Additionally, for Step 2, the signaling server quantifies the

metrics indicated by the information, scores the metrics with

predefined weights, and selects the client with best score as

MCU. Finally, the signaling server should notify all the

321

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

Step 1: the signaling server collects the information to
determine the MCU;

Step 2: the signaling server determines which browser in
the conference should be the MCU host based on the
information collected in Step 1.

Step 3: the signaling server notifies all the browsers the
selection result.

clients which one is the MCU host and the conference may

start.

Specifically, the MCU host may be updated when one user

enters the conference or the MCU host itself leaves the

conference. Signaling server collects the user information

when one client enters/leaves the conference or periodically,

determines the MCU host and updates the MCU host

information for every client if necessary.

An MCU host selection strategy example is shown in

Table I below. Client 2 with the highest score is selected as

MCU in the case.

TABLE I: AN MCU HOST SELECTION STRATEGY EXAMPLE

V. UDP HOLE PUNCHING FOR 3G NETWORK AND

NETWORKS OF ENTERPRISE

In this section, we will describe how to eliminate TURN

relay involvement in 3G environment. Symmetric NAT is

commonly used in 3G networks and also in networks of

enterprise. Symmetric NAT allocates different ports for

outgoing UDP connection from same local host to different

external hosts. STUN does not work in Symmetric NAT. If

the device is in 3G mobile network and another device

hosting MCU session is behind a port-restricted cone NAT,

traffic between two devices will be blocked out by NAT in

counter parties. TURN is the only solution.

In our model, we turn the behavior of port-restricted cone

NAT into restricted cone NAT. MCU session gets the

external host public IP embedded in SDP Offer and ICE

candidates generated by participant. MCU session sends

empty UDP packets with short TTL (Time to live) to all user

ports of external host. Every time a UDP traffic from same

local host to new external address pass through a NAT, the

NAT adds an extra mapping rule for the same port allocation.

As a result, UDP packets from external host can reach the

MCU session.

VI. EXPERIMENTS

We evaluated the design of P2P-MCU solution through a

field experiment and MCU host was realized by integrating

the Medooze MCU Media Server [10] into Chromium [11]

browser. We firstly evaluated the connection success rate, the

setup time and the effectiveness of rejoining the conference

room on Windows and Android clients. The result shows that

the connection success rate is nearly 100% with a steady

setup time and effective to re-connection the room.

A. Performance on Windows

We evaluated the performance of P2P-MCU and WebRTC

mesh-network on Windows. For P2P-MCU experiment, the

first desktop client was served as MCU host, which ran on

Windows 8 Pro, Intel® Core™ i7-3520M CPU @ 2.90GHz,

and other clients ran on Windows 7 Professional, Intel®

Core™ i5-3210M CPU @ 2.50GHz. All video and audio

streams were mixed by this MCU host. CPU usage and

network utilization were captured on both sides and we

repeated the steps with 2P, 5P and 8P. Fig. 9 shows 8P video

chat with MCU between desktop clients. For WebRTC

mesh-network experiment, see Fig. 10, all clients ran on

Windows 7 Professional, Intel® Core™ i5-3210M CPU @

2.50GHz, and CPU usage and network utilization were

captured.

Fig. 9. Scenario involving desktop clients with P2P-MCU.

Fig. 11 summarizes the network performance of the

experiments. We observed that the increase of number of

peers did affect the performance of MCU host seriously, and

the network utilization was steadily at low bandwidth

consumption. It was in 7 to 8 Mbps range, when CPU usage

was around 23% to 25%, as in Fig. 12. The success rate was

nearly 100% with steady setup time. It was around 2 seconds

per peer, and MCU host could see himself in a clip of mixed

video.

Fig. 10. Scenario involving desktop clients with WebRTC mesh-network

(prefect world).

For the testing of WebRTC on mesh-network, we

examined the results for both network utilization and CPU

usage rise, where the CPU usage was stretched to the

boundary of 93%.

We estimated the network utilization of 8P because of the

limitation of the WebRTC mesh-network. We observed that

the network utilization was not linearly proportional to the

number of peers. The contributing factors may include that

the process of trans-coding is slowed down a bit, some frames

are dropped because of low bandwidth, or parts of signals are

broken by firewall, see Fig. 13. There is a limit to add too

Client Network

Load/score

Terminal

Type/score

Behind

firewall?/score

Final

score

1 Light/2 Mobile/0 Yes/0 2

2 Light/2 PC/2 No/2 6

3 Middle/1 PC/2 Yes/0 3

4 Heavy/0 PC/2 No/2 4

322

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

327

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

hand, SPIN analyses the model against the given properties
considering all possible executions by performing an
exhaustive search on the state space. It can also perform
partial search on the state space, which is quite useful in case
of very large models or insufficient computational resources.
If SPIN finds a violation, it produces an error trace. Using
this error trace, a user can run a simulation of the execution
that leads to the violation.

Our primary aim in this work is to verify the properties of
the security adaptive protocol suite. We employ SPIN to
check the protocol model against some properties that we
formallyspecify as never claims in PROMELA and list any
flaws, if any, as violations.

IV. PROTOCOL IMPLEMENTATION USING SPIN
Model checking in SPIN is often bounded by the amount

of physical memory available to the computer. To alleviate
this problem it is required to reduce the complexity of the
model. A simplified version of security adaptive protocol is
being used in our experiment to avoid unnecessary details
irrelevant to our verification. When modeling an ad hoc
network protocol, apart from the usual consideration of
limiting state space, it is required to pay attention to the way
of modeling broadcast, connectivity as well as the dynamics
of topology.

Broadcast is heavily used in most ad hoc networking
protocol and it can be modeled by unicasting to all nodes with
whom the sending nodes has connectivity. A HELLO
message is used to maintain contact with its neighbors and
also to contact new neighbors. Hello messages indicate the
presence of a node.

Hello message are frequently sent by each node via
channel. HELLO message is supposed to have only one piece
of information: HELLO massage, source id number which
identifies the node from where the hello message is coming
from

PROMELA doesn't provide any time features except a
timeout function. Timeout keyword is a modeling feature that
provides an escape from a hang state which does not
correspond to the real timer definition. So in this tools use
time as variable to maintain the clock time.

Link update is required to maintain the ranks of the
neighbors. Because a link update travels through the network,
it represents the most up to date network topology
information. When a route is requested from a source node, A,
to a destination node, B, in AODV, a route request is
broadcasted. For the security protocol suite, the basic
principle will be same, the only difference lies in the fact that,
before a route request is broadcasted, the security level
requirement has to be defined, being called here as the
Minimum Security Level(MSL). Here node A checks the
trusted neighbors to send message. So this node checks the
security level of all its neighbors. The source node will be
notified of the fact that the route request that has been sent is
not returning a path with the defined MSL. In this scenario,
the source will now define a new MSL, by decrementing the
MSL value, and will rebroadcast the Route Request to a new
set of nodes.

A routing table is maintained for each node. Whenever a
packet is to be transmitted from one node to another.

Routing table for node 1

Routing table for node 3

Fig. 1. Routing information for node 1 and node 3.

Destination Next-hop 1 Next-hop 2 MSL Level
4 2 4 Rank 4

Fig. 2. Route table with node rank (MSL).

Destination Next-hop 1 Next-hop 2 MSL Level
4 3 4 Rank 3

Fig. 3. Route update when MSL changes.

Routing table is consulted along with the rank information
of each node and keeping the MSL value. The process of
message broadcasting reference to MSL will help the route
request reach the destination with trusted neighbor. Fig. 1
illustrates the route table of two nodes.

Suppose Node 1 in Fig 2 is broadcasting a message
destined to Node 4. The MSL level is kept at rank 4. In case a
route is not able to be established with the initial MSL, with
which the Route Request was broadcasted, an Error packet
will be generated. Then source will define new minimum
MSL, by decrementing the MSL value and will rebroadcast
the Route Request to new set of nodes (Fig 3).

A. Property Specification
Among the various properties related to any SAODV

protocol, we are interested in two properties crucial to the
earlier mentioned protocol suite. The first one is the loop
freedom and another is the maintenance of correct rank of the
neighbours based on their distances. It is also need to be

Destination Next-hop 1 Next-hop 2 Hop
4 2 4 2
4 3 4 2
3 3 - 1
2 2 - 1

Destination Next-hop 1 Next-hop 2 Hop
2 4 2 2
2 1 1 2
4 4 - 1
1 1 - 1

324

International Journal of Future Computer and Communication, Vol. 3, No. 5, October 2014

VII. CONCLUSION

We described a P2P-MCU approach to support multi-party
WebRTC conference even with a general Android mobile.
Our P2P-MCU solution is transparent for the mobile users as
they can just install the official Chrome for Android on their
smart phones. Although the new added P2P-MCU module
may introduce some delay (< 500ms), the delay is stable and
perceptually almost neglectable for the participants. Our
MCU host determination strategy guarantees the conference
be established and recovered seamlessly. Accordingly, the
performance of P2P-MCU is quite stable and the success rate
of establishing connection in 3G networks is almost 90%,
which is much higher than that in normal WebRTC.
Experimental results from an eight party video conference
experiment indicated that our solution can reduce 64% CPU
usages and 35% bandwidth consumptions for each
participant compared to a pure WebRTC mesh network.

ACKNOWLEDGMENT

The authors would like to thank ASTRI Program Director
Dr. James Zhibin Lei and ASTRI Principal Engineer Dr. Kent
Kangheng Wu for their support and suggestions in this
project.

REFERENCES

[1] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan. WebRTC
1.0: Real-time Communication between Browsers. [Online]. Available:
http://www.w3.org/TR/webrtc

[2] M. H. W. LeMair, D. D. Kandlur, and Z. Y. Shae, “On multipoint
control units for videoconferencing,” in Proc. 19th Conference on
Local Computer Networks, 1994, pp. 356–364.

[3] P. Srisuresh, B. Ford, and D. Kegel. State of Peer-to-Peer (P2P)
Communication Across Network Address Translators (NATs).
[Online]. Available: http:/www.rfc-editor.org/rfc/rfc5128.txt.

[4] I. Fette and A. Melnikov. The WebSocket Protocol. [Online].
Available: http:/www.rfc-editor.org/rfc/rfc6455.txt

[5] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description
Protocol. [Online]. Available: http:/www.rfc-editor.org/rfc/rfc4566.txt

[6] J. Rosenberg. Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for
Offer/Answer Protocols. [Online]. Available:
http:/www.rfc-editor.org/rfc/rfc5245.txt

[7] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN -
Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs). [Online]. Available:
http:/www.rfc-editor.org/rfc/rfc3489.txt

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. [Online]. Available:
http:/www.rfc-editor.org/rfc/rfc3550.txt

[9] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN). [Online]. Available:
http:/www.rfc-editor.org/rfc/rfc5766.txt

[10] MCU Open Source Version. [Online]. Available:
http://sourceforge.net/projects/mcumediaserver/

[11] Chromium. [Online]. Available: http://www.chromium.org

Kwok-Fai Ng was born in Hong Kong in 1978. He
got his bachelor's degree in system engineering and
engineering management from The Chinese
University of Hong Kong, Hong Kong in 2000.

He worked in TradeCity Cybersoft for J2EE
application server development in Hong Kong from
2000 to 2003. Currently he is principal engineer for
enterprise and consumer electronics at Hong Kong
Applied Science and Technology Research Institute.

 He is an expert in J2EE technologies and is oracle certified SCJP,

SCWCD, SCBCD and SCDJWS. He developed a variety of technologies
and software programs, including digital asset management system,
multi-platform eBook reader, real-time social collaboration system, NAT
traversal solution, web service collaboration platform, data persistence
framework, etc

Man-Yan Ching earned her B.Eng. degree from the
the Hong Kong University of Science & Technology.
She got her M.S. degree in electrical and electronic
engineering from The University of Hong Kong in
2003.

She worked in InfoTalk for speech recognition
development in Hong Kong from 2001 to 2002.
Currently she is working in Hong Kong Applied
science and technology research institute and she

developed a variety of software programs, including embedded system,
multimedia technologies and multi-platform eBook reader.

Yang Liu got his B.Eng. and M.S. degrees from the
Southeast University, Nanjing, China in 1997 and
2001, respectively. He got his Ph.D. degree in
electrical and electronic engineering from the
University of Hong Kong in 2006.

He worked in ZTE corporation for 4G/5G
communication standard development in Shenzhen,
China from 2007 to 2013. Currently he is working in
Hong Kong applied Science and technology research
institute (ASTRI). His research interests include

communication protocol, network security and related applications.

Tao Cai got his B.S. and M.S. degrees in applied
mathematics from Beijing Institute of Technology in
1999 and 2002 respectively.

He has over 10-years software R&D experiences
and is certified Project Management Professional
(PMP). Currently he is a researcher at Huawei
Shannon Lab and focuses on WebRTC, HTML5, SDN

and web browser.

Li Li received his Ph.D. in computer sciences from
University of Alabama at Birmingham in 1995, and
M.S. in computational linguistics from Huazhong
University of Sciences and Technology in 1987.

In 2001, he became a research scientist of Avaya
Labs, and in 2012 he joined Huawei Shannon Lab. Dr.
Li has published over 50 conference and journal papers

and 1 book on Artificial Intelligence. He holds 4 US patents and is the
co-inventor of over 20 pending US patent applications. He was on the
Advisory Committee for IEEE Service Cup Competition, invited panelist
and technical committee member for several international conferences on
Web Services. He was the editor of 2 ISO/ECMA CSTA standards and made
significant contributions to W3C WS-RA standard suite.

Wu Chou graduated from Stanford University in 1990
with four advanced degrees in science and engineering.

He is a VP, chief IT scientist, and the head of Huawei
Shannon Lab, USA. He joined AT&T Bell Labs after
obtaining his Ph.D. degree in electrical engineering and
continued his professional career from AT&T Bell Labs
to Lucent Bell Labs and Avaya Labs before joining

Huawei. He published over 140 journal and conference papers, holds 29 US
and international patents with many additional patent applications pending.
He is an IEEE Fellow and serves as an editor for multiple standards at W3C,
ECMA, ISO, ETSI, etc. He was an editor of IEEE Transactions on Services
Computing (TSC), IEEE TSC Special Issue on Cloud Computing, IEEE
Transaction on Audio and Language Processing and Journal of Web Services
Research.

