

Abstract—Audit logs are now considered good practice and a

standard approach for business systems. The integrity of the

auditing records themselves is critical. By simply storing all the

interactions in a separate audit log does not guarantee the

integrity of the log. Data tampering can be done through

unauthorized access and in some cases through authorized users.

Results of such action can be unpleasant for business and their

clients. Therefore, a demand for audit log security is needed

more than ever. This paper describes a mechanism based on

cryptographic hash functions and trusted timestamping that

prevents an outsider or inside intruder from silently corrupting

the audit log. In addition it is shown that the proposed

mechanism can be realized in database systems with little

overhead and that the hash based techniques and trusted

timestamping can be used efficiently and correctly to determine

if the audit log has been compromised.

Index Terms—Audit logs, hashing, database.

I. INTRODUCTION AND MOTIVATION

The objective of data security can be divided into three

separate, but interrelated, areas as secrecy, integrity and

availability. It is important to understand that the threat posed

by a corrupt authorized user is quite different in the context of

correctness of the data as compared to secrecy. Recent

experience has shown that data tampering can be done with

unauthorized access and in some cases through authorized

access. Corrupt authorized users can leak the internal secrets

by using the computer to access confidential information, and

then passing on this information to any other destination by

some non-computer means of communication (e.g., a

telephone call). It is impossible for the computer systems to

know whether or not first step was followed by second step.

There is no choice other than assuming that insiders are

honest. There is only one direction to provide valid forensic

analysis of database transaction which requires an audit log

of all aspects of information system. Based on that, database

forensics process can reconstruct what has really happened.

Let us first discuss a few examples to see what the users

concerns might be and why one might want to protect users

from malicious audit log. Consider a sales company, wherein

the intruder is an insider rather than someone hacking in from

the outside, could be any employee at a large company who is

Manuscript received April 16, 2012; revised June 2, 2012.

Rashmita Jena, M. Aparna, Chinmaya Sahu, and Rajeev Ranjan are with

the Department of Computer Science National Institute of Science and

Technology Palur Hills, Berhampur Orissa, India

(e-mail:rashmitaj@nist.edu; maparna@nist.edu; chinmayas@nist.edu;

rajeev@nist.edu).

Rajesh Atmakuri is with Wipro InfoTech Electronic city Bangalore

Karnataka, India (e-mail: rajesh.atmakuri@wipro.com).

trying to meet his sales requirements for a fiscal year. He

might attempt to change the transaction dates to make it

appear that they had transpired within the previous fiscal year

when, in reality, they had not. Consider a school database

where a student who receives a “F” in one of his subjects, in

which he needs at least a “B”, could be highly tempted to try

to dishonestly change his grade to a “B” in the database. This

would be an example of a student who would have to hack

into the system, unless of course the student somehow had

access to the database containing the grade.

The above discussed examples provide just a few of the

reasons why someone might want to tamper with a database.

These fraudulent acts can be punishable by law and result in

severe consequences if the intruder is caught. These

examples also give a clear message that when users have full

access to audit logs in performing auditing of interactions

with the data (modification, exposure) as well as of the base

data itself, it is difficult to prove the integrity of the audit

logs.

The requirements of recent regulations, to ensure

trustworthy long-term retention of their routine business

documents, have led to a huge market for compliance storage

servers, which ensure that data are not shredded or altered

before the end of their mandatory retention period.

Meanwhile, there are many commercially available tools to

assist forensics but these tools are not applicable to tamper

detection of database audit logs by intruders having full

access over audit logs. With the recent development of

electronic commerce, time stamping is now widely

recognized as an important technique used to ensure the

integrity of digital data for a long time period. In real-world

applications, sensitive information is kept in log files on an

untrusted machine. In the event of an intrusion into this

machine, we would like to guarantee that no corrupt log file

goes undetected. In this paper we present a mechanism based

on digital timestamps and hash functions that prevent an

outsider or inside intruder from silently corrupting the audit

log. In addition to the theory, we present performance

analysis and results with an implementation on a

high-performance storage engine. Finally we show that the

overhead for using hash based techniques and digital

timestamps for audit log security is low and that the hash

based techniques can be used to determine if the audit log has

been compromised.

II. TAMPER DETECTION METHODOLOGY

The security of our audit log file comes from fact that each

log entry contains an element in a hash chain that serve to

authenticate the values of all previous log entries. It is this

Ensuring Audit Log Accountability through Hash Based

Techniques

Rashmita Jena, M. Aparna, Chinmaya Sahu, Rajeev Ranjan, and Rajesh Atmakuri

International Journal of Future Computer and Communication, Vol. 1, No. 4, December 2012

327DOI: 10.7763/IJFCC.2012.V1.88

http://en.wikipedia.org/wiki/Digital_signatures
http://en.wikipedia.org/wiki/Hash_functions
http://en.wikipedia.org/wiki/Digital_signatures
http://en.wikipedia.org/wiki/Digital_signatures

value that is actually authenticated, which makes it possible

to verify all previous log entries by authenticating a single

hash value. We have added two special columns for storing

the Hash Code and the Chain_ID (Most Recent Digital

Timestamp Chain ID).We have also added another table to

store the chain of digital timestamps generated by the

Timestamping Authority or the TSA. Each entry in the log

file stores the most recent Chain_ID generated in the

timestamp chain table. Since the hashcode is based upon

previous tuples it is important to hash the tuples in the same

order during validation. For this purpose we have added a

tuple sequence number Sn which is incremented within a

chain.

Fig. 2.1. Hash chain.

The hashcode Hn for nth log entry as in Fig. 2.1 is the hash

of Sn which is the tuple sequence number within the

particular Chain_ID, Dn which is the Data to be entered in

the nth log entry of the audit file where hash is the one-way

hash, using an algorithm such as SHA-1 [NIST 1993] or

RIPE-MD [Dobbertin et al. 1996], of X, Ck is the most recent

Chain_ID generated in the timestamp chain and the

hashcode Hn-1of the n-1th entry in the log. Periodically (may

be once a day) we can suspend the transaction execution and

the most recent hashcode in the audit log table combined with

the recent Chain_ID in the timestamp chain table hashed

together and sent to the TSA requesting for a digital

timestamp as shown in Fig. 2.2. The TSA concatenates a

generated timestamp to this hash value and calculates the

hash Tj of this concatenation. This hash Tj is in turn digitally

signed with the private key of the TSA to compute Zj. This

signed hash Zj and the generated timestamp Yj is stored with

the TSA.The hash Tj and the timestamp Yj is added as a new

entry in the timestamp chain table (Fig. 2). Since the original

data cannot be calculated from the hash (because the hash

function is a one way function), the TSA never gets to see the

original data, which allows the use of this method for

confidential data.

Fig. 2.2. Generating digital timestamps.

Even change in a single byte will not generate the same

hash codes. This makes the base of the correctness of the

proposed mechanism. Any change or a modification in any

given rows will result in a mismatch of the hash value and

therefore can be detected. The interwoven hashing

mechanism will ensure that if one particular row is deleted or

modified from the Audit table, the detection algorithm can

find a mismatch by the existence of other rows preceding and

following the deleted or modified row. If anybody tries to

modify the data or tries to backdate or postdate the

transaction timestamps, the hash value which is calculated

from the audit data and transaction timestamps will not match.

If any insider has full access to the base data and audit log, he

can simply calculate the hash values and restore the database

with his changes but during the forensic analysis this can be

detected through the digital timestamps which will not match

with the TSA. Hence it is impossible for any insider to hide

the corrupted log file.

III. PERFORMANCE

We now turn to a more detailed, empirical analysis of our

implementation. We studied the performance of the auditing

system and the various database parameters impact on the

auditing system performance.

A. Experiment Design

We simulated a university database scenario. The database

was populated with tuples inserted in random order. Each

tuple represented the attendance of students in different

subjects. For the normal experiments the tuple size was 250

bytes and each transaction carried 4 tuples. The computations

were done on a 2.66GHz Intel Core2Duo running Red Hat

Enterprise Linux version 5.1 with Oracle DBMS version 11g.

In the initial approach the third party timestamping service

response time (from the DBMS sending the timestamp

request until receiving the response back from the third party

service, a quite conservative estimate) was less than a second

since the we had used local timestamping service. The

timestamping service was called initially every five seconds

and then on per day basis.

B. Run Time Overhead

Fig. 3.1 depicts that the hashing overhead was around 9%

on an average in all the experiments that were run. This is a

small price to pay for the protection of highly critical data.

The overhead of hashing was analyzed by only hashing the

tuples values and timestamp for each tuple individually. The

tuple size was fixed to 250 bytes and each transaction carried

4 tuples for the experiments carried out to analyze the

hashing overhead.

Fig. 3.1. Hashing overhead.

When timestamping service was done every five seconds it

reflects the worst case, because in the real world application,

the timestamping will not be done that frequently. It would

usually be around one request per day, which imposes much

less timestamping overhead than what we did here. In the

initial approach five seconds was chosen here just to

International Journal of Future Computer and Communication, Vol. 1, No. 4, December 2012

328

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Private_key
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/One_way_function

accommodate the experiments, which run for a relatively

short amount of time (much less than a day). Local digital

timestamping service was implemented, rather than using

one of the commercial services. The timestamping service

response time does not affect the auditing system

performance. The result was same as shown in Fig. 3.1. All

the experiments were based on SQL triggers to store the audit

logs for DML operations in transactions. These triggers

which add as overhead in the proposed mechanism since now

a days audit trails are implemented in many commercially

available DBMS such as Oracle which takes much more less

time to store audit logs. If the hashing technique is added to

these then the overhead will be less than 10%.

IV. RELATED WORK

There has been related work in the field of audit log

security and forensic analysis. We address each in turn. A

method of forensic tamper detection in SQL Server is

presented by Amit Basu [6]. Their approach is based on

creating an interwoven chain of hash values to determine if a

particular audit log row is modified, inserted, or deleted. This

approach with its advantages, suffers from the use of

non-cryptographic hash functions, and the limited forensic

strength of the detection algorithm. Their approach is also not

safe from the intrusion of insiders. To overcome this we have

introduced the trusted Timestamping service. Note that since

we send only hash values to the trusted third party service, no

private data that is revealed to that external service. Peha [12]

uses, as we do, one-way hash functions and a trusted

timestamps to hash and store every transaction. Our approach

differs from their approach in that we made no assumptions

about the DBMS, or even the hardware it executes on,

remaining in the trusted computing base following an

intrusion. Peha [12] simply batches transactions together by

hashing all the data in each and every transaction, which will

undoubtedly result in increased time complexity. Schneier

and Kelsey [1] address audit logs that are used for later

forensic investigations into detected intrusions. Their

requirement differs considerably from ours. In particular,

their render approach the log entries impossible for any

intruder to read. They use a hash linking in a similar way to

our algorithm but encryption is done for all the log entries.

They do not consider the efficiency issues, in situations

where an online transactional database is being logged which

is critical in our case.

V. SUMMARY AND FUTURE WORK

Motivated by audit log requirements, we have presented a

new approach to transaction processing systems that can

assist in detecting tampering effectively and efficiently. We

based our approach on existing cryptographic techniques

such as strong cryptographic hashing, partial result

authentication codes, and offsite digital timestamping

services. Our contributions are as follows:

We showed how hash based techniques can be used as the

basis for forensic analysis in audit logs, transparent to the

application.

We showed how a trusted timestamping service can be

used to prevent any insider or outside intruder at the company

site or Timestamping authority site from corrupting the audit

log.

To minimize the expense of interacting with

Timestamping Authority site, linked hashing of log records

was introduced, by means of partial result authentication

codes.

We showed that the Timestamping Authority service

response time minimally impacts system performance.

We developed an implementation within the high

performance data storage engine, and showed through

experiments that the hashing overhead never exceeds 15% in

all the computations and if the proposed mechanism is added

in commercial DBMS then the overhead would be less than

10%.

We've focused in this paper on certifying the integrity of

an audit log in a definitive fashion. If an audit log has been

tampered with, then database forensic analysis algorithms

would be needed to detect the tampering and should be able

to determine the who, when, what and where components of

the tampering. It is also possible for the DBMS and

applications to log activities through additional data stored in

the database to assist in analyzing tampering. Of course, such

data should be stored in audited tables. The appropriate third

party timestamp service request granularity (an hour, a day?)

should be investigated. Finally, we want to produce and

evaluate mechanisms that leverage tamper detection of audit

logs to produce tamper resistant audit logs, which cannot be

corrupted, yet are still accessible to the application.

REFERENCES

[3] M. S. Olivier, “On metadata context in Database Forensics,” Digital

Investigation vol. 5, Issues 3- 4, pp. 115-123, March, 2009.

[4] K. Pavlou and R. T. Snodgrass, “Forensic Analysis of Database

Tampering, International Conference on Management of Data,”
Proceedings of the ACM SIGMOD International Conference on

Management of data, SESSION: Authentication, pp. 109 – 120, 2006.
[5] M. Malmgren, (2009) An Infrastructure for Database Tamper

Detection and Forensic Analysis, honors thesis, Univ. of Arizona,

[Online]. Available:

http://www.cs.arizona.edu/projects/tau/tbdb/MelindaMalmgrenThesis.

pdf.
[6] Article by A. Basu. (2006, November) Forensic Tamper Detection in

SQL Server, [Online]. Available:

http://www.sqlsecurity.com/images/tamper/tamperdetection.html.
[7] SQL Server Forensic Analysis by Kevvie Fowler SQL Server Forensic

Analysis, ISBN: 9780321533203.
[8] R. S. Sandhu and S. Jajodia, “Data and database security and controls,”

Handbook of Information Security Management, Auerbach Publishers,
1993, pp. 481-499

[9] Article by David Litchfield (2011, August), [Online]. Available:

www.darkreading.com/databasesecurity/167901020/

security/attacksbreaches/231300307/database-forensics-still-in-dark-a

ges.html
[10] K. Pavlou, (2011) Database Forensics in the Service of Information

Accountability, [Online]. Available:

http://www.cs.arizona.edu/projects/tau/dragoon
[11] R. T. Mercuri, “On Auditing Audit Trails,” CACM vol. 46, no. 1, pp.

17-20, January, 2003.
[12] J. M. Peha, “Electronic commerce with verifiable audit trails,” in

Proceedings of ISOC, 1999. [Online]. Available:

http://www.isoc.org/isoc/conferences/inet/99/proceedings/1h/1h_1.ht

m , viewed on March 26, 2003.

International Journal of Future Computer and Communication, Vol. 1, No. 4, December 2012

329

[1] B. Schneier and J. Kelsey, “Secure Audit Logs to Support

Computer Forensics,” ACM Transactions on Information and System

Security vol. 2, no. 2, pp. 159-196, May, 1999.

[2] K. E. Pavlou and R. T. Snodgrass, “The Tiled Bitmap Forensic

Analysis Algorithm,” IEEE Transactions on Knowledge and Data

Engineering, vol. 22, no. 4, pp. 590-601, April, 2010.

http://www.cs.arizona.edu/projects/tau/tbdb/MelindaMalmgrenThesis.pdf
http://www.cs.arizona.edu/projects/tau/tbdb/MelindaMalmgrenThesis.pdf
http://www.sqlsecurity.com/images/tamper/tamperdetection.html
http://www.darkreading.com/databasesecurity/167901020/
http://www.cs.arizona.edu/projects/tau/dragoon
http://www.isoc.org/isoc/conferences/inet/99/proceedings/1h/1h_1.htm
http://www.isoc.org/isoc/conferences/inet/99/proceedings/1h/1h_1.htm

