
  

  

Abstract—MILS partition scheduling module ensures 

isolation of data between different domains completely by 

enforcing secure strategies.  Although small in size, it involves 

complicated data structures and algorithms that make 

monolithic verification of the scheduling module difficult using 

traditional verification logic (e.g., separation logic). In this 

paper, we simplify the verification task by dividing data 

representation and data operation into different layers and then 

to link them together by composing a series of abstraction 

layers. The layered method also supports function calls from 

higher implementation layers into lower abstraction layers, 

allowing us to ignore implementation details in the lower 

implementation layers.  Using this methodology, we have 

verified a realistic MILS partition scheduling module that can 

schedule operating systems (Ubuntu 14.04, VxWorks 6.8 and 

RTEMS 11.0) located in different domains. The entire 

verification has been mechanized in the Coq Proof Assistant.  

 
Index Terms—MILS, separation kernel, formal methods, 

layered methodology. 

 

I. INTRODUCTION 

MILS (Multiple Independent Levels of Security and Safety) 

architecture is based on the idea of separation [1], building 

multiple separate domains with different security levels on 

the same hardware platform. As a critical module, the MILS 

scheduling module enforces secure strategies, which ensures 

data are completely isolated between domains [2], [3]. For 

example, when a VCPU is ready to switch to another partition, 

it must clear the contents of the previous partition to ensure 

its partition security. In order to ensure data isolation 

properties of the MILS architecture, it is important to verify 

the implementation of its schedule module. Incorrect 

implementation of a schedule function can invalidate 

essential isolation properties and even crash the entire 

system.  
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Fig. 1. Single linked list structure. 

 

However, the verification of the schedule module of 

foundation software system is a difficult task because it is 

usually written in a low-level language that makes use of 
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linked list with multi pointers, and it is usually not written 

with verification in mind. For example, to formal specify a 

simple single linked list as shown in Fig. 1, we need to write 

down the following specifications and notations using 

traditional separation logic [4] as shown in Fig. 2.  

Although the traditional separation logic has capability of 

representing simple linked lists intuitively, it is not suitable 

for specifying and reasoning more complex linked lists as its 

data representation and data operation are mixed in a same 

layer. However, for performance considerations, the queue in 

the MILS scheduling module is usually implemented by a 

complex multi-pointer domain linked list. If the traditional 

separation logic method is used to model the linked list, the 

reasoning process is extremely complicated and difficult, 

which may cause the entire verification work to fail. A 

promising approach to the above problems is to build 

multiple layers with more abstract computation models as 

smaller abstractions tend to be easier to prove and maintain, 

while larger abstractions can be still achieved by composing 

the smaller ones. Unfortunately, creating abstract models and 

linking across them is seen as ad-hoc and tedious additional 

work in the traditional separation logic community. 

 

 
Fig. 2. Separation specifications and notations of a single linked list. 

 

In this paper we show how to reduce the effort required to 

define specifications and linking, so that complex code 
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verification using layered methods becomes an effective 

approach. More precisely, our paper makes the following 

contributions:  

1) We present a layered methodology with separation 

logic for quickly defining multiple abstract models 

and their verification layers. 

2) We show how our methodology can be used to define 

and link different abstraction and implementation 

layers. 

3) We show how to hierarchize MILS scheduling 

modules and define abstract models for each layer of 

the scheduling modules. 

The rest of this paper is organized as follows. In section 2, 

we introduce the scheduling module of MILS. In section 3, 

we propose a proof plan for the MILS scheduling module. In 

section 4, we take the function of the scheduling module as an 

example to introduce the proof method and proof process. In 

section 5, we explain related work and summary this paper. 

 

II.  THE OVERVIEW OF MILS SCHEDULING MODULE 

A. MILS Scheduling Module 

 

void rtsc_vcpu_insert(const struct scheduler *ops, struct vcpu *vc)；

Feature: Insert a VCPU in the ready queue.

Parameters: ops: Scheduler structure variable, which stores the ready queue

                    vc: VCPU to be inserted into the ready queue

Return：None

void rtsc_vcpu_remove(const struct scheduler *ops, struct vcpu *vc)；

Feature: Remove a VCPU from the ready queue

Parameters: ops: Scheduler structure variable, which stores the ready queue

            vc: VCPU to be removed

Return：None

struct task_slice rtsc_schedule(const struct scheduler *ops, s_time_t now, 

        bool_t    tasklet_work_scheduled)；

Feature: The core scheduling function, select a VCPU to run when scheduling is triggerd

Parameters: ops: Scheduler structure variable

                   now: Time to trigger the schedule

                       tasklet_work_scheduled: Task scheduling status

Return：Return to the next time slice description(the run time, next VCPU, etc)

void rtsc_vcpu_sleep(const struct scheduler *ops, struct vcpu *vc)；

Feature: When the VCPU is sleeping, remove the VCPU from the ready queue.

Parameters: ops: Scheduler structure variable

                    vc: VCPU to sleep

Return：None

void rtsc_vcpu_wake(const struct scheduler *ops, struct vcpu *vc)；

Feature: When waking up a VCPU, insert the VCPU into the ready queue 

Parameters: ops: Scheduler structure variable 

                    vc: VCPU being awakened

Return：None

void rtsc_context_saved(const struct scheduler *ops, struct vcpu *vc)；

Feature: When switching context at the end of scheduling, insert the last VCPU that was swapped out 

into the ready queue 

Parameters: ops: Scheduler structure variable 

                     vc: The last VCPU

Return：None

 
Fig. 3. Analysis of key functions of MILS scheduling module. 

 

In the trusted separation kernel of the MILS architecture, 

the purpose of the scheduler is to select the most suitable 

VCPU from the VCPU’s ready queue according to a certain 

scheduling algorithm to occupy PCPU. This paper uses a 

scheduling algorithm based on fixed priority [5]. This 

algorithm can ensure that real-time tasks in the strong 

real-time domain can be completed on time. Its key functions 

are shown in Fig. 3.  

. Our proof of the scheduling module is the proof of these 

key functions 

In the next section, we will use our verification method to 

propose a verification plan for these functions. 

 

III. OVERVIEW AND PLAN FOR VERIFICATION 

Through the analysis of these functions in Fig. 3 and the 

source code, we divide the MILS scheduling module into six 

abstract models (Fig. 4). And the different models are 

connected to each other through function call relationships. 

From bottom to top: 

Abstract model of VCPU, DOMAIN and the linked list: 

This model introduces read and write operations of 

VCPU-related data (vcpu_get/set), read and write operations 

of DOMAIN-related data, read and write operations of linked 

list node. 

Abstract model of linked list add/delete/initialize operation: 

This model introduces fixed-point insertion and deletion 

operations to the linked list and initialization operation for the 

linked list (list_add/del_tail/init). 

Abstract model of linked list initialization and deletion 

function: This model introduces linked list deletion and 

initialization operation (list_del_init). 

Abstract model of interrupt queue insertion function, 

pick/delete suitable VCPU function: This model introduces 

the insertion operation of the interrupt queue (irqq_insert), 

the picking and deleting VCPUs operations from the ready 

queue (vcpu_pick/rm_q). 

Abstract model of ready queue related operations: This 

model introduces ready queue insertion and update 

operations. (runq_insert/update). 

Abstract model of VCPU-related operation and scheduling 

function : This model introduces the operations of inserting 

(rtsc_vcpu_insert), deleting (rtsc_vcpu_remove) VCPU in 

the ready queue, the operation of selecting VCPU when 

triggering (rtsc_schedule), the operation of deleting VCPU 

when it sleeps (rtsc_vcpu_sleep), the operation of inserting 

VCPU to the ready queue when it is awakened 

(rtsc_vcpu_wake), the operation of switching context 

(rtsc_context_saved). After we decompose the MILS 

scheduling module, we can separate and verify the 

implementation of the upper-layer algorithm and the 

lower-layer complex data structure. The advantage of this is 

that after we complete the verification of the lower-layer 

complex data structure, the proof of the upper-layer model 

only needs to verify the function call relationship. We don’t 

need to prove the complex data again. This improves 

verification efficiency and saves verification time.  

After we decompose the MILS scheduling module, we can 

separate and verify the implementation of the upper-layer 

algorithm and the lower-layer complex data structure. The 

advantage of this is that after we complete the verification of 

the lower-layer complex data structure, the proof of the 

upper-layer model only needs to verify the function call 

relationship. We don’t need to prove the complex data again. 

This improves verification efficiency and saves verification 

time. 

In the next section, we illustrate our entire verification 

process in detail. Our verification method for this function 

can be applied to the verification of the entire scheduling 
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module, and even the verification of the entire MILS. It is universal. 

Abstract model of VCPU-related operation 
and scheduling function

rtsc_vcpu_insert

Abstract model of ready queue 
related operations

vcpu_get/set domain_get/setrunq_insert/update

Abstract model of interrupt queue
insertion function, pick/delete 
suitable VCPU function

list_add/del_tail

irqq_insert vcpu_get/set domain_get/set list_add/del_tail/init

Abstract model of linked list
initialization and deletion function

domain_get/setlist_del_init list_add/del_tail/init list_get/set

Abstract model of linked list add
/delete/initialize operation

list_get/set

list_add/del_tail/init vcpu_get/set domain_get/set

rtsc_vcpu_remove

vcpu_pick/rm_q

list_del_init

rtsc_schedule

vcpu_pick/rm_q

rtsc_vcpu_sleep rtsc_vcpu_wake rtsc_context_saved

list_del_init

vcpu_get/set

Abstract model of VCPU, DOMAIN 
and the linked list

vcpu_get/set domain_get/set list_get/set

list_get/set

                 Illustration
Function 

implementation
Formal spec Abstract Function call

  
Fig. 4. Overall verification plan for MILS scheduling module abstract. 

 

IV. METHODOLOGIES AND PROCESS 

Fig. 5 is the framework diagram of the verification method. 

The program is written and implemented in C language. All 

spec definitions, functional correctness proofs, and spec 

consistency proofs are completed in the Coq which is an 

auxiliary theorem tool. The specific verification process is 

divided into three parts: 

 

Program
code

New code

Clight code

Formal spec in the 
implementation layer

Formal spec in the 
abstraction layer

refactor

convert

Spec of function

build

add

Functional correctness verification

consistency

 
 Fig. 5. Process architecture diagram of verification method. 

 

The first part is the refactoring of the program code and 

convert the code to Clight [6] code.  

The second part is to describe the specification of the the 

program’s implementation layer based on the separated logic 

according to the converted Clight code, and use functional 

programming to construct the specification of the program’s 

abstract layer. 

The third part is to add the described function specification 

to the Clight code, and verify the consistency between the 

functional abstraction layer and the functional 

implementation layer with the corresponding Clight code. 

Next, we use the function “list_add_tail” in Fig. 6 to 

illustrate the entire verification process of this method. 

A. The Overview of Program 

Function “list_add_tail” inserts a new node at the previous 

node position of the linked list’s node “head”. The insert 

operation is done in function “__list_add”.  

 
struct list_head

{

   struct list_head *next, *prev;  

};

static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)

{

  next->prev =new;

  new->next = next;

  new->prev = prev;

  prev ->next = new; 

}

static inline void list_add_tail(struct list_head *new, struct list_head *head)

{

  __list_add(new,head->prev,head);

}

 
Fig. 6. Program source code. 
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B. Refactor the Source Code (Source Code Normalization) 

For some pointers, structures and other data structures in 

the function, especially pointer nesting, structure nesting, 

they will be converted to the corresponding nested structure 

when the source code is converted. When we describe the 

spec of the nested structure of these functions, it will appear 

that the described specification may be too long and 

complicated. As a result, the deduction strategy cannot be 

identified in the actual deduction proof, which makes the 

final proof impossible to complete. In order to avoid this 

problem, we separate data structures (pointers, structures, etc.) 

as an independent function to prove separately. In the final 

function, the complex operation is just to call the independent 

function, that is, when proving the final function, you do not 

need to prove the complex operation, only need to prove the 

calling relationship between functions, thus simplifying the 

proof process. 

Fig. 7 is the program code after refactoring. Pointer 

operations are all encapsulated in functions. The parent 

function’s verification only needs to call the encapsulation 

functions’ proof result After encapsulation functions are 

proved. 

 

struct list_head

{

   struct list_head *next, *prev;  

};

static list_head* get_list_head_prev(struct list_head *head)

{

  return head->prev;

}

void set_list_head_next(struct list_head *head, struct list_head *t)

{

  head->next = t;

}

void set_list_head_prev(struct list_head *head, struct list_head *t)

{

 head->prev = t;

}

void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)

{

  set_list_head_prev(next,new);

  set_list_head_next(new,next);

  set_list_head_prev(new,prev);

  set_list_head_next(prev,new);

}

static inline void list_add_tail(struct list_head *new, struct list_head *head)

{

   struct list_head *p;

   p = get_list_head_prev(head); 

   __list_add(new,p,head);

}

 
Fig. 7. Program code after refactoring. 

 

C. Generate the Clight Code 

We use Clightgen tool to convert C code to Clight code. 

Clightgen is a tool of compiler CompCert [7]. CompCert is a 

formalized compiler for the C programming language. The 

Clight  code after conversion by Clightgen can truly describe 

C pointer and can eliminate some difficult-to-model 

semantics in C language. In addition, Clightgen can factor out 

function calls and assignments from inside subexpressions 

(by moving them into their own assignment statements), can 

Factor && and || operators into if statements (to capture short 

circuiting behavior). And when the -normalize flag is used, 

Clightgen can factor each memory dereference into a top 

level expression, i.e.  “x=a[b[i]];” becomes “t=b[i];x=a[t];”. 

Clight code can be recognized by the Coq auxiliary 

theorem prover, so all our specification definitions, 

functional correctness proofs, and spec consistency proofs 

can be completed in Coq. It ensures that the semantic gap 

between different formal specs is minimized. 

D. Function Specification 

We use the refactored code in Fig. 7 as an example to 

illustrate the difference between formal spec at different 

abstraction levels. The code include the definition of the 

linked list’s head structure “list_head” and the 

implementation of five functions “get_list_head_prev”, 

“set_list_head_next”, “set_list_head_next”, “__list_add”, 

“list_add_tail”. The first three functions are used to read and 

write data in the linked list, and the fourth function is used to 

implement key node insertion operations. 

Inductive list_head_abs : Type :=

 |List_head (next:Z) (prev:Z).

Definition list_head_pool := ZMap.t list_head_abs.

Definition get_list_prev_abs(al:Z)(lpool:list_head_pool):list_head_pool * Z:=

 match ZMap.get al lpool with

  |List_head _ aprev =>(lpool,aprev)

 end.

Definition set_list_head_next_abs(lpool:list_head_pool)(ah:Z)(nv:Z):

list_head_pool:=

  match ZMap.get ah lpool with

    |List_head next prev=>ZMap.set ah (List_head nv prev) lpool end.

Definition set_list_head_prev_abs(lpool:list_head_pool)(ah:Z)(pv:Z):

list_head_pool:=

  match ZMap.get ah lpool with

    |List_head next prev=>ZMap.set ah (List_head next pv) lpool end.

Definition list_add_tail_abs(new:Z)(head:Z)(lpool:list_head_pool):

list_head_pool:=

   let p:=snd (get_list_prev_abs head lpool) in

    list_add_abs lpool new p head.

 
Fig. 8. Formal spec in the abstraction layer for the insertion of the linked list 

node. 

 

1) Formal spec in the abstraction layer. “List_head_abs” is 

the formal spec of the linked list node struct. “Z” is a 

built-in type of Coq that describes integers in 

mathematics. “list_head_pool” defines a set of 

“list_head” types. “get_list_prev” reads the node of the 

linked list, so the post-state of the list set remains 

unchanged after executing this function. 

“set_list_head_next” and “set_list_head_prev” can set 

the list, the post-state of the linked list set is set to the 

correct goal state after they are executed. As shown in 

Fig. 8, in “set_list_head_next_abs” and 

“set_list_head_prev_abs, lpool” uses “ZMap.set” 

operator in Coq to update their linked list set’s value. 

2) Formal spec in the implementation layer. linked list node 

that we define describes the program logic of the 

function in a high level of abstraction. It is conducive to 

the reasoning and validation of program logic, but the 

structure used is too abstract to establish relation with C 

structure, which increases the difficulty of consistency 

verification between formal specs and program source 

code. Therefore, we use VST validation tool [8] to build 

the formal spec of functional implementation layer and 

prove the correctness of program function, consistency 

of spec between the implementation layer and the 

abstract layer based on this spec. Finally, we derive the 

consistency of spec between the abstraction layer and the 
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source implementation. VST is a C language verifiable 

tool based on separation logic, we use it to formalize API 

function specs, including the data structure of API 

operations, preconditions of API functions (assumptions 

for input parameters and global variables), 

postconditions of API functions (the updated guarantees 

for return values and global variables). To formalize a C 

language function using VST, you need to follow the 

following code as Fig. 9. “PROP(P)LOCAL(Q)SEP(R)” 

represents the pre- and post-conditions of spec. “P” is a 

list of proposition, “Q” is a list of bound local global 

variables, “R” is the list of predicates of separate logic, 

“WITH” is used to describe the logical variable “v” , 

which is an abstract mathematical variable that can be 

referenced by pre- and post-conditions. Formal spec of 

three functions in the implementation describes actions 

for the linked list in a way that is very close to C code in 

Fig. 10 and Fig. 11. Fig. 10 shows an action for getting 

the linked list node, It is consistent with the execution of 

the function “get_list_head_prev” in Fig. 7. Fig. 11 

shows an action for setting the linked list node, it is 

consistent with the execution of the function 

“set_list_head_next” in Fig. 7. The spec of the second 

function “set_list_head_prev” is similar to 

“set_list_head_next”, so we won’t describe it here. 

“SEP” uses separation logic assertions “field_at Tsh 

t_struct_list_head [] (Vundef,Vundef)” to describe the 

contents of the structure “list_head”. Function 

“__list_add” and “list_add_tail” implement their 

functions by calling intermediate functions, so when we 

prove that these intermediate functions are correct, 

function “__list_add” and “list_add_tail” are also correct. 

The spec in implementation layer of these two functons 

does not need to define predicate logic. So, we won’t 

introduce them here. 

Definition func_spec:=

  DECLARE _func   WITH v

     PRE [params]    PROP(P) LOCAL(Q) SEP(R)

     POST [returns]  PROP(P) LOCAL(Q) SEP(R)

 
Fig. 9. The VST spec writing format. 

 

Definition get_list_head_prev_spec:=

 DECLARE _get_list_head_prev

  WITH ch:val, cp:val

   PRE [_head OF (tptr t_struct_list_head)]

    PROP () LOCAL (temp _head ch)

    SEP(field_at Tsh t_struct_list_head [] (Vundef,cp) ch)

   POST [tptr t_struct_list_head]

    PROP ()  LOCAL (temp ret_temp cp)

    SEP(field_at Tsh t_struct_list_head [] (Vundef,cp) ch).
 

Fig. 10. Formal spec the implementation layer for getting the linked list 

node. 

 

3) Consistency between the abstraction layer and the 

implementation layer. Since our description of the state 

predicates in the spec of the implementation layer is 

consistent with the linked list data structure in Fig. 7, 

there is no data abstraction relationship between the 

implementation layer spec and the source code. 

Therefore, the consistency proof between the 

implementation layer spec and the code implementation 

only requires the functional correctness proof. But for 

the consistency proof between the implementation layer 

and the abstraction layer, we need to define the relation 

between the implementation layer and the abstraction 

layer. We use “lpool” to indicate the linked list which is 

formalized in the abstraction layer. We use “ch” to 

indicate the linked list which is formalized in the 

implementation layer. And the relation between the 

above two should satisfy: for any address “i”, if address 

“ch“ of the linked list node in the implementation layer is 

evaluated at “i”, and the value of this node is “(cn,cp)”, 

the subscript of linked list node in the abstraction layer is 

evaluated at “i”, the value of this node is “List_head an 

ap”, Then, the value of an should be equal to “cn”, and 

the value of ap should be equal to “cp”. This relation can 

be described in formal language as Fig. 12. We can add 

the above relation to the “SEP”’s predicate logic of the 

function to be proved, when we do the proof, we will 

prove the above consistent relation. If there is no 

problem with the proof, it can be proved that the 

abstraction layer and the implementation layer satisfy 

the above relation, and they are consistent. 

Definition set_list_head_next_spec:=

 DECLARE _set_list_head_next

  WITH cl:val, tv:Z

   PRE [_head OF(tptr  t_struct_list_head), _t OF (tptr t_struct_list_head)]

    PROP () LOCAL(temp _head ch;temp _t (Vint (Int.repr tv)))

    SEP(field_at Tsh t_struct_list_head [] (Vundef,Vundef) ch)

  POST[tvoid]

    PROP() LOCAL()

    SEP(field_at Tsh t_struct_list_head [] ((Vint (Int.repr tv)),Vundef) ch).

Definition set_list_head_prev_spec:=

 DECLARE _set_list_head_prev

  WITH ch:val, tv:Z

  PRE [_head OF(tptr  t_struct_list_head), _t OF (tptr t_struct_list_head)]

  PROP () LOCAL(temp _head ch;temp _t (Vint (Int.repr tv)))

  SEP(field_at Tsh t_struct_list_head [] (Vundef,Vundef) ch)

  POST[tvoid]

  PROP() LOCAL()

  SEP(field_at Tsh t_struct_list_head [] (Vundef,(Vint (Int.repr tv))) ch).

 
Fig. 11. Formal spec in the implementation layer for setting the linked list 

node. 

 

 
 

Fig. 12. the consistency relationship between the implementation layer and 

the abstraction layer. 

 

E. Functional Correctness Verification 

We use the VST’s proof tactic to help us prove the theorem, 

and we need to follow the spec in Fig. 13. 

The predicate “semax_body” states the Hoare tripe of the 

function body, ∆ |—{P}C{Q}. P and Q are taken from the 

spec which we define in function implementation layer. C is 

the body of function, and the type-context ∆ is calculated 

from the global type-context overlaid with the parameter- and 
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local-types of the function. 

When we derive the theorem through the tactic 

“start_function”. our proof goal will be transformed into the 

Hoare triple. Then we will use some proof tactics that VST 

provides to prove the Hoare triple. If it proves successful, it 

shows that the function has functional correctness. That is, 

this function is safe. Next, we take the function 

“set_list_head_prev” as an example to illustrate the whole 

proof process. Fig.14 is this function’s proof code. 

 

Definition Vprog : varspecs. mk_varspecs prog. Defined.

Definition Gprog : funspecs :=  ltac:(with_library prog (func1_spec;func2_spec; ]).

Lemma body_func_spec: semax_body Vprog Gprog f_func fcunc_spec.

Proof.

  start_function. 

 [Proof_Tactics].

Qed.
 

Fig. 13. proof spec in VST. 

 

Lemma body_set_list_head_prev: semax_body Vprog Gprog 

f_set_list_head_prev set_list_head_prev_spec.

Proof.

  start_function.

  Intros cp;Intros anext;Intros ap.

  forward. forward.

  Exists (Vint (Int.repr tv)).

  Exists anext;Exists tv.

  unfold set_list_head_prev.

  inversion H2.

  entailer!. rewrite ZMap.gss. auto.

Qed.
 

Fig. 14. “set_list_head_prev” proof code. 

 

After tactic “start_function” is executed, the proof goal 

becomes as Fig. 15. 

Espec : OracleKind

ch : val

tv : Z

lpool : list_head_pool

ah : Z

Delta_specs : PTree.t funspec

Delta := abbreviate : tycontext

H : 0 <= tv <= Int.max_unsigned

POSTCONDITION := abbreviate : ret_assert

MORE_COMMANDS := abbreviate : statement

______________________________________(1/1)

semax Delta

  (PROP ( )

   LOCAL (temp _head ch; temp _t (Vint (Int.repr tv)))

   SEP (EX cp : val,

        (EX anext : Z,

         (EX ap : Z,

          !! (0 <= ap <= Int.max_unsigned /\

              Vint (Int.repr ap) = cp /\

              List_head anext ap = ZMap.get ah lpool) &&

          field_at Tsh t_struct_list_head [] (Vundef, cp) ch))))

  ((_head -> _prev) = _t;

   MORE_COMMANDS) POSTCONDITION  
Fig. 15. the proof goal after excuting “start_function.” 

 

Below the line we have one proof goal: the Hoare triple of 

the function body. The command P is the 

“PROP()LOCAL()SEP()” clause of the preconditions in 

“set_list_head_prev_spec”. The contents of “PROP()” clause 

has been mentioned above the line as a hypothesis. We do 

Hoare logic proof by forward symbolic execution. We follow 

the C code execution order, statement by statement to prove. 

So the command C shows only one function statement 

“_head->_prev=_t”. The remaining function statements are 

hidden in “MORE_COMMANDS”.  

For many kinds of statements (assignment, return, break, 

continue), we derive them by the forward tactic, which 

applies a strongest-postcondition style of proof rule to derive 

Q. 

After we execute the forward more time, the proof target 

becomes as Fig. 16. 

The proof goal becomes an entailment in separation logic, 

P→Q. VST use “ENTAIL ∆,P⊢ Q” for this entailment, and 

provide the “entailer!” tactic to derive the entailment.  

 And in the end, the successful derivation of all the proof 

goals means that the proof of our function is completed, the 

function is functionally correct and the function spec is 

consistent. 

Espec : OracleKind

ch : val

tv : Z

lpool : list_head_pool

ah : Z

Delta_specs : PTree.t funspec

H : 0 <= tv <= Int.max_unsigned

anext, ap : Z

H0 : 0 <= ap <= Int.max_unsigned

H2 : List_head anext ap = ZMap.get ah lpool

Delta : tycontext

PNch : is_pointer_or_null ch

H3 : is_pointer_or_null (Vint (Int.repr tv))

H4 : field_compatible t_struct_list_head [] ch

H5 : value_fits t_struct_list_head (Vundef, Vint (Int.repr tv))

______________________________________(1/1)

field_at Tsh t_struct_list_head [] (Vundef, Vint (Int.repr tv)) ch

|-- EX cp : val,

    (EX anext0 : Z,

     (EX ap0 : Z,

      !! (0 <= ap0 <= Int.max_unsigned /\

          Vint (Int.repr ap0) = cp /\

          List_head anext0 ap0 = ZMap.get ah (set_list_head_prev lpool ah tv)) 

&&

      field_at Tsh t_struct_list_head [] (Vundef, Vint (Int.repr tv)) ch))
 

Fig. 16. the intermediate proof goal after executing the second forward 

tactic. 

 

V.   RELATED WORK AND CONCLUSION 

The team of the Department of Computer Science at the 

University of Tokyo verified the memory management 

provided by the Topsy Operations Department [9]. The 

memory management module of the Topsy kernel uses the 

heap mode to provide basic dynamic memory allocation 

functions: memory initialization, memory allocation, 

memory release, and organizes the free memory pool through 

the block linked list method. They use Coq as a formal tool to 

define the implementation of the memory allocation 

algorithm, describe algorithm assertions and specifications 

through separation logic, and finally prove the correctness of 

the code interactively in Coq. However, the memory 

allocation algorithm of the Topsy operating system is too 

simple. Its verification is limited to verification at the code 

level, and it is not verified for higher levels. Its verification 

method is not universal. 

The Australian NICTA laboratory initiated the functional 

correctness verification of the SeL4 (secure embedded L4) 

[10]. They innovatively adopted a functional language 

Haskell as an intermediate verification to quickly implement 

the system prototype, which on the one hand can make the 
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system prototype more convenient to transform into the 

theorem prover, on the other hand, the formal verification 

results can be quickly fed back to the system designer 

through the Haskell prototype [11]. But the work of Sel4 

doesn’t perform layered verification of the system, the 

verification degree is low, and the verification efficiency is 

low. Klein introduced the final verification results in the 

report [12]. The SeL4 kernel contains more than 8,700 lines 

of C code, and more than 200,000 lines of Isabelle/HOL code 

that has been formally defined and proven. This work takes a 

total of 20 man-years of work.  

The Flint team at Yale University verified the functional 

correctness [13] and security properties [14] of the CertiKOS 

kernel. The CompCert compiler we use is the basis of this 

project. The project adopts a layered verification method to 

layer the functional structure of CertiKOS, and each layer is 

verified independently, which greatly improves the 

verification efficiency. At the beginning of the design, 

CertiKOS followed the code structure with simple structure, 

clear hierarchy, and low coupling between different modules. 

Therefore, based on the above verification method, the 

functional correctness verification of more than 3000 lines of 

C code and assembly code only took 1 person-year. 
Compared with the SeL4 project, its verification efficiency is 

improved several times. However, the code of the CertiKOS 

project does not support pointer linked lists, and for complex 

data structures such as pointer linked lists, this verification 

method is not applicable. 

The traditional VST verification method supports 

separation logic and can be used to verify pointer programs, 

but this method does not separate data representation from 

operation. For more complex data structures, there will be 

problems such as complex specifications and high inference 

difficulty. 

Our verification method, on the one hand, is based on the 

idea of layered verification, which can improve the efficiency 

of code verification. We use our method to verify function 

“list_add_tail”. Its refactored C code (including data 

structure) has 32 lines. The Coq code we use is only 320 lines 

in total, and the Coq code that requires manual handwriting is 

only 190 lines. On the other hand, our method can verify the 

data structure of the pointer linked list, and uses a method of 

separating data representation and operation, which greatly 

simplifies the difficulty of verification. 

We take the function “list_add_tail” in the MILS 

scheduling module as an example to show a proof method. 

We first separate the complex structure of the function, use 

independent functions to encapsulate the complex structure, 

use the Clightgen tool of CompCert to convert the code into 

Clight code, then build this function’s spec of the abstraction 

layer and implementation layer and finally prove the 

consistency of the function’s spec of the abstraction layer and 

the implementation layer, and proves the functional 

correctness of this function. This method can simplify the 

proof of complex data structures, which not only be applied 

to the proof of the doubly linked list in this example, but also 

the proofs of other complex data structures. 
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