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Abstract—The success of clustering depends critically on a 

number of key concerns, one of which is clustering validation. 

In general, there are three types of clustering validation criteria: 

relative clustering validation, internal clustering validation, and 

external clustering validation. This paper focuses on the 

clustering validation criteria and provides a thorough analysis 

of the most popular clustering validation for crisp clustering. 

We investigate the validation properties over the five 

conventional clustering. According to experiment results, 

Silhouette is the validation measure that performs well in all five 

areas whereas other measures have some limits in various 

application. 
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I.  INTRODUCTION 

The task of grouping a set of items into clusters such that 

things inside the same cluster are similar and separate clusters 

are distinct is known as clustering, which is one of the most 

significant unsupervised learning. In several disciplines, 

including image analysis and bioinformatics, clustering is 

often used. It is essential to figure out a method to validate 

the validity of partitions following clustering because this is 

an unsupervised learning. Otherwise, utilising various 

clustering results would be challenging. One of the important 

requirements necessary for the success of clustering 

applications is clustering validation [1], which assesses the 

goodness of clustering outcomes [2]. The three basic types of 

clustering validation are External Clustering Validation, 

Relative Clustering Validation and Internal Clustering 

Validation. Entropy is an illustration of an external validation 

metric; it assesses the "purity" of clusters based on the class 

labels [3]. 

Internal validation measures use information found in the 

data, as opposed to external validation measures, which also 

use information not found in the data. Without taking into 

account outside data, internal measurements assess a 

clustering structure’s [4]. External validation measures are 

mostly used to select the best clustering technique for a given 

data set because they are aware of the "actual" cluster number 

beforehand. On the other hand, internal validation measures 

can be utilised without any additional information to select 

the optimum clustering technique and the appropriate cluster 

size. In actuality, many application scenarios lack access to 

external data like class labels. Therefore, internal validation 

measures are the choice for cluster validation when there is 

no external information accessible. 

External criteria suggest that the outcomes of a clustering 

algorithm are assessed in accordance with a predetermined 

structure that is put on a dataset to reflect the dataset's 

clustering structure. In other words, external criteria are 

 

 

  

 

 

 

 

 

  

 

Numerous clustering validation measures, including CH, I, 

DB, SD, and SIL, have been put out in the paper for crisp 

clustering. However, a number of data properties can have an 

impact on the current measures. If minimum or maximum 

pairwise distances are utilised in the measure, for instance, 

data noise can significantly affect how well the validation 

measure performs. It is yet unknown how well-performing 

existing measures are in various scenarios. As a result, Table 

1 presents a thorough analysis of 10 frequently used 

validation metrics. We examine the five different features of 

their validation properties: monotonicity, noise, density, 

subclusters, and skewed distributions. We create fictitious 

data for experiments for each aspect. These artificial data 

accurately reflect the qualities. SIL is the only validation 

measure that performs well in all five characteristics, 

according to the experiment results, although other measures 

have distinct limits in various application circumstances, 

particularly in terms of noise and sub clusters. 

II. CLUSTERING VALIDATION MEASURES 

 

 

Compactness: It determines how tightly a cluster's objects 

are connected to one another. Based on variance, a set of 

measurements assesses cluster compactness. Better 
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We discuss several fundamental validation concepts in this 

part, along with a group of 10 popular validation index. 

Validation methods are frequently based on the two criteria

listed below [4, 5], as the purpose of clustering is to make 

things within the same cluster similar and those in different 

clusters distinguishable.

grounded in the dataset's a priori knowledge or ground truth. 

In this paper, we will present four index: the Jaccard Index

(JI), the Rand Index (RI), and its derivative, the adjusted 

Rand Index (ARI), (NMI). Internal criteria, as opposed to a 

priori knowledge, evaluate the clustering algorithms in terms 

of the internal structures of the datasets themselves. Re-

sampling is the frequently used by this class of algorithms. 

This group of algorithms may provide accurate estimates of 

the number of clusters present in a dataset as well as reliable 

feedback on the performance of clustering techniques.

According to the relative correlation between compactness 

and separation, relative criteria assess the clustering 

partitions. The index values are used to evaluate clustering 

partitions rather than clustering techniques. The various 

subclasses of relative criteria include model-based index, 

fuzzy validity index, and crisp validity index. Calinski-

Harabasz (CH), Dunn’s (DI), Davies-Bouldin (DB), I index

(II), Silhouette (SIL), Object-Based Validation (OBV-LDA), 

the Geometrical Index (GI), and the validity index are some 

of the crisp validity index. DB is the counterpart of XB in 

crisp clustering.



compactness is indicated by lower variance. There are also 

many distance-based measures that are used to gauge how 

compact a cluster is, including maximum or average pairwise 

distances and maximum or standard core distances (see Table 1). 

 

 

Table 1. Internal clustering validation measures 

S.no. Measure Notation 
Optimal 

value 
Definition 

1 Calinski-Harabasz index 𝐶𝐻 Max  ∑ 𝒏𝒊𝒅
𝟐(𝒄𝒊, 𝒄)/(𝑵𝑪 − 𝟏)𝒊 ∑ ∑ 𝒅𝟐

𝒙∈𝑪𝒊𝒊 (𝒙, 𝒄𝒊)/(𝒏 − 𝑵𝑪)⁄  

2 Davies-Bouldin index 𝐷𝐵 Min  
𝟏

𝑵𝑪
∑ 𝒎𝒂𝒙𝒋,𝒋≠𝒊 {[

𝟏

𝒏𝒊
∑ 𝒅(𝒙, 𝒄𝒊) +

𝟏

𝒏𝒋
∑ 𝒅(𝒙, 𝒄𝒋)𝒙∈𝑪𝒋𝒙∈𝑪𝒊

] 𝒅(𝒄𝒊, 𝒄𝒋)⁄ }𝒊  

3 Dunn’s index 𝐷 Max  𝒎𝒊𝒏𝒊 {𝒎𝒊𝒏𝒋 (𝒎𝒊𝒏𝒙∈𝑪𝒊,𝒚∈𝑪𝒋 
𝒅(𝒙, 𝒚) 𝒎𝒂𝒙𝒌 {𝒎𝒂𝒙𝒙,𝒚∈𝑪𝒌

𝒅(𝒙, 𝒚)}⁄ )} 

4 
Modified Hubert Γ 

statistic 
Γ Elbow  

𝟐

𝒏(𝒏−𝟏)
∑ ∑ 𝒅(𝒙, 𝒚)𝒚∈𝑫𝒙∈𝑫 𝒅𝒙∈𝑪𝒊,𝒚∈𝑪𝒋

(𝒄𝒊, 𝒄𝒋) 

5 Root-mean-square std dev 
𝑅𝑀𝑆𝑆𝑇
𝐷 

Elbow  {∑ ∑ ‖𝒙 − 𝒄𝒊‖
𝟐

𝒙∈𝑪𝒊𝒊 /[𝑷 ∑ (𝒏𝒊 − 𝟏)𝒊 ]}
𝟏

𝟐 

6 R-squared 𝑅𝑆 Elbow  (∑ ‖𝒙 − 𝒄‖𝟐
𝒙∈𝑫 − ∑ ∑ ‖𝒙 − 𝒄𝒊‖

𝟐
𝒙∈𝑪𝒊𝒊 )/ ∑ ‖𝒙 − 𝒄‖𝟐

𝒙∈𝑫  

7 SD validity index 𝑆𝐷 Min 

 𝑫𝒊𝒔(𝑵𝑪𝒎𝒂𝒙)𝑺𝒄𝒂𝒕(𝑵𝑪) + 𝑫𝒊𝒔(𝑵𝑪) 

𝑺𝒄𝒂𝒕(𝑵𝑪) =  
𝟏

𝑵𝑪
∑ ‖𝝈(𝑪𝒊)‖ ‖𝝈(𝑫)‖⁄

𝒊
, 𝑫𝒊𝒔(𝑵𝑪)

=
𝒎𝒂𝒙𝒊,𝒋 𝒅(𝒄𝒊, 𝒄𝒋)

𝒎𝒊𝒏𝒊,𝒋 𝒅(𝒄𝒊, 𝒄𝒋)
∑ (∑ 𝒅(𝒄𝒊, 𝒄𝒋)

𝒋
)

−𝟏

𝒊
 

8 Silhouette index 𝑆IL Max 

 
𝟏

𝑵𝑪
∑ {

𝟏

𝒏𝒊
∑

𝒃(𝒙)−𝒂(𝒙)

𝒎𝒂𝒙[𝒃(𝒙),𝒂(𝒙)]𝒙∈𝑪𝒊
}𝒊  

𝒂(𝒙) =
𝟏

𝒏𝒊 − 𝟏
∑ 𝒅(𝒙, 𝒚), 𝒃(𝒙)

𝒚∈𝑪𝒊,𝒚≠𝒙
=  𝒎𝒊𝒏𝒋,𝒋≠𝒊 [

𝟏

𝒏𝒋

∑ 𝒅(𝒙, 𝒚)
𝒚∈𝑪𝒋

] 

9 Xie-Beni index 𝑋𝐵 Min  [∑ ∑ 𝒅𝟐(𝒙, 𝒄𝒊)𝒙∈𝑪𝒊𝒊 ] [𝒏. 𝒎𝒊𝒏𝒊,𝒋≠𝒊𝒅
𝟐(𝒄𝒊, 𝒄𝒋)]⁄  

10 𝐼 index 𝐼 Max  (
𝟏

𝑵𝑪
.

∑ 𝒅(𝒙,𝒄)𝒙∈𝑫

∑ ∑ 𝒅(𝒙,𝒄𝒊)𝒙∈𝑪𝒊𝒊
. 𝒎𝒂𝒙𝒊,𝒋 𝒅(𝒄𝒊, 𝒄𝒋))

𝒑

 

𝐷: data set; 𝑛: number of objects in 𝐷; 𝑐: centre of 𝐷; 𝑃: attributes number of 𝐷; 𝑁𝐶: number of clusters; 𝐶𝑖: the ith cluster; 𝑛𝑖: number of objects in 𝐶𝑖; 

𝑐𝑖: centre of 𝐶𝑖; 𝜎(𝐶𝑖): variance vector of 𝐶𝑖; 𝑑(𝑥, 𝑦): distance between x and y;‖𝑿𝒊‖ = (𝑿𝒊
𝑻. 𝑿𝒊)

𝟏

𝟐 

Separation: It evaluates a cluster's degree of differentiation 

or separation from other clusters. Examples of measures of 

separation include the pairwise distances between cluster 

centers or the pairwise minimum distances between objects 

in various clusters. Additionally, some index employ metrics 

based on density.  

The following is the basic method to use validation 

methods to identify the best partition and equally useful 

number of a set of items. 

Step 1: Create a list of clustering methods that will be used 

on the data set. 

Step 2: Use several parameter combinations for each 

clustering technique to obtain various clustering outcomes. 

Step 3: For each division you received in Step 2, calculate 

the matching validation index. 

Step 4: Determine the ideal cluster size and appropriate 

partition based on the criteria 

Commonly used validation measures are shown in Table I. 

To the best of our knowledge, these measures cover a 

substantial portion of the validation measures that are 

accessible in several disciplines, including machine learning, 

data mining, and information retrieval. The computation 

forms for the measurements are provided in the "definition" 

column. Then, we simply describe these metrics. Including 

DB, XB, and SIL, take into account both evaluation criteria 

(compactness and separation) in the form of a ratio. However, 

certain index, such RMSSTD, RS, and Γ, only take into 

account one factor. The square root of the pooled sample 

variance for all the attributes determines the Root-mean-

Square Standard Deviation (RMSSTD) [6]. It gauges how 

uniform the clusters that have developed. The ratio of the sum 

of squares within clusters to the sum of squares throughout 

the entire data set is known as R-Squared (RS). It gauges how 

different one cluster is from the others [6, 7]. By measuring 

the discrepancies between pairs of data items in two 

partitions, the Modified Hubert statistic Γ [8] assesses the 

difference between clusters. The average between- and 

within-cluster sum of squares is used as the basis for the 

Calinski-Harabasz index (CH) [9] evaluation of cluster 

validity.  

Index I (I) [1] assesses compactness based on the sum of 

distances between items and their cluster centre and measures 

separation based on the maximum distance between cluster 

centres. The Dunn’s index (D) [10] measures the inter-cluster 

separation as the smallest pairwise distance between objects 

in distinct clusters and the intracluster compactness as the 

largest diameter among all clusters. These three index have 

the formula: index = (a.separation)/ (b.compactness), where 

b and a are weights. Maximizing the value of these index 

yields the ideal cluster number. 

The pairwise difference of between-cluster and within-

cluster distances is used by the Silhouette Index (SIL) [11] to 

validate the clustering performance. Additionally, 

minimising the value of this index yields the ideal cluster 

number. Rousseeuw (1987) suggested the silhouette statistic 

for assessing clusters and figuring out the ideal number. Let 

a (i) represent the average dissimilarity between objects in the 

ith object's cluster, and b (i) represent the average dissimilarity 

between objects in the nearby cluster, which is defined as the 

cluster with the lowest average dissimilarity. 

The Davies-Bouldin index (DB) [12] gets computed. The 

highest number is given to each cluster C as its cluster 

similarity, and the similarities between each cluster and each 

other cluster are calculated for each cluster. Then, by 

averaging all of the cluster similarities, the DB index may be 

created. The clustering outcome is better the smaller the 

index. The best partition is made by minimising this index, 

which makes clusters the most distinct from one another. 
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According to the Xie-Beni index (XB) [13], the intra-

cluster compactness is the mean square distance between 

each data object and its cluster centre, and the inter-cluster 

separation is the minimum square distance between cluster 

centres. When the minimum of XB is discovered, the ideal 

cluster number is attained. Kim et al. [14] proposed the index 

DB and XB as upgrades to DB and XB. We shall apply these 

two enhanced measures in this paper 
 

The principles of average scattering and total cluster 

separation serve as the foundation for the SD index (SD) [15] 

notion. According to the variances of the cluster objects, the 

first term assesses compactness, and the second term assesses 

separation difference according to the separations between 

cluster centres. The total of these two variables determines 

the value of the index, and decreasing the value of SD will 

yield the ideal number of clusters. Density is taken into 

account by the Silhouette index (SIL) [16] to calculate inter-

cluster separation. The fundamental principle is that at least 

one of the densities of each pair of cluster centres should be 

higher than the density of the other centre. Similar to SD, the 

intra-cluster compactness is present. The maximum value of 

SIL denotes the ideal cluster number, and the index is the sum 

of these two terms. 

Other validation techniques are described in the literature 

[17−20]. Some, however, perform poorly, and others are 

made for data sets with particular arrangements. Consider the 

Symmetry distance-based index (Sym-index) and Composed 

Density (CD) between and within clusters index as examples. 

Finding the representatives for each cluster is challenging for 

CD, which leads to an unstable outcome. Additionally, only 

data sets with intrinsic symmetry can be handled by Sym-

index. As a result, for the remainder of the study, we 

concentrate on the aforementioned 10 validation measures. 

And we'll abbreviate each of these metrics throughout this 

paper. 

III. UNDERSTANDING OF CLUSTERING VALIDATION 

MEASURES 

In this section, we offer a thorough analysis of the 10 

validation measures described in Section II and look into the 

various features of each measure's validation properties, 

which may be useful for choosing an index. If not stated, the 

experiment's clustering algorithm is K-means [21] 

implemented by CLUTO [22]. 

A. Effects of Monotonicity 

The following experiment can be used to assess the 

monotonicity of various validation index. We run the K-

means method on the well-separated data set and obtain the 

clustering results for various cluster densities.   

According to Fig. 1, well separated is a synthetic data set 

made up of five clusters that are well-separated. The first 

three index rise or decrease monotonically as the cluster 

number NC increases, according to the experiment's results 

(Table 2). The remaining seven index, on the other hand, 

attain their maximum or minimum value when NC equals the 

actual cluster number. The first three index' monotonicity can 

be explained by a few different factors. SSE (Sum of Square 

Error), which is a measure of error, reduces as NC raises. 

Since NC<< n in reality, n-NC can be thought of as a 

constant number. As a result, RMSSTD reduces as NC raises. 

Additionally, we have RS = (TSS -SSE)/T SS (TSS - Total Sum 

of Squares) and TSS = SSE + SSB (SSB - Between group Sum 

of Squares), both of which are constants for a given collection 

of data. As a result, RS raises as NC raises. 

 

 
Fig. 1. The data set wellseparated. 

 
Table 2. Results  of  monotonicity, true  NC = 5 

 2 3 4 5 6 7 8 9 

RMS 

STD 
28.49 20.80 14.82 3.201 3.081 2.957 2.834 2.715 

RS 0.627 0.801 0.899 0.994 0.995 0.996 0.996 0.997 

Γ 2973 3678 4007 4342 4343 4344 4346 4347 

CH 1683 2016 2968 52863 45641 41291 38580 36788 

I 3384 5759 11230 106163 82239 68894 58420 50259 

D 0.491 0.549 0.58 2.234 0.025 0.017 0.009 0.01 

SIL 0.607 0.707 0.004 0.825 0.718 0.579 0.475 0.391 

DB 0.716 0.683 0.522 0.12 0.521 0.803 1.016 1.168 

SD 0.215 0.124 0.075 0.045 0.504 0.486 0.538 0.553 

XB 0.265 0.374 0.495 0.254 35.099 35.099 36.506 38.008 

Only data objects in various clusters will be counted in the 

equation according to the definition of Γ. The number of 

items in each cluster will be n/2, and the number of distance 

pairs will actually be n2/4 if the data set is partitioned into two 

equal clusters. When the data set is split into three equal 

clusters, n2/3 pairs of distances will be counted for each 

cluster, which will contain n/3 objects. As a result, as the 

cluster number NC improves, more pairs of distances are 

measured, increasing the value of Γ. Further investigation 

reveals that these three index only consider separation or 

compactness, respectively. Only separation is taken into 

account by RS and Γ, while compactness is the only factor in 

RMSSTD. The RMSSTD, RS, and Γ curves will all exhibit 

monotonicity, which causes them to be either upward or 
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downward sloping. The elbow, or shift point of the curves, is 

said to be the location where the ideal cluster number is 

reached [7]. We won't go into these three index in the 

following sections, though, because determining the shift 

point is difficult and very subjective. 

B. Effects of Noise 

We have the following experiment using the well separated 

noise data set to assess the impact of noise on validation index. 

As seen in Fig. 2, the synthetic data collection well separated. 

Noise was created by adding 5% noise to the original data set 

Well separated. Table 3 displays the cluster numbers chosen 

using the index.  

 
Fig. 2. The data set well separated-noise. 

 
Table 3. Results of noise, true  NC =5 

 2 3 4 5 6 7 8 9 

CH 1626 1846 2554 10174 14677 12429 11593 11088 

I 3213 5073 9005 51530 48682 37568 29693 25191 

D 0.0493 0.0574 0.0844 0.0532 0.0774 0.0682 0.0692 0.0788 

SIL 0.59 0.67 0.783 0.802 0.025 0.653 0.626 0.596 

DB 0.739 0.721 0.56 0.18 0.508 0.71 0.863 0.993 

SD 0.069 0.061 0.05 0.045 0.046 0.055 0.109 0.121 

XB 0.264 0.38 0.444 0.251 0.445 0.647 2.404 3.706 

 

The outcomes of the experiment demonstrate that D and 

CH picked the incorrect cluster number. According to 

analysis, there are a few reasons why noise has a big impact 

on D and CH. 

D measures the inter-cluster separation as the smallest 

pairwise distance between items in distinct clusters 

(𝑚𝑖𝑛𝑥∈𝐶𝑖,𝑦∈𝐶𝑗  
𝑑(𝑥, 𝑦))and the intra-cluster compactness as 

the largest diameter across all clusters 

(𝑚𝑎𝑥𝑘 {𝑚𝑎𝑥𝑥,𝑦𝜖𝐶𝑘
𝑑(𝑥, 𝑦)}) and maximizing D's value will 

yield the ideal number of clusters. Since it only employs the 

minimum pairwise distance, rather than the average pairwise 

distance, across objects in different clusters, the inter-cluster 

separation can decrease abruptly when noise is present. As a 

result, the noise may have an impact on the value of D and 

the accompanying ideal cluster number. Since CH = 

(SSB/SSE). ((n-NC)/ (NC-1)) and ((n-NC)/ (NC-1)) are 

constants for the same NC, we can only concentrate on the 

(SSB/SSE) portion. Compared to SSB, SSE grows more 

noticeably when noise is present. As a result, for a given NC, 

CH will drop due to the influence of noise, making CH's 

value unstable. Finally, noise will have an impact on the ideal 

cluster size. In addition, the other index will be less 

sensitively affected by noise than CH and D. We can see that 

the values of other index more or less vary when comparing 

Table 2 to Table 3. The ideal cluster number proposed by I 

will likewise be inaccurate if we add 20% noise to the well-

separated data set. Therefore, in practice, it is generally 

advisable to reduce noise before clustering in order to limit 

the negative effects of noise. 

C. Effects of Density 

Several clustering algorithms find it difficult to work with 

data sets with varying densities. We are therefore quite 

curious to know if it also influences the results of the 

validation measures. On a created data set called Different 

density, which has varied density, an experiment is run. Only 

I proposes the incorrect ideal cluster number, according to the 

findings presented in Table 4. Fig. 3 depicts the Different 

density in detail. 

 

 
Fig. 3. The data set different density. 

 

Table 4. Results of density, true NC = 3 
 2 3 4 5 6 7 8 9 

CH 1172 1197 1122 932 811 734 657 591 

I 120.1 104.3 93.5 78.6 59.9 56.1 44.8 45.5 

D 0.0493 0.0764 0.0048 0.0049 0.0049 0.0026 0.0026 0.0026 

SIL 0.372 0.587 0.463 0.275 0.312 0.278 0.244 0.236 

DB 0.658 0.498 1.001 1.186 1.457 1.688 1.654 1.696 

SD 0.705 0.371 0.672 0.692 0.952 1.192 1.103 1.142 

It is difficult to determine why I did not provide the correct 

cluster number. We can see that I keep falling as NC for the 

clusters rises. According to our hypothesis, one reason could 

be the K-means algorithm's uniform effect, which tends to 
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divide items into groups of roughly equal sizes [23]. 

I calculate compactness by adding the distances between 

each object and the centre of the cluster. When NC is small, 

it is likely that items with a high density are in the same 

cluster, causing the total of distances to almost remain 

constant. The overall sum won't vary too much because the 

majority of the objects are in a single cluster. As a result, 

because NC is in the denominator, I will drop as NC rises. 

D. Effect of Subclusters 

Clusters that are near one another are referred to as 

subclusters. Four of the five clusters in the synthetic data set 

Subclusters shown in Fig. 4 are subclusters because they can 

be combined to generate two pairs of clusters. The 

experiment's findings, which are shown in Table 5, assess the 

validation measures ability to handle data sets with 

subclusters. D, SIL, DB, SD, and XB provide the incorrect 

ideal cluster numbers for the Subclusters data set, while I, CH, 

and SIL offer the right ones.  

 

 
Fig. 4: The data set subcluster. 

 

Table 5. Results of subclusters, true NC=5 

  2 3 4 5 6 7 8 9 

CH 3474 7851 8670 16630 14310 12900 11948 11354 

I 2616 5008 5594 9242 7021 5745 4803 4248 

D 0.741 0.7864 0.0818 0.0243 0.0243 0.0167 0.0167 0.0107 

SIL 0.736 0.709 0.026 0.737 0.587 0.49 0.402 0.325 

DB 0.445 0.353 0.54 0.414 0.723 0.953 1.159 1.301 

SD 0.156 0.096 0.164 0.165 0.522 0.526 0.535 0.545 

XB 0.378 0.264 1.42 1.215 12.538 12.978 14.037 14.858 

XB 0.408 0.313 3.188 3.078 6.192 9.082 8.897 8.897 

 

When the cluster number changes from NCoptimal to 

NCoptimal+1, intercluster separation should naturally reduce 

[14]. However, at NC< NC optimal, declines can be seen for D, 

DB, SD, and XB. The causes are listed below. SIL determines 

the inter-cluster separation by averaging the smallest 

distances between clusters. When nearby subclusters are 

treated as a single large cluster in a data set with subclusters, 

the inter-cluster separation will be at its greatest value. Due 

to subclusters, the incorrect optimal cluster number will be 

selected. As a measure of separation, XB employs the 

smallest pairwise distance between cluster centres. When 

adjacent subclusters are treated as one huge cluster in a data 

set with subclusters, the measure of separation will reach its 

maximum value. As a result, utilizing XB won't help you find 

the right cluster number. Due to space constraints, we won't 

go into detail about the reasons for D, SD, and DB here, but 

they are fairly similar to the explanation for XB. 

E. Effect of Skewed Distributions 

In a data set, it is typical for clusters to be of different sizes. 

A fictitious data set Skewdistribution with skewed 

distributions is shown in Fig. 5. There is one substantial 

cluster and two smaller ones. K-means performs poorly when 

dealing with skewed distributed data sets because it has the 

uniform effect, which tends to partition objects into nearly 

equal sizes [23]. 

We use four popular algorithms from four distinct 

categories to illustrate this claim, including K-means 

(prototype-based), DBSCAN (density-based), Agglo based 

on average link (hierarchical) [2], and Chameleon (graph-

based) [25]. Since three is the actual cluster number, we apply 

each of them to the Skewdistribution and divide the data set 

into three clusters. Fig. 6 demonstrates that Chameleon 

performs the best while K-means performs the poorest. 

To assess how well various index perform on data sets with 

skewed distributions, an experiment is conducted on the data 

set Skew distribution. The clustering algorithm that we 

employ is Chameleon. The experiment's findings, which are 

presented in Table 6, demonstrate that only CH is unable to 

provide the ideal cluster number. Given that CH = (T SS/SSE 

-1). ((n -NC)/ (NC -1)) and TSS is a constant number of a 

particular data collection Therefore, CH is fundamentally 

founded on SSE, which also serves as the foundation for the 

K-means algorithm. K-means cannot handle skewed 

distributed data sets, as was already mentioned. The same 

conclusion therefore holds true for CH. 

 

 
Fig. 5. The data set skew distribution. 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 6. (a) K-means (b) Agglomerative (c) DBSCAN, (d) Chameleon; 

Clustering results on the data set Skew distribution by different algorithms 

where NC = 3 

 

The validation qualities of each of the 10 validation 

measures in each of the five elements examined above are 

listed in Table 7, which may provide direction for actual 

index selection. In this table, “_” specifies a property that has 

not been tested and "*" indicates a scenario that cannot be 

handled. As seen in Table 7, SIL is the only validation 

measure that performs well in each of the five criteria, 

although the other measures have some limits in various 

contexts, primarily in relation to noise and subclusters. 
 

Table 6. Results of skewed distributions true NC = 3 
 2 3 4 5 6 7 8 9 

CH 788 1590 1714 1905 1886 1680 1745 1317 

I 232.3 417.9 334.5 282.9 226.7 187.1 172.9 125.5 

D 0.0286 0.0342 0.0055 0.0069 0.0075 0.0071 0.0075 0.0061 

SIL 0.486 0.621 0.301 0.538 0.457 0.371 0.37 0.309 

DB 0.571 0.466 0.844 0.807 0.851 1.181 1.212 1.875 

SD 0.327 0.187 0.294 0.274 0.308 0.478 0.474 0.681 

XB 0.369 0.264 1.102 0.865 1.305 3.249 3.463 7.716 

Table 7. Performance of different index 

  RMSSTD RS Γ CH I D SIL DB SD XB 

Mono. * * *               

Noise _ _ _ *   *         

Dens. 
_ _ _ 

  *           

Subc. 
_ _ _ 

    *   * * * 

Skew Dis. 
_ _ _ 

*             

IV. CONCLUSION 

In this study, we looked into five different elements of a 

set of 10 internal clustering validation metrics for crisp 

clustering: monotonicity, noise, density, subclusters, and 

skewed distributions. The 10 validation metrics were 

assessed using computational experiments on five synthetic 

data sets, each of which accurately represents one of the five 

elements mentioned above. The experiment's findings show 

that the majority of the current measurements have certain 

limitations in various application settings. SIL is the only 

indicator that excels in each of the five criteria. The validation 

qualities of these 10 validation measures are summarized in 

Table 7, which may be used as assistance when choosing an 

index in actual use. 
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