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Abstract—In this paper, we propose a multi-input attention-

based deep-learning architecture for machine fault diagnosis, 

which is a challenging task due to environmental noises and 

signal interference that are inevitable in practical industry 

environments. Specifically, we develop an attention mechanism 

to focus on the most effective signal characteristics and achieve 

highly accurate fault classifications under various working 

conditions. First, we construct multi-dimensional features to 

characterize both time-domain and frequency-domain 

properties of machine vibration signals. Afterwards, we design 

a novel multi-input multi-branch (MIMB) architecture 

incorporating multiple sub-networks to enhance the learning of 

discriminant capabilities. The derived features from each sub-

network are fused to form an input to the final classification 

layer. To verify the effectiveness of the proposed approach, we 

conduct comprehensive experiments on the bearing database of 

Universität Paderborn, Germany, which is generally recognized 

as the benchmark to compare the performance of various 

algorithms. Numerical results show that the proposed approach 

achieves the state-of-the-art classification accuracy and has a 

noticeable performance gain over the previous schemes in the 

literature. 

 
Keywords—fault diagnosis, feature extraction, attention 

mechanism, multi-input network 

I. INTRODUCTION 

Machines play indispensable roles in modern industrial 

production. Machine Fault diagnosis is of great significance 

to avoid the occurrence of accidents and ensure the stability 

of manufacturing activities. Most papers in the literature on 

machine fault analysis are based on traditional analytical 

approaches, e.g., graph theories and expert systems [1, 2]. In 

recent years, data-driven techniques become increasingly 

important and attract significant attentions of academic 

researchers and practitioners in the industry. In particular, 

deep learning has made breakthroughs in the fields of image 

and natural language processing. It has been widely applied 

to various fields for its powerful capability to analyze 

complex data and offer effective approaches to predict 

precisely short-term working conditions and Remaining 

Useful Life (RUL) of machinery components [3, 4]. 

In general, machine fault diagnosis can be achieved from 

the following perspectives: (1) Acoustic emission detection 

to detect sound activities based on the recorded audio signals 

[5]. (2) Temperature monitoring, which seeks to understand 

the operating status of machinery based on infrared 

thermometry and thermal imagery [6]. (3) Lubricant analysis 

to track the health status of bearing by observing the chemical 

indicators, e.g., the contamination degree, and the spectrum 

condition of the lubricant. Other factors such as the film 

resistance or the impact pulse size also vary with the physical 

conditions of bearing rolling surface [7, 8]. (4) Feature-based 

analysis to extract temporal and spectral domain-specific 

characteristics of acoustic or vibration signals. Nowadays, 

signal acquisition becomes much more convenient and 

efficient due to the rapid development of the sensing 

technology. The vast amount of data collected on-site for 

rotating machinery analysis provides flexible diagnostic 

approaches based on various forms of information including 

electrical current [9], sound [10], vibration [11] and even a 

fusion of multi-sensory signals [12, 13]. As a most important 

step to realize fault analysis, feature extraction has a 

significant impact on the system performance and 

computational complexities. In [14], Wavelet Packet 

Transformation (WPD) was utilized to decompose the signal 

into several components by using a uniform frequency 

bandwidth, based on which a gear faulty feature vector is 

generated using an entropy indicator. In [15, 16], statistical 

characteristics were shown to be capable of highlighting 

differences between physical quantities and thus providing an 

intuitive diagnostic criterion. In [17], a compressive sensing 

technique was proposed as an efficient signal reconstruction 

method to significantly reduce sampling data size while 

preserving important features and reliably exploiting the 

similar sparsity structure of the acquired signal. In [18, 19], a 

non-linear scattering transform method was used to build 

invariance to geometric transformations and thus enhance the 

resistance to affine transformations and achieve a high degree 

of discriminability. The design of manually extracted signal 

features, however, requires a substantial amount of domain-

specific expert knowledge. 

Automatic feature representation has proved to be more 

scalable and empowers the model to deliver discriminant 

capabilities in a timely manner. Natalia [20] presented a 

Multi-Layer Perceptron (MLP) classifier for machine faults 

diagnosis based on certain pre-computed signal 

characteristics. Al-Tubi et al. [21] proposed a hybrid method 

to diagnose faulty centrifugal pumps, where wavelet 

transforms were applied to extract features and a Support 

Vector Machine (SVM) was used to classify denoised signals. 

A light-weight gradient boosting machine (LGBM) approach 

was developed in [22] based on the concepts of the Fourier 
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transform multi-filtering decomposition and joint mutual 

information maximization. Recently, deep learning methods 

have made notable achievements in various fields ranging 

from computer visions to Natural Language Processing 

(NLP). It demonstrates an overwhelming number of 

potentials as well when applied to machine fault diagnoses by 

exploiting various forms of signal features. To tackle the 

frequently encountered scenario of unbalanced samples, a 

Generative and Adversarial Network (GAN)-based approach 

was used to generate supplementary data with the aid of a 

global optimization scheme [23]. As machine faulty data is 

usually acquired by on-site sensors, the received signals 

generally take the format of one-dimensional (1-D) time 

series with a high temporal resolution. In [24], Short-Time 

Frequency-Transformation (STFT) was invoked to convert a 

1-D vibration signal into a two-dimensional (2-D) frequency-

domain representation, which can be viewed as a 2-D red-

green-blue (RGB) image following channel-wise stacking 

and pixel-wise normalization, thus unleashing the impressive 

power of image classification as manifested by deep learning. 

In [25], Zhang addressed the issue of how to improve transfer 

learning when the data in the training and testing stages take 

different probabilistic distributions by proposing a domain-

adaptive Convolutional Neural Network (CNN) model. 

In this paper, we propose a novel Multi-Input Multi-

Branch (MIMB) architecture based on the concept of 

ensembled learning, which incorporates a parallel 

concatenation of both 1D and 2D CNN models working on a 

comprehensive combination of temporal and spectral 

characteristics extracted from raw signals. An attention 

mechanism operating on channel-wise features significantly 

improves the convergence rate of the training procedure by 

adaptively adjusting the ratio of feature maps involved in the 

computation. The learned deep features from each sub-

network are combined before input to the final classification 

layer to learn effectively both global and local temporal 

dependencies inherent in machine vibration signals. 

Numerical results on a challenging dataset on machine fault 

analysis show that the proposed approach achieves the state-

of-the-art accuracy and performs noticeably better than the 

schemes in the literature. Moreover, the proposed architecture 

can be well generalized to analyze other categories of signals, 

e.g., biological signals and seismic signals. The rest of the 

paper is organized as follows. In Section II, a brief description 

of feature engineering is introduced. Meanwhile, the 

proposed MIMB architecture incorporating multi-

dimensional sub-networks and self-adaptive attention 

mechanisms is presented. In Section III, numerical results on 

the Bearing Database of Universität Paderborn (BDUP) [41] 

are presented and comprehensive comparisons with other 

methods are also made. The conclusion is drawn in Section 

IV. 

II. METHODOLOGY 

To enhance the learning capability of the model, domain 

transformation is frequently used to convert raw time 

sequences into desirable representations without resorting to 

the manual selection of signal characteristics. In addition, it 

enables to the model to fully utilize multiple features learned 

from various perspectives. 

A. Domain Transformation 

1) 1D features 

The original vibration signal distorted by noises can be 

divided into segmentations to provide time-domain 

information. Hence, transformation methods such as the 

Wavelet Transform (WT) can be introduced to find harmonic 

components and enhance the overall performance. In 

particular, WT is capable to process both stationary and 

transitory signals and is a powerful signal processing 

technique to extract time-frequency features from 1-D time-

domain signals. 

Suppose ψ(t) ∈ L2(R) with its Fourier Transformation of 

ψ(ω) satisfies a weak admissibility condition given by [26], 

 

∫
|ψ(ω)|2

|ω|

+∞

0
dω = ∫

|ψ(ω)|2

|ω|

0

−∞
dω = 𝐶ψ < +∞ 

(1) 

 

the wavelet transform of a function x(t) at the scale d and 

position a is computed by  

 

𝑊𝑓(𝑎, 𝑑) = ∫
𝑥(𝑡)

√𝑑

+∞

−∞
ψ∗ (

𝑡−𝑎

𝑑
) d𝑡      

              (2) 

 

Specifically, the zeroth-order, first-order and second-order 

scattering coefficient C0, C1, C2 of wavelet scattering 

transform are given by[18] [19], 

{

𝐶0  =  𝑠 ⊛ 𝜙𝐽[𝑛]

𝐶1  =  𝜌(𝑠 ⊛ 𝜓𝜆1
(1)
)  𝜙𝐽[𝑛]

𝐶2  =  𝜌(𝜌(𝑠 ⊛ 𝜓𝜆1
(1)
 )  ⊛ 𝜓𝜆2

(2)
)  ⊛  𝜙𝐽[𝑛] 

        (3) 

 

where s denotes the analyzed signal,  means the periodic 

convolution, ϕJ[n] denotes a lowpass filter with integer J > 0 

specifying the averaging scale of the filtering coefficients, 

λ1and λ2 are frequency indices, and ρ(t) is a non-linearity 

function. Hence, the coefficients obtained in the WT 

projecting space can be used as the 1-D feature of fault 

diagnosis. Furthermore, the concept of multi-scale 

decomposition makes it feasible for the deep learning 

network to derive coefficients through multiple channels as 

shown in Fig. 1, where A presents the approximation signal 

components and D presents the detailed signal components. 

For more details on WT, please refer to [26, 27]. 

 

x（t） A1 A2 A3

D1 D2 D3

 
Fig. 1. Wavelet multi-scale decomposition. 

 

2) 2D features 

To obtain 2-D frequency-domain features, Short-Time 

Fourier Transform (STFT) is typically used to partition the 

signal waveform into segments and perform the FFT over 

each segment based on the stationary assumption [28]. STFT 

conducts the framing process of the original signal based on 

the assumption that each frame is a statistically stationary 

signal. The STFT of a signal x is given by,  
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𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = ∫ 𝑥(τ)ℎ(τ − 𝑡)𝑒−𝑗2π𝑓τ 
+∞

−∞
𝑑𝜏                    

(4) 

 

where h(τ − t) is a short time analysis window localized 

around t and shifting with time. The Mel-frequency 

spectrogram [29] may be viewed as an improved STFT 

approach, which uses a Mel filtering bank to obtain a high-

resolution image corresponding to the original signal. The 

transformation can be viewed as a biometric mechanism to 

simulate the human auditory function, where the Mel 

frequency is nonlinearly related to the physical frequency as, 

 

{
𝑀(𝑓) = 2595𝑙𝑔(1 + 𝑓/700)

𝐹(𝑚) = 70010(𝑚/2595) − 700
                            

(5) 

 

where f and m represent the actual frequency and Mel 

frequency respectively. The Mel spectrogram can be obtained 

through the following four steps: 1) Pre-emphasis, i.e., filter 

out low-frequency components in the data to make high-

frequency characteristics more prominent; 2) Frame, i.e., 

specify a certain number of sampling points to be analyzed; 

3) Obtain frequency components by the Fast Fourier 

Transform (FFT) operation over each short-term analysis 

window; 4) Transformation to obtain the Mel spectrogram by 

passing the results through a bank of Mel filters. For the 

discrete system, the procedure is usually based on the ordinals 

of spectrogram lines. The critical step is formulated as 

follows, 

𝐵𝑖(𝑘) =

{
 
 

 
 
0,                                𝑘 <  𝑚𝑐𝑖−1 
𝑘−𝑚𝑐𝑖−1

𝑚𝑐𝑖−𝑚𝑐𝑖−1
, 𝑚𝑐𝑖−1 ≤ 𝑘 < 𝑚𝑐𝑖

𝑘−𝑚𝑐𝑖+1

𝑚𝑐𝑖−𝑚𝑐𝑖+1
, 𝑚𝑐𝑖 ≤ 𝑘 < 𝑚𝑐𝑖+1

0,                               𝑘 ≥  𝑚𝑐𝑖−1

                    

(6) 

 

where Bi(k) denotes the value of the ith filter with frequency 

k as the independent variable, and mci is the Mel central 

frequency of the ith filter obtained from its corresponding 

frequency. Therefore, the final Mel spectrogram is given by, 

𝐿𝑖  =  𝑙𝑛(∫ 𝐵𝑖(𝑘)|𝑋(𝑘)|𝑑𝑡
+∞

0
                           (7) 

where X(k) denotes the FFT of the signal x. For illustration 

purposes, we provide an example of the steps to generate the 

Mel spectrogram as Fig. 2, where the Mel filter banks and the 

logarithmic operation are introduced between (c) and (d). 

In Fig. 2, we show the Mel spectrogram extracted from a 

signal. Compared with other frequency-domain 

representations such as the FFT as shown in Fig. 2 (c), the 

Mel spectrogram is well presented as a 2-D heatmap that 

manifests rich information on the relationship between 

frequency and time domains. Following normalization and 

scaling operations, it can be transformed into a 3-channel 

image with pixel values ranging from 0 to 255 and hence can 

be used as the input to an image classification model. 

B. Multi-Input Architecture with Attentions  

1) Attention mechanism 

 Inspired by the attention mechanism embedded in human 

auditory and visual systems, an attention module tries to find 

out the most conspicuous information on an image or in a 

signal while ignoring the inconsequential parts [30−33]. In 

this paper, we propose to use the global attention module 

aligned with a Long Short-Term Memory (LSTM) model in 

the signal classification task as shown in Fig. 3.  

 

 
(a)                                                    (b) 

  
(b)                        (d) 

Fig. 2. Mel transformation, (a) Original signal, (b) Frame and add window, 

(c) The Fourier transform, (d) Mel spectrum. 

Attention Layer

Context vector ct

Global align weights

                         at

sh

th

ty

th

 
Fig. 3. Global attention model.  

 

where hs and ht denote the source-side hidden states and target 

states of a LSTM layer with the input sequential information. 

The attention module seeks to derive a context vector ct to 

capture relevant hidden state information to predict the 

current information yt.. First, all the source-side hidden states 

hs and the current state ht are used to generate the attention 

intensity at on the front source-side hidden states, which is 

formulated by, 

𝑎𝑡 =
𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ𝑠))

∑ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ𝑠′))𝑠′
                            

(8) 

 

where score is referred as a content-based function with 

three different alternatives, 

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ𝑠) = {

ℎ𝑡
Τℎ𝑠                𝑑𝑜𝑡

ℎ𝑡
Τ𝑊𝑎ℎ𝑠         𝑔𝑒𝑛𝑒𝑟𝑎𝑙       

𝑊𝑎[ℎ𝑡; ℎ𝑠]     𝑐𝑜𝑛𝑐𝑎𝑡

                 

(9) 
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Second, the context vector ct is computed as the weighted 

average over all the source states, while the attention hidden 

state is produced by combining ct and ht as follows, 

ℎ�̃� = tanh(𝑊𝑐[𝑐𝑡; ℎ𝑡])  

(10) 

Finally, the attention vector is used to produce the 

predictive distribution as,   

𝑝(𝑦𝑡|𝑦<𝑡 , 𝑥) = softmax(𝑊𝑠ℎ�̃�)                                      

(11) 

 

2) Multi-Input Multi-Branch (MIMB) model  

In this section, we present the proposed multi-input neural 

network model that accepts various features obtained from 1-

D and 2-D signal transformations. The architecture shown in 

Fig. 4 contains three network parts: (1) multi-branch sub-

network models; (2) attention layer; (3) Long Short-Term 

Memory (LSTM) layer. 

In Fig. 4, the original signal is cut into clips of equal length 

from which both 1D and 2D features are generated by the 

feature extraction techniques. Here we propose to use the 

wavelet coefficients as 1D features; while the STFT and the 

Mel spectrogram are used as 2D features ranging in the 

increasing order of computational complexities. For 

illustration purposes, we present in Fig. 5 the STFT and the 

Mel spectrograms as 2-D inputs to the proposed model, where 

the brightness of the pixel represents the power intensity in 

the frequency domain. Since the attention mechanism has the 

function of focusing on sensitive features automatically, it is 

not necessary to put into much effort to search for an optimal 

network structure. Both 1-D and 2-D sub-network models are 

composed of sequential convolution layers with reference to 

the VGG model [34] with max-pooling layers inserted in-

between to adjust the dimensions at the input and the output 

of each module 

 

Original signal

Feature extraction
(1 D)

...
Convolutional sequential

(Conv1d)

Dense

at

Result

Attention 

layer

Feature extraction 

and multi-input

convolution

Feature extraction
(1 D)

Feature extraction
(2 D)

Feature extraction
(2 D)

Convolutional sequential

(Conv1d)

Convolutional sequential

(Conv2d)

Convolutional sequential

(Conv2d)

Network representation

(1 D)

Network representation

(1 D)

Network representation

(1 D)

Network representation

(1 D)

Context vector

... ...

Context vector Context vector Context vector

LSTM

Hidden state Hidden state

... ... ...

Hidden state
Hidden 

state

 
Fig. 4. Diagram of the proposed multi-input multi-branch (MIMB) model with attention mechanism. 

In the proposed architecture, the attention operation is 

conducted on the network outputs and acts as a link between 

the convolution networks and the LSTM layer. Suppose the 

output feature from the sub-networks are xt, the attention 

vector at is formulated by, 

{
𝑠𝑡,𝑖 =

𝑒
−𝑥𝑡,𝑖

∑ 𝑒
−𝑥𝑡,𝑖𝑇

𝑡=1

𝑎𝑡 =
1

𝐼
∑ 𝑠𝑡,𝑖
𝐼
𝑖=1

                               

(12) 

 

where xt,i denotes the ith member of xt, t = 1,2,··· ,T, T ≥ 2 and 

I is the vector length. Subsequently, the context vectors that 

are input to the LSTM layer are computed by, 

𝐶𝑡 = 𝑎𝑡 ⋅ 𝑥𝑡                                          

(13) 

 

 

 
(a) 

 
(b) 

Fig. 5. STFT and Mel spectrograms, (a) STFT spectrum, (b) Mel spectrum. 
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Fig. 7 shows the flowchart of the attention module in the 

proposed architecture, where three types of arithmetic 

operations, i.e., soft-max, vector mean, and scalar 

multiplication, are represented by x−s, s−a and x− c. Finally, 

the LSTM layer will operate on the context vectors to obtain 

the final classification results. 
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Fig. 6. Sequential structures of 1D and 2D modules in the proposed architecture. 

 

x1,1 x2,1 x3,1 x4,1

s1,1 s2,1 s3,1 s4,1

x1,2 x2,2 x3,2 x4,2

s1,3 s2,3 s3,3 s4,3

s1,2 s2,2 s3,2 s4,2

x1,3 x2,3 x3,3 x4,3
x1 x2 x3 x4

s1 s2 s3 s4

a1

c1 c2 c3 c4

a2 a3 a4

Fig. 7. Flowchart of the attention layer in the context of the proposed 

architecture. 

 

In summary, the proposed model is essentially a 

cooperative networking architecture incorporating multiple 

sub-networks whose inputs are derived from raw signals and 

represented as multi-dimensional features. As described 

above, the proposed procedure can be divided into three steps: 

feature extraction stage to prepare the spectrogram 

representations of the raw signal; train the proposed model to 

extract features from deep convolution layers; and pass the 

features derived from convolution layers into the attention 

module to facilitate the cooperation of different sub-networks 

to search for the most discriminant features for the 

classification.  

Note that the Mel spectrogram is provided at the input to 

the CNN model with inherently embedded time-frequency 

representations, while the concatenation of domain-specific 

statistical knowledge and deep representations delivered from 

the convolution layers enriches signal representations and 

alleviates overfitting risks, which is of vital importance to 

improve the generalization capabilities of the proposed 

architecture. The proposed framework fully leverages the 

advantages of the meta-learning approach and uses multiple 

deep-learning models combined with a complementary list of 

features to gain a noticeable performance improvement over 

the standalone approach. In Table 1, we summarize the 

deployment procedure of the proposed model in the scenario 

of machine fault diagnosis, which is divided into the training 

and the validation phase as well as an on-site deployment 

stage. 

 
Table 1. The proposed fault diagnosis algorithm 

Training Stage 

1 Obtain original signals from the sensors and cut them into samples of 

the same length. 

2 Compute 1D and 2D features using feature extraction techniques for 

each sub-network. 

3 Design the sequential convolutional neural networks as the feature 

extraction backbones. 

4 Introduce the attention mechanism to fuse the network 

representations. 

5 LSTM works on the fused deep features to further derive temporal 

patterns. 

Validation Phase 

1 Perform the same operations of step 1∼ step 2 in the training stage to 

obtain multiple features. 

2 Use the trained attention-based multi-input neural network to classify 

testing samples. 

3 Adjust parameters such as network learning rate and other hyper-

parameters and validate the model. 

Model Deployment 

1 Conduct the same operation of signal acquisition and pre-processing 

as the training stage. 

2 Compute 1D or 2D features using the existing feature extraction 

techniques for corresponding sub-networks. 

3 Select the best model to classify the online multi-domain features to 

realize fault diagnosis. 

III. NUMERICAL RESULTS 

A. Experimental Condition 

We conducted the experiments on the bearing working 

database of Universität Paderborn, Germany and the structure 

of the test rig is shown in Fig. 8. There are primarily five 

modules: (1) a permanent magnet synchronous motor; (2) 

torque-measurement device, which delivers the torque value 

of the power transmission shaft; (3) rolling bearing test 

module to sample experimental data from ball bearings with 

different types of damage. (4) flywheel to simulate the inertia 
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driven equipment; (5) load motor to provide a constant radial 

load, which can be continuously adjusted up to 10 kN. In a 

typical experimental setting, the acceleration signal, which is 

viewed as the object of investigation, is measured at the top 

end of the rolling bearing module using a piezoelectric 

accelerometer (Model No. 336C04 @ PCB Piezotronics.) and 

a charge amplifier (Type 5015A @ Kistler Group) with a low-

pass filter at 30 kHz. Meanwhile, the signal is digitalized and 

saved with the sampling rate of 64 kHz. 

 
Fig. 8. The test rig [35]. 

 

In Fig. 8, bearings mounted in the test module can be 

replaced by the damaged counterparts to artificially introduce 

machine faults. The machine works under complex and 

volatile conditions leading to the various operating 

parameters measured on the components in terms of 

rotational speeds, load torques, and radial forces. To ensure a 

fair comparison with the literature, it is necessary to execute 

the setup as shown in Table 2 while taking into considerations 

as well multiple operating conditions needed for the 

experiments. 

 
Table 2. Setting of multiple conditions [35] 

No. 
Rotational 

Speed 

Load 

Torque 

Radial 

Force 

Setting 

Name 

0 1500 0.7 1000 N15 M07 F10 

1 900 0.7 1000 N09 M07 F10 

2 1500 0.1 1000 N09 M01 F10 

3 1500 0.7 400 N15 M07 F04 

 

In this paper, a total number of 14 bearings with real 

damages sampled from accelerated lifetime tests are selected 

as the faulty experimental objects. These bearings are 

categorized by the faulty processing methods as shown in 

Table 3.  
TABLE 3. Setting of multiple conditions 

Bearing Dam BE Comb Arra DE CD 

KA0 F:P OR S No 1 SP 

KA15 PD:I OR S No 1 SP 

KA16 F:P OR R rand 2 SP 

KA22 F:P OR S No 1 SP 

KA30 PD:I OR R rand 1 Ds 

KB23 F:P OR + IR M rand 2 SP 

KB24 F:P OR + IR M No 3 Ds 

KB27 PD:I OR + IR M rand 1 Ds 

KI04 F:P IR M No 1 SP 

KI14 F:P IR M No 1 SP 

KI16 F:P IR S No 3 SP 

KI17 F:P IR R rand 1 SP 

KI18 F:P IR S No 2 SP 

KI21 F:P IR S No 1 SP 

The descriptions of the acronyms used in the experimental 

settings is presented in Table 4, where KA04 and KA22 have 

the different damage geometries with width 3mm and width 

1mm respectively, while KI04 and KI14 are similarly 

distinguished by length 2mm and length 1mm. Since 

abnormal detection is the first step for the fault diagnosis, the 

normal samples are needed for the diagnostic model. The 

normal data is labeled by bearing codes K001−K006, which 

is sampled during six run-in periods. 

 
Table 4. Setting of multiple conditions 

Acronyms Descriptions 

F:P 
fatigue: pitting, which stands for the mode and symptom 

of the Dam (damage) 

PD: I 
plastic deform: indentation, which is another mode of the 

damage 

OR outer ring of the BE (bearing element) 

IR inner ring of the BE 

S 
single damage, which means one single component is 

affected by single damage 

R 
repetitive damage, i.e., damages that are repeated at 

several places on the same bearing component 

M 
different damages occur or identical damage symptoms 

occur on different bearing components 

Arra 

arrangement of the repetitive and multiple damages, 

which characterizes the arrangement of the damage 

symptoms on each component. 

No no repetition. Namely, the damage occurs only once. 

rand random distribution of local damage symptoms 

DE damage extent to represent the extent of bearing damage 

SP 
single point. The characteristic of damage (CD) is 

characterized by a small extend at a localized position. 

Ds 
Distributed damages characterized by generalized 

roughness 

 

In Fig. 9, we present the samples of the time-domain 

bearing waveforms belonging to a total number of 15 

categories as covered in this paper. Note that signals across 

several categories are hardly visually discernible, which 

poses a significant challenge to the task of achieving a high 

classification accuracy over this dataset with a diverse and 

complex background. Hence it is necessary to employ the 

effective signal processing techniques to enhance the 

representational capacity of the extracted signal features. 

                   
Fig. 9. Bearing time-domain waveforms. 
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B. Experimental Settings 

In training a deep learning model, it is of importance to 

maintain a balanced dataset by eliminating an excessively 

high proportion of samples belonging to a specific class, thus 

enabling the model to respond equally to data points 

distributed across the domain. The balanced settings of the 

training samples, the validation samples, and the test samples 

are shown in Table 5.  

 
Table 5. Category labels of samples 

Faulty 

Type 

Train 

Num 
Validation Num 

Test 

Num 
Label 

Normal 234 54 96 0 

KA04 240 60 100 1 

KA15 240 60 100 2 

KA16 240 60 100 3 

KA22 240 60 100 4 

KA30 240 60 100 5 

KB23 240 60 100 6 

KB24 240 60 100 7 

KB27 240 60 100 8 

KI04 240 60 100 9 

KI14 240 60 100 10 

KI16 240 60 100 11 

KI17 240 60 100 12 

KI18 240 60 100 13 

KI21 240 60 100 14 

 

For the purpose of fair comparisons with other methods, 

we also ensure strict independence between the training 

process and the validation process. The validation set is 

designated to be independent of the model training process 

and used only as a performance indicator. In order to 

objectively evaluate the performance of the model on the data 

that it has not seen, we ensure that the validation set and the 

training set are strictly non-overlapping with each other. As 

the training subset contains both normal signals and faulty 

signals with various degrees of damages on the bearings, we 

expect that a well-trained model will possess the capabilities 

of fault detection and the classification of damages as well. 

 To visualize the scattering effects on a machine vibration 

signal, we include in Fig. 10 the representations of different 

orders of wavelet scattering. The wavelet filtering effectively 

converts the raw waveform distorted by high-frequency 

noises into a 3-channel RGB image, which can be used at the 

input of 2D CNN models. 

In the proposed model, each convolution layer is followed 

by a ReLu function to speed up the convergence of the 

training process, a batch normalization module to perform the 

scaling of each layer’s output based on the specified batch 

size, and a pooling operation to obtain position invariance 

over local regions, as well as a dropout operation to reduce 

dependencies between adjacent layers. The parameters of 

each layer in the training process are adjusted based on the 

backward-propagation (BP) algorithm targeted at minimizing 

a cross-entropy (CE)-based loss function. A total of 150 

epochs is adopted to train the model. Moreover, dropout is 

introduced into fully connected layers to speed up training 

and prevent over-fitting. The probability of dropped neurons 

changes randomly at each epoch, which changes the 

architecture and reduces over-fitting compared with the 

training process without dropout. 

 

 
(a)                          (b) 

 

(c)                                     (d) 

Fig. 10. Graphic representations of wavelet scattering; (a) Raw data, (b) 

Zeroth-order scattering, (c) First-order scattering, (d) Second-order 

scattering 

 

C. Numerical Results 

To further reduce overfitting risks and improve the 

generalization capability of the model, we perform extensive 

data augmentations on raw signals including time-shifting, 

Gaussian noise injection, pitch changing, speed tuning and 

dynamic amplitude before forwarding the augmented 

waveforms to generate the frequency-domain Mel 

spectrograms. Effective data augmentation increases not only 

the number but also the diversity of training samples. In the 

experiments, the number of the Mel frequencies is set to 40 

to provide a high resolution over low-frequency region. In 

Table 6, we present a comprehensive comparison between the 

proposed model and the representative approaches in the 

literature in terms of the metrics commonly used to evaluate 

the performance of classification models. For instance, 

accuracy is defined as the percentage of the total number of 

samples that correct results are predicted, while the recall rate, 

e.g., sensitivity, denotes the ratio of the number of positive 

predictions that are correctly predicted to the total number of 

positive examples. Other metrics include F1-score and the 

argument memory (AM) in terms of kilo-bytes (KB) to 

denote the memory occupation of various models. 

The first approach in Table 6 uses the conventional 1D 

CNN with raw signal waveforms as the model input. Other 

approaches featured with ‘Mel’ use various 2D CNN models 

as the feature extractors based on the Mel Spectrograms of 

raw signals, where we have employed classical sequential 

models, ResNet models with residual connections between 

convolution layers, and the EfficientNet models proposed 

recently by Google Deepmind [38]. Note that the model 

denoted by ‘Scattering’ [18] resorts to wavelet scattering 

transform to build invariances to geometric transformations 

while keeping a high discriminability. Hence, the scattering 

coefficients are used as the input to the VGG model and the 

performance is also fine-tuned based on the experimental 

settings. Table 6 shows that the proposed model, which 

effectively fuses complementary deep features from both 1D 

and 2D sub-networks and uses the attention mechanism to 

capture spatial-temporal information embedded in audio 
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signals achieves noticeable performance gains over other 

approaches on the validation set. Moreover, the proposed 

model yields the state-of-the-art accuracy of 99.87% and the 

F1−Score of 98.96% at the cost of an impressively moderate 

memory size to host the network, which are the best results to 

our knowledge. 
 

Table 6. The results of the contrast experiments 

Methods Accuracy Recall rate F1−score Argument 

memory 

1D CNN + Raw [36] 98.20% 94.79% 93.81% 23645 

2D CNN + Mel [37] 98.53% 100.0% 91.43% 2092 

EfficientNet + Mel 

[38] 

99.40% 97.26% 97.94% 149451 

ResNet + Mel [39] 99.13% 100.0% 97.96% 258225 

VGG + Scattering 

[40] 

99.59% 100.0% 100.0% 174366 

Proposed 99.87% 98.96% 98.96% 53076 

 

(a)                                        (b) 

 

(c)                                    (d) 

Fig. 11. Accuracy and loss curves of various models in the training process; 

(a) Accuracy curves of training set, (b) Accuracy curves of validation set, (c) 

loss curves of training set, (d) loss curves of validation set 

In Fig. 11, we present the accuracy curves and loss curves 

of various models over the training and the validation sets as 

well. Both curves serve a valuable indicator of the 

generalization capability of deep-learning models. It is 

expected that the accuracy curves tend to 100.0% as the 

number of training iterations increases, while the loss curves 

are expected to converge to zero and manifest a significant 

amount of stability. Fig. 11(a) shows that the accuracy curve 

of the proposed architecture increases closely to 100% with 

approximately 20 training epochs and does not show 

volatility for the following epochs, thus achieving better 

stability capability over other models. The curves in Fig. 11(b) 

over the validation sets show similar trends, which indicates 

that the proposed model can be well generalized to unseen 

samples. In Fig. 11(c) and Fig. 11(d), the proposed model 

behaves consistently with respect to loss curves and converge 

very quickly to a minimal loss in the training process. It is 

noted that the EfficientNet model exhibits a large degree of 

volatility when evaluated on the validation data. 

The performance of the proposed model can be visually 

represented through a confusion matrix evaluated on the test 

data, which can be divided into 15-class data as shown in 

Table 4. The confusion matrix as shown in Fig. 12 is a 

specific table layout that allows a direct visualization of the 

performance in each class. It reports the errors and confusions 

among different classes by calculating the correct and 

incorrect classification of the test samples for each class.  

 

Fig. 12. Confusion matrix of the proposed algorithm on the test dataset. 

 

The horizontal axis in Fig. 12 represents the predicted 

samples and the vertical axis represents the true samples. The 

probabilities of correctly classified results are recorded on the 

diagonal, while those of incorrect predictions are scattered 

through the matrix. Among a total number of 96 normal 

signals, there is one signal that is mis-classified from the 

zeroth class to the 5th class. Besides, a sample belonging to 

the 4th class is incorrectly predicted as a normal sample of 

the zeroth class. A visual inspection of machine fault signals 

shows that the differences between certain classes are 

sufficiently subtle even for humans to recognize. For all the 

other classes of faulty signals, Fig. 12 shows that the 

proposed model achieves an impressive performance of 99.87% 

accuracy and nearly reaches an upper bound on this typical 

large-scale machine vibration dataset even with complex and 

diverse audio background. The performance gain is 

accredited to the design of multi-branch sub-networks to 
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extract complementary deep features from various domains 

of signal waveforms. The sub-networks have different depths 

and widths, which enable them to learn discriminant semantic 

information as compared with a single feature extractor. The 

deep fusion module, which consists of the attention 

mechanism embedded in the LSTM layer, can be viewed as a 

collection of non-linear high-dimensional projections onto 

the fully connected layers prior to the final classification. The 

attention module integrates deep features adaptively by 

capturing the global pattern embedded in the fused features, 

while the subsequent LSTM layers refines local temporal 

relations to further enhance the performance. Hence, the 

proposed architecture manifests an excellent capability to 

extract multi-scaled temporal dependencies embedded in the 

input time sequences. 

IV. CONCLUSION 

In this paper, we propose a multi-input multi-branch 

(MIMB) deep-learning architecture incorporating a 

complimentary feature fusion mechanism and an attention 

module for the task of machine fault diagnosis. The multi-

branch sub-networks serve as deep feature extractors and 

enable the proposed model to learn effectively both global 

and local discriminant characteristics of the wavelet-denoised 

machine vibration signals. Extensive data augmentations are 

applied to alleviate overfitting and ensure the diversities of 

training samples. The performance is evaluated on a typical 

bearing dataset of Universität Paderborn. Compared with 

other standalone schemes in the literature, the proposed 

approach achieves a noticeable performance gain and obtains 

the state-of-the-art accuracy of 99.87% on the independent 

test data. Moreover, the proposed model shows rapid 

convergence in the training process and is also feasible for 

practical implementations due to its moderate memory 

requirement.  

For the future work, we believe that the seamless integration 

of deep-learning algorithms into pre-emptive maintenance 

will bring unprecedented industrial opportunities. The 

proposed method can be generalized to analyze various 

categories of signals, such as heartbeat sound signals, 

environmental sounds, and gyrometer sensor data. We will 

further investigate the efficient fusion of complementary 

features and the joint optimization strategy of various sub-

network models. 
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