

Case Study on Existing IoT Platform and Approach for Local

IoT Platform

Sothea Phann1,*, Morokot Cheat1, Sombathmorhareach Neath2, and Khemarin Sambath1

1 Ministry of Post and Telecommunications, Phnom Penh, Cambodia
2 ABA Bank Head Office, Phnom Penh, Cambodia

Email: Phannsothea17@gmail.com (S.P.); cheat.morokot@gmail.com (M.C.); neath.sombatmorha@ababank.com (S.N.);

sambath-khemarin@mptc.gov.kh (K.S.)
*Corresponding author

Manuscript received December 12, 2023; revised January 12, 2024; accepted January 30, 2024; published May 13, 2024.

Abstract—The Internet of Things (IoT) is a paradigm

facilitating the interconnection of physical objects and devices

via the internet, enabling data collection and exchange. As the

adoption of IoT continues to grow, the need for a deep

understanding of IoT platforms becomes crucial. This paper

provides an overview of the IoT architecture, comparing

leading IoT platform such as AWS and Microsoft Azure vendor.

The objective is to understand the overall architecture of these

platforms and explore their main cores for potential

customization in developing a proprietary IoT platform.

Additionally, the study includes selecting a GPS device to get

location for testing Asset Tracking in the platform as

proof-of-concept, using an ESP32 acts as a communication

gateway, and the software implementation is Arduino IDE. The

research concludes by laying the groundwork for a case study,

examining an existing IoT platform, and proposing an

approach to develop an IoT platform based on local specific

needs.

Keywords—IoT platform, GPS, ESP32, Arduino IDE, IoT

architecture

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has

revolutionized the way we interact with our surroundings and

has the potential to address challenges faced by society. With

IoT, everyday objects are connected to the internet, enabling

them to collect and exchange data, and ultimately make

intelligent decisions [1]. With its ability to connect and

communicate with physical objects, devices, and systems, the

IoT has the potential to solve challenges faced by our society.

From improving efficiency and productivity to enhancing

safety and sustainability, the IoT is playing a crucial role in

addressing pressing issues and shaping a more connected and

intelligent world. One such case is in the healthcare industry,

where IoT has proven to be instrumental in improving patient

care, streamlining operations, and enhancing overall

healthcare outcomes [2]. Similarly, IoT applications such as

environmental monitoring, home automation, agriculture,

aquaculture, health care, transportation and logistics have

showcased their capacity to optimize processes and yield

positive results [3]. The central component of an IoT solution

is the IoT platform but there is not a single IoT platform that

is universally useful for every use case, as the requirements

and objectives of IoT projects can vary greatly. An effective

operation of an IoT application relies on having a platform to

run smoothly and exchange data [4]. There are several

popular and versatile IoT platforms that are widely used

across different industries and use cases like Amazon Web

Service IoT, Microsoft IoT Core, Samsung SmartThings,

OpenHAB, Apple HomeKit, FarmBeats, ThingWorx and ,

IBM Watson IoT platform [5]. In addition to utilizing

existing platforms, there is also the option to develop new

platforms, and customize them to meet specific requirements.

Given the multitude of options, users encounter the challenge

of selecting a platform that suits their applications. This has

led to numerous studies on characteristics of IoT platforms

and comparing the existing platforms based on various

criteria to narrow down the selection process.

In previous research, Muhammed and Ucuz stated that

“AWS dominates the market with the highest market share

and extensive connections across devices, device-to-device,

and device-to-cloud hubs. Conversely, while Microsoft

Azure not leading in market share and connectivity, it

compensates with a more comprehensive set of analytic

services. Nevertheless, AWS is a better option in terms of

security” [6].

Another comparison by Dr. Saraswat and Dr. Tripathi,

presented that AWS has a vast global presence with many

data centers, providing stable and reliable services across a

wide range of products. It's an ideal choice for larger

enterprises requiring versatile solutions, even if they come at

a higher cost [7].

The comparative analysis by Bhonsle et al. [8], consists of

the list of features and services offered by each vendor. The

study recommended choosing AWS if scalability, availability,

robust applications, reliability, and security are crucial

factors. Conversely, Microsoft Azure is a better option if

already invested in Microsoft and prefer a single provider.

Guth et al. [9] discussed about concepts, similarities, and

differences of IoT platforms. This study includes IoT

reference architectures of four open-source platforms namely

FIWARE, OpenMTC, SiteWhere, Webinos, as well as four

propriety IoT solutions: AWS IoT, IBM Watson’s IoT

Platform, Microsoft’s Azure IoT Hub, and Samsung’s

SmartThings.

These studies offer substantial information and insights

into IoT platforms, including platform comparisons and

block diagram to build a platform. However, to the best of

our knowledge, there is a gap in the existing research, with no

studies introducing a fundamental and minimized IoT

architecture specifically designed for local environments. In

this paper, we address these issues by proposing an optimal

architecture for local IoT platform.

Various IoT applications, such as sensor networks for

agriculture, traffic control, Building Management Systems

(BMS), and GPS, are gaining significant interest. As demand

grows for autonomously managing all related data within an

IoT platform, yet the complexity and cost associated with

International Journal of Future Computer and Communication, Vol. 13, No. 2, 2024

31doi: 10.18178/ijfcc.2024.13.2.614

mailto:Phannsothea17@gmail.com
mailto:sambath-khemarin@mptc.gov.kh

current IoT platforms limit their accessibility, especially for

small to medium-sized enterprises and local applications.

This research seeks to bridge this gap by developing a

minimalist architecture for a local IoT platform, focusing on

simplification, cost reduction, scalability, and enhance ease

of deployment. By analyzing existing platforms and

streamlining their components, particularly through the use

of GPS sensors, the study aims to propose a foundational IoT

system that is both efficient and manageable. The anticipated

results of this initiative include increased accessibility of IoT

technology for small communities and localized projects,

along with simplified scalability and management processes.

Furthermore, the minimalist architecture is expected to foster

innovation within specific IoT application areas, driving

advancements and improvements in these fields.

The following sections of this paper are organized as

follows: we introduce the reference architectures of IoT and

outline all components in Section II. In Section III, we

conduct a comparison and selection between Microsoft

Azure and AWS vendors. The approach for developing a

local IoT platform is detailed in Section IV.

II. REFERENCE ARCHITECTURE

This section introduces an IoT reference architecture

illustrated in Fig. 1. Additionally, it provides overview of the

reference architectures employed by Microsoft and AWS

vendors.

A. IoT Reference Architecture

IoT architecture is a collection of component parts,

network architecture, and cloud technologies that function in

accordance with well-known IoT protocols and security

standards. Linking these elements together, IoT architecture

makes this all possible by ensuring data gets where it needs to

and is processed correctly. IoT platforms usually based on

currently employ no dominant standards or technologies.

Instead, many platforms and gadgets consider many

standards and technology. To implement an IoT system,

users frequently need to research, set up, and integrate several

designs and technologies. One of the fundamental structures

in IoT is the three-layer architecture, but five-layer

architecture is more suitable for the application involves

detailed considerations, integrates diverse technologies, and

spans a wide range of parameters [10].

Fig. 1. IoT five-layer architecture.

1) Perception layer

This is where the sensors and connected devices come into

play as they gather a huge amount of data as per the needs of

the project. These can be the edge devices, sensors, and

actuators that interact with their environment.

⚫ Sensors or Actuators: these are the devices that are able

to emit, accept and process data over the network. These

devices may be connected either through wired or

wireless. This contains GPS, Electrochemical,

Gyroscope, RFID, etc. Most of the sensors need

connectivity through sensor gateways. The connection

of sensors or actuators can be through a Local Area

Network (LAN) or Personal Area Network (PAN).

⚫ Gateway: when a device cannot connect to other

systems directly, it is linked via a Gateway. To convert

between various protocols, communication

technologies, and payload formats, a gateway offers the

necessary technologies and procedures. The

communication between devices and other systems is

forwarded by it. To convert between various protocols,

communication technologies, and payload formats, a

gateway offers the necessary technologies and

procedures. The communication between devices and

other systems is forwarded by it.

2) Transport layer

The primary role of this layer is transportation [11]. As

large numbers of data are produced by these sensors and

actuator need high-speed Gateways and Networks to transfer

the data. This network can be of type Local Area Network

(LAN) such as Wi-Fi, Ethernet, Zigbee, NFC, Infrared, USB,

and Wide Area Network (WAN) such as GSM, 5G, and LoRa

WAN, among others.

3) Processing layer

In the world of IoT platforms, we focus on the moment

when real things first link to the Internet—right before

software takes control. These platforms are often called

middleware software because they sit in the middle of

connecting physical objects with digital systems. They are

also recognized as a key component of an IoT system [12].

IoT Integration Middleware is a software layer or platform

that facilitates seamless communication, integration, and

interoperability between various components in an Internet of

Things (IoT) system. It acts as a bridge between the diverse

devices, protocols, applications, and data sources within the

IoT ecosystem, enabling them to work together efficiently

and effectively [13]. It is responsible for receiving data from

the connected Devices, processing the received data,

providing the received data to connected Applications, and

controlling Devices.

4) Application layer

The application layer is the interface through which users

interact with a system, delivering application specific

services to the users. These applications include smart home,

smart city, smart healthcare, and smart environment, among

others [11]. In a smart home scenario, users can tap a button

in the app to trigger actions like turning on a coffee maker.

5) Business layer

The business layer manages the core business logic and

processes. It oversees the implementation of rules and

policies, processes and analyses data, enforces security,

integrates with enterprise systems, and strategizes

monetization. Essentially, this layer ensures that IoT

applications align with business objectives, fostering

efficient and secure operations within the broader business

ecosystem.

International Journal of Future Computer and Communication, Vol. 13, No. 2, 2024

32

III. COMPARISON OF AWS AND MICROSOFT VENDOR

A block diagram of a standard IoT platform based on

Tamboli’s work [13] is illustrated in Fig. 2. This diagram

represents the distinctive architecture of the IoT solution,

highlighting the building blocks and their separation based on

the key aspects of a larger system.

Fig. 2. Block diagram of a typical IoT platform.

A. Microsoft Reference Architecture

Azure stands as the cloud platform developed and operated

by Microsoft [14]. Fig. 3 illustrates the architecture of

Microsoft Azure for IoT architecture. The primary

component in the architecture is the IoT Hub, serving as the

central point to which all other components are connected.

The gateway in this architecture offers two protocols:

IP-capable devices have the capability to communicate either

directly with IoT hub or through a Cloud Protocol Gateway.

On the other hand, Personal Area Network (PAN)-devices

require an additional Field Gateway [15]. IoT Integration

Middleware consists of IoT Hub; Event Processing and

Insight; Device Business Logic, Connectivity Monitoring;

and Application Device Provisioning and Management

components. Moreover, the Application Device Provisioning

and Management component also facilitates the integration

of additional applications.

Fig. 3. Microsoft Azure IoT platform.

B. AWS Reference Architecture

 The Amazon Web Services (AWS) IoT Core provides a

secure and scalable platform for connecting, managing, and

analyzing IoT devices and data. Figure 4 represents the

architecture of AWS IoT. Within the AWS framework, the

term “Thing” is referred to a device or object that is

integrated with a sensor or actuator component. While the

AWS IoT architecture may not depict a “Gateway” block, it's

important to note that, based on the documentation, a

Gateway component lies between the “Thing” and “Message

Broker” components [15]. The Message Broker, Thing

Shadows, Thing Registry, Rules Engine, and Security &

Identity are the components of IoT Integration Middleware.

These components play a vital role as core functions within

the AWS IoT platform. Furthermore, the Application

component contains various AWS data processing services

that are already integrated into the platform. Similarly, the

IoT Applications component streamlines the integration of

further applications into the platform.

Fig. 4. AWS IoT platform.

C. Comparing between AWS and Microsoft

Table 1 provides a comparative analysis of essential

components within IoT architecture, comparing standard

International Journal of Future Computer and Communication, Vol. 13, No. 2, 2024

33

architecture with those of AWS IoT and Microsoft Azure

IoT.

Table 1. IoT architecture components: Standard vs AWS vs microsoft

Standard AWS Microsoft

Device Thing Device

Edge Interface

Message Bus

Message Broker

Message Broker Gateway

Message Router IoT Hub

Rule Engine Rule Engine

Event Processing and Insight

Device Business Logic &

Connectivity Monitoring

Device Manager

Security & Identity Application Device

Provisioning and

Management Thing Registry

Time-Series Storage

& Data

Management

Thing Shadow Event Processing and Insight

Microservice

Amazon S3

Amazon Kinesis

Amazon Lambda

Amazon SNS

Amazon SQS

Amazon DynamoDB

The selection of an IoT cloud platform vendor, whether it

is Microsoft Azure or AWS, relies on the specific

requirements and preferences of the users. In this study, we

conduct a comparison between these two cloud vendors

based on three criteria namely: hub, analytic, and security.

After a thorough literature review, it is evident that AWS

emerges as a more preferable choice compared to Microsoft

Azure, meeting specific user needs. Notably, Microsoft

Azure's unavailability in Cambodia poses challenges for

users in the region. Therefore, AWS stands out as a reliable

and accessible option, offering services such as AWS IoT

Core, AWS IoT Greengrass, AWS IoT Analytics, and AWS

IoT Device Management. Additionally, AWS provides a

12-month free tier for new customers, allowing exploration

of services at no initial cost, making it an attractive option for

individuals and organizations to initiate their cloud

computing journey.

IV. APPROACH

For this research, a case study approach is adopted to

explore the integration and performance of AWS IoT in a

real-world scenario. Focusing on the practical

implementation of AWS IoT, the study involves testing with

a GPS device and an ESP32 microcontroller serving as a

gateway. This selection of devices ensures a contextually

relevant examination of AWS IoT's capabilities in handling

geospatial data within an IoT framework. The research goals

include evaluating the platform’s performance, assessing

scalability, and identifying challenges associated with its

implementation in a location-based IoT application.

Subsequently, the study proposes an approach for a local IoT

platform based on the insights gained from the evaluation.

A. Testing GPS with AWS IoT Core

This section details the process of testing GPS integration

with AWS IoT Core, utilizing an ESP32 microcontroller as a

key intermediary. The experimentation includes physical

setup, software configuration, AWS configuration, and the

subsequent results. By strategically configuring both

hardware and software components, and AWS IoT Core, the

section aims to demonstrate the real-time transmission of

GPS data.

1) Hardware setup

Thoughtfully placing GPS sensors and configuring the

ESP32 gateway are crucial aspects of the hardware setup.

Considerations included ensuring unobstructed views of the

sky for enhanced satellite signal reception. Factors like

line-of-sight, environmental conditions and potential

obstructions were carefully evaluated to guarantee accurate

location data acquisition. Fig. 5 illustrates the hardware

architecture for the experiment.

Fig. 5. Hardware setup diagram.

2) Software setup

As the ESP32 is a development board and needs

instructions to perform specific functions, we need to use

software to program the board properly. The flow of this

experiment is shown in Fig. 6, by using the application of

Arduino IDE to write code and upload it to the ESP32 board.

The code is implemented to enable ESP32 to receive data

from GPS sensor, establish a connection to a Wi-Fi network,

and subsequently connect to AWS. MQTT publish/subscribe

(pub/sub) topics are utilized for transmitting data between the

ESP32 and AWS IoT Core. After reaching AWS IoT Core,

the data is accessible and can be viewed through MQTT

topics.

Fig. 6. Software setup diagram.

3) AWS IoT core configuration

The initial prerequisite for proceeding is to create an AWS

account. Once the account is set up, we can have access to

AWS services such as AWS IoT Core. Within the AWS IoT

Core framework, the subsequent task is the creation of a

“thing” to represent and identify the GPS sensors integrated

into the IoT ecosystem, Fig. 7 displays the thing we have

created. Following the creation of the thing, the next critical

step is to attach a policy that defines specific permissions,

such as allowing publish, subscribe, receive, and connect. As

a final step, it is crucial to download the certificates

associated with the thing, as they are essential for integrating

the code into the Arduino IDE. It is important to note that

International Journal of Future Computer and Communication, Vol. 13, No. 2, 2024

34

these certificates can be downloaded only once. The acquired

certificates serve as key components in establishing a secure

and authenticated connection between the GPS sensors and

the AWS IoT Core platform.

Fig. 7. Created a thing in AWS IoT core.

4) Result

Following the successful upload of the code through the

Arduino IDE, the GPS data is seamlessly transmitted to the

AWS cloud. To observe the data, we need to navigate to the

AWS IoT Core web page and access the MQTT Test Client

located in the sidebar. In the topic filter section, fill in the

predefined topic name (as defined in the Arduino sketch).

After that, the MQTT Test Client will provide a real-time

visualization of the transmitted GPS data. The accuracy of

GPS data is primarily dependent on the GPS receiver and the

conditions in which it operates. Both AWS IoT Core and the

Arduino IDE receive data from the same GPS sensor, so the

source of the data remains constant if there are no errors in

the data acquisition or transmission process. The captured

outcome in Fig. 8 indicates GPS data in serial monitor COM3

within Arduino IDE and received data in AWS IoT Core. The

result verifies the successful transmission from the device to

the cloud.

Fig. 8. GPS data in Arduino IDE serial monitor and AWS MQTT test client.

5) Discussion

Building a local IoT platform with GPS devices requires

careful consideration of key components to ensure effective

functionality within budget constraints.

B. Architecture Used for Testing

The experiment of IoT Core service of AWS and the

reference architecture is shown in Fig. 4 above. The GPS

device utilizes an ESP32 as a gateway to transmit its data

through MQTT messaging protocol to the Message Broker.

The GPS sensor, virtually represented, stores state

information in a JSON document, encompassing both the last

reported and desired states. The Message Broker relays these

messages to subscribed clients. The AWS Rules Engine

analyses and performs actions based on the MQTT topic

stream. Additionally, it processes these messages for

seamless integration with other AWS services, such as

Amazon S3 which is a data storage service. It’s important to

highlight that, before initiating this process, a ‘thing’ for the

GPS sensor was created (Thing Registry), and necessary

credentials, including certificates, were required to ensure

secure communication in AWS IoT (Security and Identity).

Although all the blocks in AWS IoT architecture define a

well-architected IoT platform, not all are mandatory. The

essential components include Things, Message Broker, Rule

Engine, Thing Registry, Security and Identity, and Amazon

S3 should be used for data storage. Each of these components

plays a crucial role in the overall functionality of the IoT

platform, enabling seamless communication, data processing,

and security.

C. Proposed Local Architecture for IoT Platform

The proposed IoT structure is designed for the local

condition to minimize resources for the beginning stage of

local IoT platform development. The scope addresses the

need of local IoT applications, focusing on scalability, cost

efficiency, and deployment ease, tailored for small to

medium-sized enterprises and localized projects. We can

propose an architecture based on the insight from GPS testing,

and the block diagram of a typical IoT platform presented by

Tamboli [13].

Fig. 9. Block diagram of proposed architecture.

A vital element is the data communication protocol to

connect physical devices with the IoT platform. We have

chosen the Message Broker via MQTT standard, as it is

widely considered the default protocol for IoT applications.

To ensure seamless integration, a REST API Interface has

been incorporated, facilitating standardized communication

between devices and the IoT platform for efficient data

exchange. Following that, Device Manager is crucial for

registration and monitoring IoT devices. The platform also

requires a Rule Engine for trigger actions based on

predefined rules such as alerts and optimize routes. Integrated

rules dynamically respond to regional challenges, such as

road conditions, weather patterns, and location-based events.

Additionally, all messages should be stored in data storage

for further analysis.

Each block in Fig. 9 can be developed by using either

open-source or proprietary software. Nonetheless, our goal is

to minimize costs, thus choosing open-source is preferable.

For a single block, there are more than one open-source

software options available. The development of an MQTT

message broker can be accomplished using well-known

solutions like Mosquitto, RabbitMQ, HiveMQ, and others.

For creating a Device Manager, options such as Eclipse Kura

and OpenRemote can be considered. Moreover, Express.js

and FastAPI stand out as reliable platforms for building

REST APIs. When it comes to Rule Engines, open-source

choices like Drools, Easy Rules, and OpenL Tablets offer

International Journal of Future Computer and Communication, Vol. 13, No. 2, 2024

35

flexibility. Moving on to the Time-Series Storage and Data

Management, popular platforms such as InfluxDB, MySQL,

and TimescaleDB provide robust solutions. There are several

additional open-source options beyond the ones we

mentioned, and we need to carefully choose the one that best

suits our requirements.

V. CONCLUSION AND FUTURE WORK

The increasing focus of major cloud platforms on the IoT

sector is evident today. This research paper explores IoT

platforms, comparing two key players: AWS IoT and

Microsoft Azure IoT. AWS emerges as the preferred choice

due to market dominance, strong connectivity, and superior

security. The study successfully tested GPS sensors with

AWS IoT Core, using ESP32 as a gateway, to evaluate

platform performance, thus, laying the foundation for a

localized IoT platform.

While the proposed architecture covers basic components,

it signifies the initial step towards addressing specific

requirements to minimize resources for local development in

the first stage. However, constraints of our study include its

exclusive focus on AWS and Azure, as well as the limited

scope of our testing. Moving forward, our focus will shift to a

more comprehensive exploration of additional components

essential for building a robust IoT platform in the region. For

the next research, a deeper exploration into the development

of a proprietary IoT platform based on the proposed minimal

local architecture should be undertaken by conducting a

comparative analysis of various open-source solutions

available for implementing each block.

CONFLICT OF INTEREST

 The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Sothea Phann wrote the paper and carried out the

experiments. Morokot Cheat came up with the idea and

revised the paper. Sombatmorhareach Neath assisted in

literature review. Khemarin Sambath created the design for

the proposed system; all authors had approved the final

version.

FUNDING

This work was generously funded by the APNIC Foundation

through Switch! project.

ACKNOWLEDGMENT

We would like to express our gratitude to APNIC for the

financial support received during the research and thank the

Ministry of Post and Telecommunications for facilitating the

research that led to these results.

REFERENCES

[1] P. Gokhale, O. Bhat, and S. Bhat, “Introduction to IoT,” International

Advanced Research Journal in Science, Engineering and Technology,

vol. 5, pp. 41–44, Jan. 2018. doi: 10.17148/IARJSET.2018.517

[2] S. Selvaraj and S. Sundaravaradhan, “Challenges and opportunities in

IoT healthcare systems: a systematic review,” SN Appl. Sci., vol. 2, no.

1, p. 139, Jan. 2020. doi: 10.1007/s42452-019-1925-y

[3] H. Kotha and V. Gupta, “IoT application, a survey,” Int. J. Eng.

Technol., vol. 7, p. 891, Mar. 2018. doi: 10.14419/ijet.v7i2.7.11089

[4] M. Ullah and K. Smolander, “Highlighting THE key factors of an IoT

platform,” in Proc. 2019 42nd International Convention on

Information and Communication Technology, Electronics and

Microelectronics (MIPRO), Opatija, Croatia: IEEE, May 2019, pp.

901–906. doi: 10.23919/MIPRO.2019.8756748

[5] L. Babun, et al., “A survey on IoT platforms: Communication, security,

and privacy perspectives,” Comput. Netw., vol. 192, p. 108040, Jun.

2021, doi: 10.1016/j.comnet.2021.108040

[6] A. S. Muhammed and D. Ucuz, “Comparison of the IoT platform

vendors, microsoft azure, amazon web services, and google cloud,

from users’ perspectives,” in Proc. 2020 8th International Symposium

on Digital Forensics and Security (ISDFS), Beirut, Lebanon: IEEE,

Jun. 2020, pp. 1–4. doi: 10.1109/ISDFS49300.2020.9116254

[7] M. Saraswat and R. C. Tripathi, “Cloud computing: comparison and

analysis of cloud service providers-AWs, microsoft and Google,” in

Proc. 2020 9th International Conference System Modeling and

Advancement in Research Trends (SMART), Moradabad, India: IEEE,

Dec. 2020, pp. 281–285. Accessed: Dec. 12, 2023.

[8] S. Bhonsle et al., “Microsoft azure vs amazon cloud services: A

comparative analysis,” IRE J., vol. 6, no. 9, pp. 1–6, Mar. 2023.

[9] J. Guth et al., “A detailed analysis of IoT platform architectures:

Concepts, similarities, and differences,” Internet of Everything:

Algorithms, Methodologies, Technologies and Perspectives, 2018, pp.

81–101. doi: 10.1007/978-981-10-5861-5_4

[10] N. M. Kumar and P. K. Mallick, “The internet of things: Insights into

the building blocks, component interactions, and architecture layers,”

Procedia Comput. Sci., vol. 132, pp. 109–117, 2018. doi:

10.1016/j.procs.2018.05.170

[11] D. Navani, S. Jain, and M. S. Nehra, “The internet of things (IoT): A

study of architectural elements,” in Proc. 2017 13th International

Conference on Signal-Image Technology and Internet-Based Systems

(SITIS), Jaipur, India: IEEE, Dec. 2017, pp. 473–478. doi:

10.1109/SITIS.2017.83.

[12] V. Carchiolo et al., “An efficient real-time architecture for collecting

IoT data,” presented at the 2017 Federated Conference on Computer

Science and Information Systems, Sep. 2017, pp. 1157–1166. doi:

10.15439/2017F381

[13] A. Tamboli, Build Your Own IoT Platform: Develop a Flexible and

Scalable Internet of Things Platform. Berkeley, CA: Apress, 2022. doi:

10.1007/978-1-4842-8073-7

[14] D. Bastos, “Cloud for IoT − A survey of technologies and security

features of public cloud IoT solutions,” Living in the Internet of Things

(IoT 2019), London, UK: Institution of Engineering and Technology,

2019, p. 43. doi: 10.1049/cp.2019.0168

[15] B. D. Martino et al., Internet of Everything, in Internet of Things.

Singapore: Springer Singapore, 2018. doi: 10.1007/978-981-10-5861-5

Copyright © 2024 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Future Computer and Communication, Vol. 13, No. 2, 2024

36

https://creativecommons.org/licenses/by/4.0/

