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Abstract—Client-side adaptive bitrate algorithms are 

designed to optimize human-perceived Quality of Experience 

(QoE). However, network heterogeneity at the edge makes it 

difficult to provide the same video quality to all end users. Even 

the best Content Delivery Networks (CDNs) or Internet Service 

Providers (ISPs) have poor quality in certain regions or times of 

the day. In addition to network dynamism, online clients 

continuously switch between video channels that stream via 

different CDNs. The volume of video logs and network 

dynamics make it very difficult to analyze client-side video 

quality or monitor network performance and thus make timely 

decisions. The concept of big data analytics is a successful and 

cost-effective data mining tool and application that offers deep 

analytics, high agility, and massive scalability with low latency. 

Recently, with the advent of distributed computing technologies, 

the analysis of big video data in the cloud has attracted the 

attention of researchers and practitioners. Resource-rich edge 

or cloud servers have become popular destinations for video 

streaming and log analytics. In this paper, we discuss the 

change in the requirements for video streaming and illustrate 

the difficulty of big data log analytics at the edge. We then show 

the advantage of log analytics in the cloud and its impact on 

improving users’ QoE and reducing CDN traffic distribution 

costs by detecting and removing illegal streaming along with 

CDN switching. 
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I. INTRODUCTION 

Nowadays, the IP network has become part of the critical 

infrastructure of our businesses. With the rapid development 

of smart devices, the end user can play video anytime and 

anywhere. The popularity of video streaming brings new 

business fashion; therefore, all video service providers have 

started big data analytics. Due to the volume, variety, and 

velocity of big data, retrieving information in a short period 

that is suitable for our decision-making becomes a concern 

[1]. Big data analytics technologies are designed to extract 

value from big data in trustworthy, fast, and economical ways. 

Some of the most significant potentials of big data come from 

the bridge between resource and data streams. Cloud services 

(e.g., Amazon and Azure) strive to provide the robustness, 

scalability, and reliability necessary for big data analytics [2] 

[3]. Regardless of the infrastructure, cloud services are used 

to improve the delivery of big data to the end user.  

HTTP Adaptive Streaming (HAS) technology is widely 

used in video streaming to select the appropriate bitrate that 

matches the network bandwidth. Users connect to the 

network using various devices and through different 

networks and play online videos. This heterogeneity of 

networks and devices makes it difficult to provide 

high-performance streaming to end users. Meanwhile, in a 

competitive marketplace, Over-the-Top (OTT) companies try 

to understand customer behaviors and offer customized 

services by mining and exploring hidden relations between 

different attributes. To this end, we need to find new ways to 

interact with big data.  

Real-time streaming analytics has some significant 

features that help to better decision making that include i) 

Analyze and take action on real-time data ii) Risk analysis 

before they occur. iii) Predict new business opportunities and 

revenue streams by analyzing end-user behavior [4]. Due to 

on premise system limitations, distributed systems are used to 

store and process large data. The scalability and flexibility of 

cloud analytics solutions have become popular destinations 

to solve limitations of on-premise resources, but there are still 

challenges. Although cloud solutions are cost-effective for 

short tasks, it is more costly for long-term operations. 

Another problem is the data source. Data is an asset and must 

be purchased. The bottom line is, that to provide better live 

video service, video service providers must have complete 

insight into Content Delivery Network (CDN) performance 

at the edge and delivery network levels, as well as the quality 

of video experienced by the end user. Nevertheless, the 

nature of video makes it difficult because of the volume and 

velocity of logs. (e.g., 2 GB raw logs for a minute video 

length).  

Previous works such as [5−7] discussed comprehensive 

architecture that has been proposed for intelligent video 

analytics in the cloud. However, none of them discuss the 

actual effects of the application on end-user quality and video 

provider decision-making in the real world. The motivation 

behind this study is to improve users’ Quality of Experience 

(QoE) with data analysis and real-time reaction. Typically, 

CDNs report data logs with delays of almost 15 minutes. 

However, by analyzing raw logs that are delivered by CDN 

logs stream services it is possible to fast log analyses and 

adapt to react in less than 3 minutes.  

The remainder of the study is organized as follows: 

background and system architecture are introduced in Section 

II. The system architecture is discussed in Section III. The 

case study and experimental results are discussed in Section 

IV. In Section V, we conclude the paper and draw future 

paths. 

II. BACKGROUND AND RELATED WORKS 

A. Background  

HTTP Adaptive Streaming: As shown in Fig. 1, in the HAS 

technology, a single video file encoded at multiple bitrates 

called “representations” enables smooth adaptation between 

different video qualities during display time [8]. In adaptive 

streaming, a player needs to download the entire video file 
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before starting to play. Toward a fast start, a video file is 

divided into small ’segments’ (or chunks). A segment 

generally contains less than 10 seconds of video. This 

architecture benefits from pull technology, where distributed 

caches on the CDN store contents at the edge points, and 

clients connect to the edge and download video content.  

Content Delivery Network: Using the flexibility of CDN, 

combined with edge caching features, allows for enhancing 

the quality of video streaming. Clients connect to the CDN 

network at the edge and adapt to a suitable bitrate considering 

network throughput or buffer fullness. Serving client requests 

at the CDN edge reduces the load on the original media 

servers by eliminating sending client requests to the origin 

server. This offloads the origin server and reduces network 

traffic. As a result, it improves the response time of the origin 

server and reduces the download time.  

Client Adaptation Mechanism: The intention of adaptive 

streaming is a smooth adaptation between different video 

qualities where the network download speed changes during 

the display time. To this end, a video file is encoded with 

different bitrates (representation) and divided into small-size 

video segments. Manifest file carries video file information 

including the number of representations, number of video 

segments, segment length, audio, and subtitle information. 

As shown in Fig. 2, clients connect to the nearest CDN-edge 

and start video streaming by requesting an HLS playlist or 

DASH manifest file. Meanwhile, clients continuously detect 

the network performance (download speed) with the 

Adaptive Bitrate (ABR) algorithm.  

Network heterogeneity at the edge makes it difficult to 

provide the same bandwidth for all clients. Therefore, each 

client requests video segments sequentially considering the 

network throughout and manifest file information. Suppose a 

client requests segment ‘s’ with bitrate ‘b’ adaptively. If the 

request (s, b) has already been requested by another client and 

is available in the CDN cache, the requested video segment is 

returned to the client by CDN-edge. Otherwise, the client’s 

request is sent to the origin server, which is generally located 

in a different geography and consequently leads to a slower 

response due to a larger Round-Trip Time (RRT).  

The origin server does just-in-time packaging (s , b) and 

sends it to the client via CDN. CDN forwards the received 

video segment to the client and meanwhile caches them for 

future incoming requests. This has two advantages: i) fast 

response time, and ii) offloading the origin server. On the 

client side, to avoid premature buffering, the video player 

fills the buffer with downloaded video segments up to a 

predefined threshold value (for example, 10 seconds of video) 

and then starts playing the video. In the case of rebuffering, 

the client starts requesting lower bitrate video segments that 

are small in size (but poor in quality) and can be downloaded 

faster.  

B. Related Work 

The high data rate, low delivery latency, and scalability are 

the Key Performance Indicators (KPI) of adaptive streaming 

technology, widely used by video management and service 

providers for live or on-demand video streaming [9]. An 

overview of distributed networks and clients’ experiences 

helps provide end users with better video service. Such 

insight needs real-time log analytics. However, due to the 

data intensive and resource-hungry nature of large-scale 

video logs, processing and extracting insights from the video 

log quickly is a challenging task. With the popularity, 

resource flexibility, and scalability of cloud computing, big 

data video analytics has become a reality.  

Most recent studies [10−13] focus on resource utilization 

rather than human-perceived quality optimization. Unlike 

end-user quality experience, video analytics algorithms can 

tolerate dropped frames and decayed image quality, which 

are very important from a QoE perspective. Zhang et al. [10] 

proposed a configuration adaptive streaming framework 

designed for live video analysis. The proposed model trains a 

deep reinforcement learning that makes no assumptions 

about the environment but learns to make configuration 

choices through its own experiences. Canel et al. [11] 

proposed “FilterForward” an edge cloud desertion method to 

reduce bandwidth use by an order of magnitude without 

sacrificing accuracy. Both proposed methods use Deep 

Neural Networks (DNN) to extract general features of video 

frames. Like previous works, a neural network solution is 

used in [12] for enabling edge-cloud video analytics for 

robotics applications rather than human-perceived adaptive 

streaming. Zhang et al.  [13] introduced ‘Awstream’ adaptive 

streaming analytic uses network throughput and behaves 

cautiously to avoid building up queues: automatically learns 

a Pareto-optimal policy or strategy for when and how to 

invoke different degradation functions. However, the 

proposed solution is more suitable for IoT devices rather than 

adaptive streaming.  

Many recent efforts have been made to improve QoE 

parameters for ABR. However, most of them are designed as 

adaptive algorithms or performed in limited input and 

unrealistic domains. A QoE for adaptive video streaming is 

discussed in [14], where authors build a database dedicated to 

the subjective evaluation of HAS videos under realistic 

conditions. A good study related to human-perceived quality 

is discussed in ‘Pensieve’ [15]. Pensieve uses modern 

Reinforcement Learning (RL) techniques to learn a control 

policy for bitrate adaptation purely through experience. 

However, Pensieve is an ABR algorithm running in clients 

and optimizes its policy for different network characteristics 

and QoE metrics directly from experience. There is no 

mechanism for changing CDN or edge points when the 

network quality drops significantly. Recall, even the best 

CDN or ISP has poor quality in certain regions or times of the 

day. 

III. SYSTEM ARCHITECTURE 

In this section, video streaming technologies as well as the 

proposed system architecture are discussed.  

A. Architecture Design and Implementation  

• Origin Side: The origin server is the source of the video 

content, where the video files are encoded and packaged 

Just-in-Time for delivery. Typically, a video file is 

compressed by using H.264/AVC or H.265/HEVC 

codec, then ingested in a packager. Packager is 

responsible for creating different video streaming 

formats including Apple HTTP Live Streaming (HLS) 

[16], Microsoft Smooth Streaming (MSS) [17], and 

Dynamic Adaptive Streaming over HTTP (DASH) [18]. 
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OTT uses a combination of multiple streaming 

technologies to satisfy the experience of their connected 

heterogeneous clients [19, 20], which complicates log 

analysis tasks. 

• CDN Side: Our content distribution system relies on a 

multi-CDN architecture, where different CDNs are used 

to deliver video content to end users connected to edge 

points. However, each CDN has a specific log format. 

Therefore, defining a common template for mapping all 

CDN formats improves system efficiency.  

• Client Side: Satisfying legitimate clients is the majority 

of client-side data analytics. In the context of client 

satisfaction, data analysis helps us provide better video 

services by detecting playback problems and 

troubleshooting. 

 

Fig. 1. Conceptual view of adaptive live streaming and log analytics system − life cycle. 

 

Fig. 2. Dynamic Adaptive Streaming over HTTP (DASH). 

B. Log Analytic System  

Log analytics is the process of gathering, investigating, 

and visualizing the data produced by computer systems. 

Real-time streaming analytic tools are critical for video log 

analysis where thousands of heterogeneous clients are 

connected to the Internet and display video content. Log 

content includes all involved end-to-end components 

information including, but not limited to the origin server, 

video, telecom, network, CDN, and client information. To 

better understand the volume of video logs, only consider 

video metadata information for three different display 

formats. Each video stream has at least manifest, video, audio, 

and subtitle files. Let’s say the length of the video segment is 

2 seconds. Therefore, the media server receives 4 requests 

(manifest, video, audio, subtitle) per segment per client. That 

means 2 requests per second or 120 requests per minute. Each 

request contains detailed information about the client, 

network, CDN, etc. Thousands of online users stream videos 

in different formats through worldwide heterogeneous 

networks during the live event.  

The characteristics of video streaming logs (volume, 

velocity, and variety) make it difficult to send, receive, and 

process them in real time. Therefore, in the absence of 

sufficient resources, even processing a part of the logs helps 

to make better decisions. Products such as Amazon Kinesis 

and Azure Stream Analytic are widely used in the industry. 

For this purpose, we leveraged role-based Elastic log analytic 

tools. We leveraged the ELK ecosystem which is easy to use, 

scalable, and flexible. This ecosystem embers three 

open-source projects: 

• Elasticsearch: is a prominent search and analytics 

engine. 

• Logstash: is a server-side data processing pipeline that 

simultaneously ingests data from multiple sources, 

transforms, and sends it to Elasticsearch.  

• Kibana: visualize data with charts and graphs in 

Elasticsearch. 

C. ELK Ecosystem  

ELK stack is a collection of Elasticsearch, Logstash, and 

Kibana. Elasticsearch is a full-text search and analysis engine. 

Logstash is a log aggregator that collects data from multiple 

sources, processes, transforms, and sends it to various 

destinations, such as Elasticsearch. Finally, Kibana provides 

a user interface that allows users to visualize, query, and 

analyze their data through graphs and charts. ELK is a log 

management platform that works by collecting massive 

amounts of log data from different endpoints in one place and 

then searching, analyzing, and visualizing it in real time. 

ELK’s most common use cases include monitoring, 

troubleshooting, security analysis, and fraud detection.  

Fig. 3 shows an abstract view of the data log analytic 

system and behavior of the ELK stack in collecting 

summarization and visualization of logs coming from 

different endpoints. End users connect to CDN-edge from 

different geolocations using different devices, each playing 

different video formats. This is where the ELK stack shines in 

collection, aggregation, analysis, visualization, and 

monitoring. Logstash is a log aggregator and processor that 

reads data from many sources (such as a CDN) and sends it to 

one or more destinations for caching or storage (such as 

Elasticsearch). Logstash has a rich library of plugins, 

allowing it to collect, convert, and enrich various log types, 
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from error logs, app logs, system logs, and web server logs.  

The flexibility, distributed, and multi-tenancy nature of 

Elasticsearch provides a scalable, near-real-time search 

solution. Elasticsearch fetches and stores unstructured data 

from various locations, indexes it based on a user-specified 

mapping, and makes it searchable. While the ELK stack is 

deployed and running in the cloud, there are technically no 

limitations in terms of storage, processing, and network 

bandwidth. Therefore, the scalability of Elasticsearch allows 

a scale-up system on demand. ELK’s simplicity and 

robustness make it possible to manage massive volumes of 

data and easily scale on a cloud platform without sacrificing 

performance.  

The Beats family including Filebeat, Metricbeat, and 

Packetbeat are lightweight tools for collecting and shaping 

logs, metrics, or network data. They sit on servers or are 

deployed as functions and then centralize the data in 

Elasticsearch. In the proposed system, filebeat includes 

modules that simplify the collection, analysis, and 

visualization of data from origin media servers which are 

installed in different data centers. This is achieved by 

combining automatic default routes based on the operating 

system (NGINX), with Elasticsearch and Kibana dashboards.  

Kibana shapes any data (structured and unstructured) 

indexed in Elasticsearch. Kibana is preferred for visualizing 

large volumes of logs stored in Elasticsearch, which sit on top 

of Elasticsearch and Logstash in the ELK stack. Dashboard 

features, various interactive charts, efficient shaping, and 

visualization provide optimized search experiences. 

D. Cloud-based Log Analytics  

As illustrated in Fig. 4, integration of cloud computing and 

log analytic systems offers numeric advances, addressing the 

challenges associated with big data analytics. Some of the 

key benefits of this integration include:  

• Scalability: Scalability is critical for video streaming 

platforms where hundreds of thousands of users 

simultaneously connect to media servers and display 

video. It is imperative to provide an efficient service to 

multiple users connected through a heterogeneous 

network and different devices. However, collecting, 

transforming, and summarizing such a big volume of 

log data is difficult and takes more time, while video 

streaming services require fast and real-time response. 

Taking advantage of cloud features, including 

distributed processing and providing sufficient storage 

space and bandwidth, makes it possible to scale the 

system based on demand.  

• Flexibility: The cloud offers different classes of services 

and tools that allow the development of frameworks, 

infrastructures, and environments suitable for specific 

needs.  

•  Cost Effectiveness: Cloud-based log analytic platforms 

facilitate scaling systems with optimal cost by 

leveraging the pay-as-you-go model and cost 

optimization strategies.  

The ELK ecosystem is a combination of multiple servers 

running on the cloud where logs are collected from each 

CDN’s endpoint. We dedicated and configured a separate log 

analysis server for each CDN as well as the origin servers. 

Raw logs are parsed and summarized into valuable pieces of 

information, taking into account KPI metrics. We measure 

different KPIs from different end-to-end points to provide 

high-quality services to end users. On the CDN side, KPI 

parameters include QoS metrics (e.g., network bandwidth, 

latency, first-byte response, etc.) and QoE metrics (e.g., 

buffering time, startup delay, received bit rate, quality 

oscillation, etc.). On the origin media server side, we monitor 

server performance including the number of incoming 

requests, outgoing bandwidth, CPU performance, read/write 

speed, etc. 

 

 

Fig. 3. ELK and data log analytic architecture overview. 

 

 

Fig. 4. Abstract architecture view of integration ELK stack and cloud 

platform. 

IV. CASE STUDY AND EXPERIMENTAL RESULTS 

A. CDN Switching 

 The distributed nature of a CDN helps content be 

delivered to end users in a faster and more efficient manner. 

However, depending on the geographic location and the 

daytime, CDNs can perform differently. Leveraging a 

multi-CDN strategy has several advantages:  

•  Reliability: Technically, there is no unlimited capacity 

(storage, bandwidth, PoP, and upstream data center) for 

CDNs that provide large business services. Therefore, 

unexpected peaks in traffic may overwhelm the CDN, 

which can negatively impact the end user’s QoE. In 

multi-CDN architectures, traffic is redirected to another 

CDN if a problem occurs.  

• Flexibility: Even the best CDN performs well in some 

times and regions and not so well in others. The OTT 

providers can switch to the best-performing CDN 

considering this fact. Remind that switching to another 

CDN has an extra cost (e.g., increasing the re-buffering 

ratio for a short period).  

• Cost Efficiency: In a competitive market, CDN 

providers may have variable prices for different regions 
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depending on the services and features offered. Content 

type, volume, and traffic (regular or peak traffic) are 

other important factors that can affect pricing.  

• Security: Security is another case that we can consider 

for CDN switching. In addition to general protection 

against hacking and unauthorized access to media 

servers, content protection, and illegal streaming are 

other concerns. To protect the content, content 

providers use a combination of multiple Digital Rights 

Management (DRM) and watermarking technologies 

[9]. The CDN must support all necessary security 

features.  

B. Fraud Detection  

Identifying and reacting to changing operating conditions 

is critical for OTT providers. Any subtle differences in the 

underlying media server’s operating conditions or network 

bandwidth usage can indicate unacceptable levels of 

application risk. Live video applications are more sensitive to 

latency, and an increase in fraud users leads to more network 

traffic. Detecting fraud and access revoking is necessary to 

provide better services. Logs are widely utilized to detect 

anomalies in modern large-scale distributed systems. The 

process of log analysis involves four main steps: log 

collection, log parsing, feature extraction, and anomaly 

detection.  

At the media server level, the origin server is responsible 

for packaging incoming requests. Connecting more clients to 

the network means making more requests to the origin 

servers. Overloading the media server results in slow 

response time and thus greater latency. This delay also 

increases at the network level that carries the traffic.  

At the network level, an increase in fraudulent users can 

significantly increase bandwidth usage. During peak times 

(for example, during a live event such as a football derby 

match) more users connect to the network at the same time 

and start streaming video. Even the best CDNs and ISPs have 

limited network resources. Thus, unexpected traffic generally 

results in poor service delivery. It is more evident in some 

regions which depends on many factors including customer 

density, connection types, and infrastructure network 

characteristics.  

C. Experimental Results  

In the existing adaptive streaming scheme, video players 

use adaptive bitrate algorithms (buffer-based or 

throughput-based) for QoE optimization, which inevitably 

fail to achieve optimal performance under a wide set of 

network conditions and QoE objectives [15]. Clients do not 

have any information about edge traffic except the bandwidth 

of connection points. They have no insight about other clients 

using the same bandwidth. Monitoring and analyzing logs 

coming from multiple CDNs in real time provides insight into 

switching traffic between CDNs. Resource-rich edge or 

cloud servers have become popular destinations for 

streaming analytics [10]. Edge analytics at the CDN level can 

be an alternative solution for moving big volumes of raw log 

data to the cloud. Unfortunately, providing such a service 

through an API leads to additional latency and is not suitable 

for real-time reactions. Therefore, the flexibility and 

scalability of the cloud are an alternative solution for 

analyzing raw logs.  

Raw logs coming from each CDN carry two types of 

information i) Client logs that contain quality KPIs and deal 

with end-user detail information including client type, 

received bitrate, startup delay, etc. ii) CDN-edge information 

including edge response time, cache performance, ISP 

performance, number of connected users, traffic pattern, etc. 

This means that the analysis of the data logs, taking into 

account the client’s QoE history at different CDNs, and the 

current traffic patterns and performance of each CDN enables 

the distribution of the client’s video traffic to different CDNs. 

Unfortunately, the quality parameters decrease during the 

hand-off time, when forwarding a client from one CDN to 

another.  

Typically, a client connects to the nearest CDN-edge and 

adapts to the appropriate bitrate according to the ABR 

algorithm decision. The majority of ABR algorithms are 

making bitrate decisions based on buffer occupancy, network 

throughput, or a hybrid model with a combination of both, 

The CDN returns the requested video segment to the client if 

it is cached on the CDN side (Hit scenario). Otherwise, in the 

case of ’Miss’, forwards the client’s request to the origin 

servers. This has two drawbacks that negatively affect QoE: i) 

usually, the origin server is far away from the client. Hence, 

slow response times can lead to a buffer drain on the client 

side. As a result, the user experiences buffering video on the 

screen. ii) On the origin server side, if more requests are 

received, the origin server becomes overwhelmed. Thus, it 

takes more time to prepare and package the requested 

segments. Subsequently, clients experience re-buffering 

(freezing video on the screen) and start requesting lower 

bitrate video segments for faster retrieval. 

Fig. 5 shows the effects of CDN switching on client side 

re-buffering when some error rate increases. Note that 

re-buffering happens in the middle of playback when the 

client’s buffers become empty, resulting in the video freezing 

on the screen. Typically, moving clients from one CDN to 

another CDN results in high re-buffering because of cache 

efficiency, which can negatively affect CDN-edge and origin 

response time and result in low video quality. A ’Miss’ 

occurs by redirecting clients to another CDN-edge, where no 

video segments are cached. Therefore, the client’s requests 

are sent to the origin server. Usually, the origin is far away 

from the client. Hence, slow response times can lead to a 

buffer drain on the client side. As a result, clients experience 

re-buffering and start requesting lower bitrate video segments 

for faster retrieval. Consequently, users experience low video 

quality on the screen. For this purpose, we consider streaming 

a percentage of the traffic through the second-best CDN to 

prefetch and warm the cache. Results show that on a real 

platform with approximately 200K concurrent users routing 

almost 10% of traffic through another CDN reduces 

re-buffering effects during CDN switching.  

The origin server has limited resources compared to CDN 

which has a distributed nature and accommodates more 

resources. Therefore, forwarding more requests to the origin 

media server leads to slow response and bandwidth 

bottlenecks. Fig. 6 shows the effect of CDN switching on the 

origin server side. When a portion of the traffic is distributed 

through an alternate CDN, fewer requests will be sent to the 

origin server by switching to an alternate CDN. This is due to 

the prefetching and high efficiency of the cache at the 
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alternative CDN-edge, where requested segments are already 

cached and available for quick response. On the origin server 

side, we also noticed that disk I/O speed affects response time, 

which can significantly impact the overall performance. 

Since the origin server packages different video formats with 

different representations (bitrates), disk write speed is very 

important. This helps the origin server to respond more 

quickly to incoming requests.  

 

 

Fig. 5. Effect of CDN switching on re-buffering with/without prefetching. 

 

 

Fig. 6. Requests received per second on the origin media server during CDN 
switching time. Warming up edge caches by a prefetching mechanism could 

offload origin servers in CDN switching time. 

 

 
Fig. 7. Revoked unique session in the 90-minute live sports event. Exactly 

before starting the live event more illegal users try to use video service. This 
led to more requests to the edge and origin server and, consequently, more 

traffic at the edge, where bandwidth is shared with legal clients. 

 

The last part of the experimental results is related to fraud 

detection. Illegal access to streaming video presents two main 

challenges. First, it fills the shared capacities of CDN 

resources. Even well-performing CDNs have limited 

resources that are shared and distributed among different 

customers (e.g., OTT, insurance, banking, financial services, 

etc.). Second, it increases billing costs. The first challenge is 

more critical because it directly affects end users’ QoE. 

Regarding different stream protection mechanisms, a 

remarkable group of people attempts to display video in an 

illegal form. Therefore, detecting and revocation fraud users 

is essential for each OTT provider to better service delivery 

and improve end users’ QoE. Timely fraud detection allows 

video service providers to pinpoint issues promptly and 

resolve them immediately, thereby improving system 

efficiency while saving revenue. Our fraud detection system 

uses some of the validation methods including, but not 

limited to:  

• Query Parameters: Each CDN has a specific request 

format. Considering this fact any request which does 

not meet the CDN query parameters is directly blocked.  

• User Anomaly: The control mechanism checks the 

unique user ID and blocks users who use the same ID 

but connect via different IPs, user agents, or user 

different tokens. In other words, there is no chance for a 

user to share account information with others.  

• Blocked List: During real-time monitoring and 

observing clients’ behavior, illegal sessions using 

different Autonomous System Numbers (ASNs), agents, 

and HTTP referrers are inserted into a blacklist. The 

blocked list progressively updates and all matched user 

IDs are blocked by the revoke system. 

Fig. 7 shows the number of revoked sessions during a live 

sports event. Fraud clients start connecting to the edge 

servers before starting the match and this effort is boosted at 

the start of the event. In this example, approximately 32 K 

fraud sessions were detected. Overall, 6 users per second 

were removed from the live stream. While the total number of 

legal users is approximately 280 K, it means that 9% of 

shared bandwidth is saved. It is worth emphasizing that our 

system architecture is scalable, but each CDN can provide 

dedicated resources. For extra resource allocation, we need to 

proactively inform CDN. 

V. CONCLUSION 

In this study, we addressed the complexity of real-time 

video streaming analysis and emphasized that the 

implementation and execution of analytical tools on the cloud 

enables the achievement of results in a short time, resulting in 

quick decision-making and reaction. A cloud solution is easy 

to use and scalable on demand. We developed cloud-based 

ELK analytics tools to capture, transform, and summarize log 

streams from multiple CDNs as well as origin servers. 

Decoupling origin servers and CDN logs help to fast reaction 

and perform well in terms of providing a reliable and 

cost-effective video stream without compromising QoE. 

While each CDN has a specific log format, converting all 

CDN logs into a unique template is a way for quick retrieval 

and easy interpretation.  

We implemented multi-CDN log analytics in the context 

of monitoring QoE and fraud detection. Our system provides 

an advanced online defense in depth for video analytic 

applications. The benefit is two-fold: i) Proving better live 

video service specifically in peak time considering user side 

KPI values including rebuffering time, received bitrate, and 

startup delay. ii) Saving network valuable bandwidth and 

reducing CDN costs by detecting fraud users and revoking 

them.  

The current business model does not meet the 

requirements of intelligent multi-CDN integration. For 

example, legacy clients do not meet the requirements of 

dynamic switching between CDNs. To this end, we are 

revising video delivery tools, applications, and platforms. As 

a future work, we are planning to launch a machine learning 

approach to efficiently deliver content through multiple 

CDNs. The proposed solution benefits from content-aware 

encoding on the origin side and tracking and learning each 

client’s streaming habits on the CDN side for better video 
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delivery. AI-based reinforcement algorithm used for 

multi-CDN switching considering quality, security, and cost 

of delivery service. This algorithm learns the performance of 

each client (device) on different ISPs and networks and 

automatically switches clients to the appropriate CDN and 

ISP. 
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