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Abstract—This research investigates the potential of 

Augmented Reality (AR) applications on mobile devices solely 

using web browsers, focusing on 3D augmentation via WebGL. 

It addresses the feasibility of AR in browsers, explores the 

integration of device sensors, and assesses the performance of 

WebGL on various mobile platforms. Despite technical 

challenges, such as camera integration limitations, the study 

demonstrates the successful implementation of other AR 

prerequisites on mobile devices. Results reveal significant 

performance variations between iOS and Android devices, with 

rendering capabilities generally meeting the task requirements, 

albeit with some limitations. Battery consumption during 

WebGL usage is relatively high compared to standard web 

browsing. Although AR standards in web browsers are not yet 

mature, and implementations remain unstable, this research 

suggests that WebGL, in its current state, can augment 3D 

objects within a user’s mobile view. While widespread adoption 

may not be immediate, ongoing advancements in both mobile 

hardware and web standards may pave the way for ubiquitous 

AR applications in mobile web browsers in the near future. 

Keywords—WebGL, augmented reality, JavaScript, mobile 

devices, benchmarks 

I. INTRODUCTION

The evolution of technology continually reshapes the way 

individuals interact with their surroundings. Initially, the web 

primarily served static content, but it has since evolved into a 

platform where dynamic and interactive experiences abound. 

As smartphones became ubiquitous, native applications 

dominated the landscape. However, there is a notable shift 

towards browser-based applications, spurred by the 

increasing influence of mobile web browsers. This trend is 

expected to accelerate, with web applications projected to 

eventually supplant traditional binary software [1]. 

Web applications are increasingly blurring the lines 

between native and browser-based experiences. Services like 

Google Docs for word processing and 280 Slides for 

presentations offer functionalities previously exclusive to 

native applications, thus narrowing the gap between them [2]. 

The development of HTML5 and WebGL has further 

expanded browser capabilities, particularly in supporting 

three-dimensional graphics natively. This native integration 

of 3D functionality further enhances web applications, 

paving the way for richer user experiences. 

Augmented Reality (AR) stands at the forefront of 

merging digital information with the physical world, 

enhancing users’ views with additional context and data [3]. 

Its potential applications span diverse fields, including 

healthcare [4], education [5, 6], and tourism [7]. The 

popularity of AR apps has surged in recent years, thanks in 

part to the widespread adoption of smartphones. Leveraging 

AR, particularly through browserbased interfaces, holds 

promise in revolutionizing how information is accessed and 

presented, potentially transforming the user experience itself 

[8–10]. 

The rise of smartphones is growing at a fast and still 

accelerating pace and enabled displaying information in a 

new way in a truly mobile context to many people. 

Smartphones have been pivotal in reshaping how information 

is consumed, offering users a truly mobile web experience 

with the power of “real browsers.” Their exponential growth, 

driven by advancements in technology, has led to 

unparalleled accessibility to information. However, 

disparities exist between desktop and mobile browsing 

experiences, influenced by screen size, processing power, 

and input methods. 

This paper analyzes the status quo and potentials of 

WebGL on mobile devices and answers the following 

questions: 

1) Are Augmented Reality applications possible on mobile

devices using only the browser?

2) Is 3D-augmentation of these applications possible using

WebGL?

3) How fast is WebGL on mobile devices?

The paper is structured as follows: Section II gives

background information on the relevant topics of augmented 

reality and WebGL with mobile devices and their evaluation 

criteria; Section III gives implementation details of the 

WebGL environment used to capture the status quo; Section 

IV presents the evaluation as well as limitations to this study; 

and Section V gives a summary of the results and presents 

future research opportunities. 

II. BACKGROUND

In this chapter, we delve into key terms and technologies 

essential for addressing the research questions, namely 

WebGL and Augmented Reality (AR), and their respective 

evaluation criteria. 

A. WebGL

WebGL represents a significant advancement in web 

technology by enabling the rendering of 3D graphics directly 

within web browsers. It is a cross-browser and cross-platform 

compatible software library and API, extending JavaScript’s 

capabilities to generate websites with hardware-accelerated 

3D content. Launched in 2011, WebGL leverages the 

standard HTML5 <canvas> element and exposes its 

functionality to developers through the Document Object 

Model (DOM) interfaces. 

Design and Functionality: At its core, WebGL utilizes 

OpenGL ES 2.0 as its foundation and employs its shading 

language, GLSL, for graphics rendering. While it shares 

semantics with desktop OpenGL 2.0 to facilitate code 

portability, some distinctions exist, such as requirements for 

power-of-two textures and limited support for 3D textures. 
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The integration of WebGL into web content allows 

seamless combination with other web elements, facilitating 

layering of 3D content with existing web content using 

languages like JavaScript. This integration enables dynamic 

and interactive web experiences, empowering developers to 

create immersive environments where 3D graphics interact 

with traditional web elements. 

Desktop and Mobile WebGL: WebGL enjoys widespread 

support on desktop browsers, with major players like Firefox, 

Safari, Chrome, and Opera incorporating compatibility. 

However, the landscape differs on mobile devices, where 

support remains limited. While browsers like Firefox and 

Opera Mobile 12 offer WebGL compatibility on Android 

platforms, Google Chrome for Android is still in beta and 

lacks WebGL support. 

Apple introduced WebGL capabilities to iOS with iOS 4.2, 

primarily for use within Apple’s iAd platform. However, 

enabling WebGL in the Safari browser requires non-public 

APIs and is not feasible for end-user applications due to 

Apple’s App Store Review Guidelines. With a hack 

discovered by Nathan de Vries, WebGL can also be enabled 

in a UIWebView. Consequently, true WebGL support on iOS 

devices remains elusive, hindering the proliferation of 

WebGL-based applications in the mobile ecosystem. 

As the desktop version of Internet Explorer does not 

support WebGL [2] and Microsoft considers WebGL 

“harmful,” I probably won’t see WebGL support on 

Windows Phone 7 in the near future. 

Also, RIM’s tablet, the BlackBerry PlayBook, supports 

WebGL in web applications. 

Security Issues: Although the support of WebGL seems to 

be widespread, there are also critical voices, with Microsoft 

probably being their most prominent spokesperson. 

Microsoft believes “that WebGL will likely become an 

ongoing source of hard-to-fix vulnerabilities” because 

WebGL allows direct access to the computer’s hardware 

from the web. WebGL security, therefore, relies on graphic 

card drivers and other third-party components to mitigate the 

risks. 

Context, an information security consultancy 

recommending disabling WebGL in the browser, published 

and demonstrated two possible attack scenarios initiated by a 

malicious website. They were not only able to perform a 

successful Denial of Service attack, which led to the crashing 

of operating systems and freezes of desktops, but they were 

also able to gather confidential information by stealing the 

content of the graphic memory with which they were able to 

reconstruct screenshots of the desktop. Context states these 

issues are inherent to the WebGL specification and can’t be 

resolved without significant changes in WebGL’s 

architecture. Although there are countermeasures in 

development that could resolve these issues, at the moment, 

WebGL allows malicious programs access to the graphics 

hardware and software. 

Status Quo and Evaluation criteria: Assessing the 

prevalence of WebGL support presents challenges, with 

unofficial trackers like WebGLStats offering insights into 

adoption rates. Despite approximately 51.1% of desktop 

users accessing WebGL-enabled browsers, mobile adoption 

remains low at only 2.3%. 

Evaluating WebGL implementations on mobile devices 

involves various technical and performance assessments, 

ranging from compatibility with official WebGL desktop 

browser examples to performance tests and conformance 

tests [2]. Security concerns also factor into evaluations, 

focusing on potential vulnerabilities and mitigation 

strategies. 

B. Augmented Reality 

Augmented Reality (AR) seamlessly integrates digital 

information into the user’s view of the physical world, 

bridging digital and physical environments. This technology 

holds vast potential across diverse application areas, ranging 

from healthcare and education to tourism and entertainment 

[3]. 

New technologies have always influenced human 

information behavior and will again with possible scenarios 

because of AR. For example, it may be possible to provide 

recommendation agents, which have been shown to reduce a 

consumer’s information overload and search complexity [11], 

directly in-store. Acquiring product information in-store has 

often been linked to consumer decision-making and 

information processing [11–13]. Besides cognitive factors, 

the user’s affection may be impacted as well; social aspects 

of mobile image recognition - attaching digital storytelling to 

physical products - have been shown to have an impact on a 

user’s affection [14], e.g., trust, engage consumers to 

communicate and receive information about products [12]. 

In a survey about the expectations and usage of augmented 

reality applications [3], people expected them to enhance 

their lives by providing them with up-to-date information 

about and proactive functions to act upon context-relevant 

data that was not readily available before. Furthermore, users 

expected them to offer “stimulating and pleasant experiences, 

such as playfulness, inspiration, liveliness, captivation, and 

surprise.” Applications dealing with practical problems were 

regarded higher than applications for pure entertainment. 

The main negative aspects were information flood, user’s 

loss of autonomy, and a possible switch from real to virtual 

experiences and information [3]. 

Augmented reality is occasionally used interchangeably 

with virtual reality because of their similarities, but they have 

an essential key difference. According to Yi Wu, a senior 

research scientist in interaction and experience research at 

Intel Labs, the difference is that augmented reality never 

substitutes your view of the actual physical world; it merely 

adds virtual information on top of the natural world. Virtual 

reality, however, has no natural physical objects in view. 

History: Although augmented reality has existed for about 

half a century, the term was not coined before 1990 by a 

researcher at aircraft manufacturer Boeing, Thomas Caudell 

[15]. The definition has been slightly modified over time, but 

Caudell applied the term to “a head-mounted digital display 

that guided workers through assembling electrical wires in 

aircraft.” 

One of the first devices using augmented reality elements 

was a machine called Sensorama, built by Morton Helig. This 

machine was designed to give the users a cinematic 

experience that is more than just visual. The demo film was a 

cycle ride through Brooklyn where you were supposed to get 

the feeling you were the one on the ride (this was done by 
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vibrating one’s seat, blowing wind in one’s face, etc). These 

extra effects might be considered elements of augmented 

reality as, in the sense of the word, it augmented the reality of 

the experience. 

Many current AR software, such as apps showing 

points-ofinterest (POI) or product-related information, are 

considered representatives of augmented reality applications 

by users. A lot of these AR applications, however, are 

technically “pseudoAR”, as “not all applications align 

information properly on top of the view of the real world, or 

the augmented information is not truly 3D” [15]. 

In April 2012, Google presented its vision of a future 

technology called “Project Glass.” This futuristic vision 

includes an augmented reality device in the form of glasses, 

which should cover the functionality of current smartphones 

(video conferencing, chatting, navigation, messaging, 

scheduling meetings, etc.). However, constant wearing 

makes it possible to augment a user’s vision continuously. 

Despite the positive first impressions, some critics have 

already emerged, targeting mainly the possibility of 

excessive advertising and generally overwhelming users with 

information, distraction, and concerns regarding the users’ 

privacy. 

Categories: AR applications can be categorized into two 

main classes: AR browsers and image recognition-based 

applications AR browsers and image recognition-based AR 

applications. AR browsers overlay digital information onto 

the user’s view of the physical world, often sourced from web 

content. In contrast, image recognition-based applications 

trigger augmented information based on visual cues, such as 

QR codes or object recognition [15]. 

AR browsers are applications that augment the real world 

seen through the device’s camera and other sensors - with 

digital information, usually from web sources, such as 

graphics, links, and other objects, similar to mashups [16]. 

Examples include touristic applications showing POI in the 

direction the device is oriented at, e.g., Layar (layar.com). 

This type of AR is usually called a “magic lens” in the 

literature [15]. 

Image recognition-based AR applications provide 

augmented information to everyday objects in the user’s view 

based on visual recognition, which acts as a trigger for the 

digital information that is then presented, e.g., showing 

product information like prices and reviews or search results. 

Visual recognition can happen by identifying markers like 

QR codes or objects. 

Given the two classes, the technical requirements for AR 

applications that can be deduced are access to the device’s 

video camera, image registration, positioning, orientation, 

and 2D and/or 3D image overlay. 

Native apps and web applications: So far, augmented 

reality applications are almost exclusively native apps, i.e., 

applications written in the system’s native programming 

language (e.g., Objective-C for iOS or Java for Android). 

The main reason is that up to recently, the ordinary web 

browser couldn’t access necessary system resources, such as 

the integrated video camera or the geolocation. 

Lately, projects that target resolving this issue have begun 

to form; these are still in a very early development phase. For 

example, WebRTC (WebRTC) is a new standard that enables 

real-time communication (RTC), i.e., the utilization of the 

video camera and microphone using Javascript and HTML5 

for a range of applications such as video chat or voice calls. 

WebRTC is still in the pre-alpha phase, and so far, only one 

smartphone web browser supports this technology (Opera 

12). 

Augmented reality web apps are beginning to emerge, e.g., 

Argon. 

WebGL usage: Real augmented reality applications using 

WebGL are rare, but tech demos begin to appear, given that 

access to a device’s video camera is now possible, e.g., 

HTML5WebRTC. 

Still, in the beta phase, WebGL Earth webGLEarth is 

opensource software for visualizing maps similar to Google 

Earth. It relies purely on HTML5 canvas, WebGL, and 

JavaScript, which most modern browsers support. Nokia has 

also created a WebGL-based software for visualizing maps 

nokiaMap. As an extra feature, they have enabled 

stereoscopic 3D, if you have 3D glasses, allows you to view 

cities in 3D. 

WebGL seems to spark the interest of game developers, 

too. There are now games with the aesthetic value seen on 

many games distributed as a native application on mobile 

devices. Seeing this trend, Opera Software wants to 

encourage new developers to this new paradigm. 

Evaluation criteria: For AR evolution and adoption, 

user-oriented issues are critical [3]. AR research, however, 

“still lacks evaluation methods” [17], and metrics are still 

very abstract [15]. Obstacles to evaluating the usability of 

mixed reality systems are manifold and include “common 

testing platforms and benchmarks” [18]. Many researchers 

evaluate only early tech demos ([19]); some evaluations 

oriented towards user experience based on HCI research exist 

[18], and include subjective ratings, e.g., user surveys with 

open questions [10]. 

Many researchers evaluate only early tech demos ([19]); 

some evaluations oriented towards user experience based on 

HCI research exist [18], and include subjective ratings, e.g., 

user surveys with open questions. 

C. UI and UX Research 

User experience (UX) can be defined as ‘a person’s 

perceptions and responses that result from the use or 

anticipated use of a product, system or service” [20]. In the 

literature, instrumental and non-instrumental aspects are 

essential, i.e., pragmatic elements like utility and subjective 

elements like pleasure and aesthetics [21]. 

Research on human-computer interaction (HCI) has been 

traditionally rooted in cognitive psychology, engineering, 

and computer sciences. Besides these fields, research on 

emotional factors of design is growing [22], which marks a 

shift from usability to user experience analysis. 

Academia evaluates user experience oftentimes by looking 

at the emotional state of the user [23], e.g., by letting users fill 

out pen-and-paper questionnaires during the usage or by 

capturing user-made video diaries [24, 25]. 

III. IMPLEMENTATION 

Given the two classes of augmented reality applications, 

tests had to be made for the following requirements: access to 
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the device’s video camera, image registration, positioning, 

orientation, and 2D and/or 3D image overlay. Furthermore, 

WebGL had to be tested as a means of 3D augmentation. 

To test the different requirements, I implemented a room 

where you can look around and interact with several objects, 

like displaying additional information or starting a movie 

sequence. Geopositioning and orientation using the device’s 

sensors and image overlays are integrated. 

This section is structured as follows: I first describe the 

application implemented to use WebGL on iOS. Afterward, I 

go into detail, elaborating on which elements and their 

properties populate the room. At the end of the section, I 

explain how I fetch the user’s location and how movement 

and viewing are done. 

A. iOS WebGLViewer 

As mentioned in section II-A2, implementing WebGL 

support on iOS posed significant challenges due to the 

absence of official browser support. Therefore, a custom iOS 

application named WebGLViewer was developed based on 

the methodology and instructions provided by Nathan de 

Vries. WebGLViewer consists of a UIWebView, a reload 

button, and an address bar. The UIWebView was modified to 

show WebGL content (compare section II-A2). 

In addition to rendering WebGL content, WebGLViewer 

includes functionality to monitor battery consumption during 

WebGL usage. When the device is shaken while running 

WebGLViewer, the application displays information about 

battery usage, including the current battery level, the level 

upon page loading completion, the delta between these 

values, the duration of webpage loading, and the 

corresponding battery consumption rate per minute. Notably, 

due to iOS restrictions, battery level updates occur in 5% 

increments, limiting the precision of battery consumption 

measurements. 

The WebGLViewer application WebGLViewer serves as a 

tool for viewing and evaluating WebGL content on iOS 

devices, providing insights into performance and resource 

utilization on mobile platforms. 

B. Room 

Our application, Room.html was developed to demonstrate 

the capabilities and limitations of WebGL-based augmented 

reality functionalities on mobile devices. The environment 

simulates a room where users can interact with various 

objects, including chairs, tables, a blackboard, and a rotating 

cube, to explore different AR interactions and experiences. 

The web application in question, the Room.html, is available 

on oslo.paulsteinhilber.de/room.html. 

Fig. 1 shows a screenshot of room.html running in Chrome 

on a desktop computer while playing the video. Fig. 2 shows 

a screenshot of room.html running in the WebGLViewer on 

an iPhone. 

The room environment incorporates primitive shapes and 

imported 3D models created using tools like Three.js and 

Blender. Basic shapes like planes and cubes form the room 

structure, while more complex objects like chairs and tables 

are imported from Blender. Each object is assigned specific 

properties and behaviors, such as rotation, video playback, 

and information display, to enable interactive experiences 

within the room. 

 
Fig. 1. Room.html with playing video in Chrome on a desktop computer. 

 

 
Fig. 2. Room.html shown in the WebGLViewer on an iPhone. 

 

The room is built using 6 planes put together to simulate a 

cube. Each plane has 4 vertices, creating a single polygon. 

The blackboard is also simple. It is just a single plane and a 

single polygon. To make the windows and the door, I added 

three additional planes with a texture, thus making the total 

number of polygons 9. 

Objects: WebGL objects can be built from scratch using 

basic shapes or imported from 3D modeling software. For 

our room, I decided to use the tools provided by Three.js, a 

JavaScript 3D-library, to create the “primitives” (basic 

geometric shapes such as a plane or a cube) and use Blender, 

an open source 3D application, for objects of greater 

complexity (such as the chairs and tables). 

The blackboard is a simple plane consisting of 4 vertices, 

which create a polygon together. I added a video element as a 

texture for the blackboard. The user can touch it to interact 

with the blackboard, which plays or pauses the video. 

A single table contains 24 vertices, which creates 22 

polygons. Considering that our scene contains 4 tables, this 

means that the desks are responsible for 88 polygons. They 

all have a grey Lambert material assigned, with the exception 

of one table, which has a red basic material. This is to clearly 

show that it differs from the others and is interactive. When 

this table is touched, a box appears explaining where such a 

table could be purchased. 
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A single chair consists of 56 vertices, which results in 57 

polygons. I have eight chairs, so this amounts to 456 

polygons. All chairs have a red Lambert material assigned, as 

no chair is interactive. 

The cube is natively created in Three.js and consists of 8 

vertices and 6 polygons. A basic red shader has been assigned, 

similar to the other interactive objects. When the cube is 

touched, it starts rotating and changes its color. Another 

touch stops the rotation and changes color one more time. 

This gives us a total of 560 polygons in our application. 

Interaction with Objects: With the Ray method/class the 

Three.js library provides a simple method for interacting with 

3D objects. By specifying a starting point and the direction of 

the Ray, any objects caught in the ray’s path will be added to 

an array. To identify these objects, I have created an 

additional array holding all our “assigned” interactable 

objects. The starting point will always be the camera position, 

and the direction will be related to the mouse click or touch. I 

am only interested in the first interacted object (or else, in a 

larger project, I might be clicking on something in a separate 

room). So, it is the only object I compare with our assigned 

interactable objects. When I have identified the object, I 

perform the corresponding function. 

Textures: Textures in the implementation were imported 

using THREE.ImageUtils.loadTexture(), which creates a 

material based on the texture and combines it with the object. 

Although compressed textures are technically possible and 

are important for large applications, this technique was not 

used in this tech demo. 

Accessing Geolocation: To demonstrate that JavaScript 

can access a mobile device’s physical position, I show a map 

of its location at the bottom of the screen. 

To get the device’s location, the W3C Geolocation API 

was used. This API is independent of the underlying method 

to get the location. The location can be obtained from, for 

example, GPS or “inferred from network signals such as IP 

address, RFID, WiFi and Bluetooth MAC addresses, and 

GSM/CDMA cell IDs”. 

Moving and Looking around in the Room: Although data 

from a gyroscope is accessible with JavaScript and could be 

used in a WebGL application, I have only used data provided 

by a device’s accelerometer since not all of our test devices 

included a gyroscope. The JavaScript onDeviceMotion-event 

is used to get the accelerometer data. On iOS, “the 

accelerometer measures the sum of two acceleration vectors: 

gravity and user acceleration”. Using this data, I 

implemented the feature to look up and down by moving the 

device. It is implemented in such a way that if the device is 

flat on a surface, it shows the floor of the room. When 

holding the device vertically, you are looking at the 

blackboard. 

The room application is reacting to touch events. You can 

swipe left or right to look to the left or right. 

If the application is run from a browser on a stationary 

machine or a laptop, it is possible to move and look around in 

the room with the keyboard (W A S D and arrow keys). 

IV. EVALUATION 

To present the findings in our work in a structured and 

readily available manner, I will devise a test matrix for our 

results. Since WebGL technology is still relatively young and 

its support varies from browser to browser and device, it 

would be tough to devise common criteria for all the devices. 

Therefore, I am approaching the problem by presenting the 

results separately for each device in Device - OS - Browser 

form. In that way, I can outline our observations in a much 

more structured way and stress the peculiarities of WebGL 

support on different devices. 

Since we aim to investigate WebGL on mobile devices, I 

chose one desktop computer as a reference. Which OS (Mac 

OS, Windows or Linux) and particular machine (Mac or PC, 

laptop or stationary) is used is not that important since all 

modern computers should be powerful enough to render 

WebGL graphics. The important thing is to choose a browser 

that fully supports WebGL. I find that Google Chrome is a 

good choice for that. All the measurements and observations 

will be taken running the Room.html, as described in Section 

III-B, developed for the purpose of this paper. 

The parameters I am observing are, for the most part, 

technical. As part of our application, I am measuring Frames 

Per Second (FPS), which gives us the number of times the 

browser refreshes the screen per second. In addition to the 

FPS, I am also considering parameters like CPU usage and 

battery consumption, but as noted before, the different 

parameters will be mentioned when applicable. 

Furthermore, in a similar approach to Golubovic et al. [2], 

the common functionality of WebGL is tested by executing 

the lessons of the WebGL tutorial. These lessons are based on 

a popular OpenGL tutorial (NeHe, nehe.gamedev.net/) and 

cover most of the standard functions, and should be enough 

to put our target devices to the test. The results of these tests 

are presented in table III. 

In addition to technical parameters, another exciting area 

of evaluation of WebGL is user experience. But since the 

most valid and exhaustive results in that field come from a 

large user survey [3], I will not do any work in that area. 

A. Energy Consumption 

The WebGLViewer application for iOS, as described in 

Section III-A, was used to measure battery usage. The device 

was fully charged. The accordant content was opened in the 

WebGLViewer application. The device was then unplugged, 

and the content reloaded. The time until the battery level 

decreased to 90% as well and the battery consumption per 

minute was measured and calculated by the WebGLViewer. 

Using Apple Instruments, a part of Apple’s Developer Tools, 

I measured the CPU Activity (Total Activity, Foreground App 

Activity and Graphics) as well as the relative Energy Usage 

on a scale from 0 to 20. All tests have been performed on an 

Apple iPhone 4 with iOS 5.1 installed using the 

WebGLViewer. I have compared the battery usage and CPU 

activity of the implemented Room.html, the Quake 3 WebGL 

Demo by Brandon Jones (as shown in Fig. 3) and google.com 

as reference. The results are shown in Table 1. 

Comparing the two WebGL applications to a regular 

website like google.com shows a huge difference in CPU 

activity. The overall CPU activity is below 10%, with a value 

below 1% for Foreground App Activity as well as Graphics 

Activity, while using google.com. In contrast, the overall 

CPU activity is over 70%, with about 60% for Foreground 
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App Activity and up to 25% for Graphics Activity, while using a WebGL application. 
 

Table 1. Battery consumption and CPU activity of different WebGL applications 

Test Case 
Battery and Energy Consumption  CPU Activity 

Time till 90 % Battery Usage Relative Energy Usage Total Foreground App Graphics 

room.html 36.03 min 0.278 min/% 17 100 % 64 % 20 % 

Quake 3 34.67 min 0.289 min/% 16 70 % 60 % 8 % 

google.com 78.93 min 0.127 min/% 11 6 % 0.2 % 0.5 % 

 

If I look at the battery consumption, there is also a 

significant difference. The battery drains twice as fast while 

using a WebGL-enabled website compared to google.com. 

The difference regarding the Relative Energy Usage is not as 

big; however, I don’t know how Apple calculates this value. 

B. Frames Per Second 

To test the performance of WebGL on different platforms, 

I have measured and compared frames per second (FPS) for 

different applications. FPS describes the frequency at which 

images are generated. The values below 10-12 FPS are 

recognizable by the human eye as separate images; for higher 

FPS, single images cannot be recognized, and they blend, 

creating motion [26]. Therefore, a higher number of FPS 

creates a more fluid animation and is considered better. Since 

the refresh rate of modern flat screens is 60 FPS, there is 

usually no need to render with more than 60 FPS. 

In Table 2, I compared the FPS of the implemented 

Room.html, the Quake 3 WebGL Demo (as shown in Fig. 3), 

and an example of a spinning cube, the SpiritBox (as shown 

in Fig. 4), on different mobile devices as well as on one 

laptop computer (2010 MacBook) and stationary computer 

(2006 MacPro) as reference. 

 

Table 2. Frames Per Second (FPS) of different WebGL applications on different devices 

Device Operating System Browser Launched room.html Quake 3 SpiritBox 

Apple iPad 2 iOS 5.1 WebGLViewer 2011 61 FPS 61 FPS 60 FPS 

HTC EVO 3D Android 2.3.4 Firefox 2011 8 FPS 12 FPS N/A 1 
Apple iPhone 4 iOS 5.1 WebGLViewer 2010 40 FPS 29 FPS 43 FPS 
Apple iPod Touch (4th Gen.) iOS 5.1 WebGLViewer 2010 21 FPS 25 FPS 43 FPS 
HTC Desire Android 2.2.2 Firefox 2010 2 FPS N/A 8 FPS 
Apple iPhone 3GS iOS 5.1 WebGLViewer 2009 36 FPS 27 FPS 60 FPS 

Reference Laptop 2 Mac OS X 10.7.3 Google Chrome 2010 34 FPS 36 FPS 50 FPS 

Reference Computer 3 Mac OS X 10.7.3 Google Chrome 2006 58 FPS 59 FPS 85 FPS 
1 The FPS value constantly alternates between values in the range from 10 FPS up to over 200 FPS, making it impossible to determine a realistic value. 
2 Reference Laptop: MacBook 2010, Mac OS X 10.7.3, 2.26 GHz Intel Core 2 Duo, 4 GB DDR3 RAM 
3 Reference Computer: MacPro 2006, Mac OS X 10.7.3, 2x 2.0 GHz Dual-Core Intel Xeon, 6 GB DDR2 RAM 

 

 
Fig. 3. Quake 3 WebGL Demo shown in the WebGLViewer on an iPhone. 

 
Fig. 4. WebGL demo SpiritBox. 

 

Table 3. Frames per Second (FPS) using the lessons from the learning WebGL tutorial on different devices 

8 Reference1 Desire EVO 3D iPhone 4 iPhone 3GS iPad 2 iPod Touch 

3 - Simple animations 59 FPS 13 FPS 16 FPS 57 FPS 57 FPS 58 FPS 40 FPS 
4 - 3D animations 58 FPS 12 FPS 19 FPS 57 FPS 57 FPS 58 FPS 57 FPS 
5 - Textures 59 FPS 13 FPS 16 FPS 40 FPS 57 FPS 58 FPS 40 FPS 
6 - Texture filters and keyboard 59 FPS 12 FPS 18 FPS 40 FPS 57 FPS 58 FPS 40 FPS 
7 - Basic Lighting 59 FPS 12 FPS 17 FPS 57 FPS 57 FPS 58 FPS 57 FPS 
8 - Transparency and blending 59 FPS 11 FPS 16 FPS 58 FPS 57 FPS 58 FPS 58 FPS 
9 - Particles 59 FPS 8 FPS 17 FPS 39 FPS 31 FPS 60 FPS 40 FPS 
10 - Loading a map 58 FPS 11 FPS 15 FPS 57 FPS 57 FPS 58 FPS 40 FPS 
11 - Sphere and rotation 59 FPS 12 FPS 15 FPS 40 FPS 57 FPS 58 FPS 57 FPS 
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12 - Point lighting 58 FPS 11 FPS 15 FPS 40 FPS 57 FPS 58 FPS 40 FPS 
13 - Per-fragment lighting 59 FPS 10 FPS 17 FPS 36 FPS 40 FPS 58 FPS 39 FPS 
14 - Specular highlights and JSON model 58 FPS 9 FPS 15 FPS 35 FPS 39 FPS 58 FPS 36 FPS 

15 - Specular maps 58 FPS 8 FPS 16 FPS 22 FPS 2 24 FPS 2 58 FPS 2 22 FPS 2 
16 - Render to texture 58 FPS 6 FPS 16 FPS 22 FPS 22 FPS 58 FPS 22 FPS 

1 Reference Computer: MacBook 2010, Mac OS X 10.7.3, 2.26 GHz Intel Core 2 Duo, 4 GB DDR3 RAM 
2 Rendering results aren’t looking as expected 

 

The lessons from learningWebGL.com have been used as 

a benchmark to test the performance on different mobile 

devices. For example, Fig. 5 shows a screenshot of lesson 9. 

The results are shown in Table 3. 
 

 
Fig. 5. “Lesson 9” WebGL demo. 

 

Opera has advertised the WebGL capabilities beginning 

with Opera Mobile 12, but the performance of WebGL 

content on this browser is much worse than in Firefox. 

Although all lessons from table III are rendered correctly, the 

frame rate was always below 10 FPS, compared with 16 FPS 

in average in Firefox on the HTC EVO 3D. On the other hand, 

the SpiritBox is not rendered correctly (only a blue square is 

visible) and the room.html doesn’t load at all. 

The most obvious result is the big performance difference 

between the iOS and Android devices. Even the HTC EVO 

3D, launched in 2011, could not deliver results comparable to 

the iPhone 3GS launched in 2009. On the Android devices, 

the Room.html was unusable to interact with fluidly, whereas 

it was rendered smoothly on all iOS devices. 

While Android devices have always had lower frame rates 

than iOS devices, they could render all lessons from Table 3 

correctly. iOS-based devices, on the other hand, were not 

able to render lesson 15 correctly. Screenshots to compare the 

rendering of lesson 15 on Android and iOS are shown in Fig. 

6 and Fig. 7, respectively. 

Another interesting result is that the iPhone 3GS delivers 

significantly higher frame rates in some tests compared to the 

iPhone 4. An explanation could be that the iPhone 4’s display 

resolution is significantly higher, thus requiring the 

calculation of four times more pixels. 

Comparing the performance of our reference machine, the 

2010 MacBook, with iOS-based mobile devices indicates 

that today’s mobile devices are powerful enough to render 

3D applications with an acceptable frame rate. 
 

 
Fig. 6. “Lesson 15” WebGL demo on Android. 

 

 
Fig. 7. “Lesson 15” WebGL demo on iOS. 

 

C. Limitations 

Although most of the tests I have performed were 

successful, I encountered a few limitations during our test 

phase. I am listing them further down the text. 

Device Sensors Access: WebRTC, an upcoming standard 

for access to the device’s video camera and microphone, is 
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currently only available on Opera Mobile 12, a browser 

currently not supported on iOS. I could not implement a 

WebRTC application with Android devices that lacked 

performance. 

During our evaluation and testing on other devices, I 

realized that the accelerometer wasn’t working as intended 

on Android using an HTC EVO 3D running the Room.html in 

Firefox. The room’s floor is shown as expected when the 

device is flat on a surface. Holding it vertically in your hand, 

however, still shows the floor. The accelerometer is 

undoubtedly working, but it seems to be much less sensitive 

than the one on iOS-based devices. Therefore, the feature to 

look up and down with the accelerometer is deactivated when 

a non-iOS device is detected. 

Key and Mouse Events: As expected, key and mouse 

events cannot be triggered in WebGL on mobile devices with 

touch screens, but replacing them with touch events is a 

working solution for this problem. 

Video texture: Touching the blackboard should start 

playing a movie on it. It worked perfectly on desktop 

computers using Windows, Mac, and Linux as operating 

systems and Chrome, Safari, and Firefox as browsers. 

However, I could not get the video texture to work correctly 

on mobile devices. 

Namely, neither audio nor video was reproduced on the 

mobile devices after touching the blackboard, except 

working audio on the iPad 2. Using an iPhone 4, a significant 

frame rate decrease could be observed after tapping the 

blackboard. After touching the blackboard, the frame rate 

dropped from 47 FPS to just 20 FPS. While measuring the 

CPU activity, after wiping the blackboard, the Foreground 

App Activity dropped from about 60% to 30% while the 

Audio Processing increased from 0% to about 10%, with an 

overall CPU activity of 100% on an iPhone 4. 

The video played ideally using just the HTML5 video tag 

on iOS using Safari or WebGLViewer; hence, a wrong video 

encoding could be eliminated as a source of the problem. 

Since the video texture works on all browsers and all desktop 

operating systems, and the video’s audio is even played on 

the iPad 2, I assume our implementation is correct. 

Therefore, video texture not working for us is a limitation of 

WebGL on mobile devices. 

V. CONCLUSION 

In this paper, I investigated the feasibility of augmented 

reality (AR), specifically 3D augmentation, on mobile 

devices using web browsers. Through developing an 

application and rigorous testing, I aimed to assess the 

technical capabilities and limitations of implementing AR 

experiences in a browserbased environment. 

The technical possibilities for accessing the device’s 

sensors for interacting with the user’s context, crucial to 

developing AR applications, are now given, even in an early 

phase. One of the most common properties associated with 

augmented reality is camera integration, and although it is 

technically possible to realize this using pre-alpha software, 

due to the limitations of the mobile devices I tested (as 

mentioned in section IV-C1), I were not able to push 

augmented reality in a browser using a camera. Other 

requirements for augmented reality applications on mobile 

devices were successfully shown. 

As I can see from the results, there was a vast difference 

between iOS and Android about performance, but both 

seemed to handle the task, though with certain limitations, as 

discussed previously. The application renders on all our 

devices, making essential user interaction possible. 

Compared to a reference machine, I saw that the rendering 

cycle expressed through the FPS is a bit lower on mobile 

devices but still good (except Apple’s iPad 2, whose frame 

rate is comparable to the one on our reference machine). 

Furthermore, I observed that battery consumption is 

relatively high while running WebGL applications compared 

to ordinary web surfing. 

Our results, presented in this paper, indicate that WebGL 

in its current state, can be used on mobile devices to augment 

3D objects to a user’s view. The standards for AR 

applications in web browsers are not yet completed, and 

implementations are not stable yet, making widespread use 

nearly impossible. However, if Moore’s law [27] applies to 

the progression of mobile devices as well as web standards, 

and mobile software continues to follow its current pace, I 

can be sure that augmented applications in web browsers 

could be ubiquitous on mobile devices in the near future. 

INSTALLING WEBGLVIEWER 

To install the WebGLViewer using the provided source 

code on an iOS device, a membership in Apple’s iOS 

Developer Program is needed. However, compiling and 

running the WebGLViewer in the iOS Simulator is possible 

using XCode. As an alternative, a registered developer can 

provide you with a binary, which is built for your specific 

device. I used testflight.com to distribute such binaries. To 

request a binary, you must create an account on 

http://bit.ly/zWoZQJ and register your device as soon as you 

are accepted. 
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