
Augmented Reality on Mobile Browsers with WebGL

Vinamra Singh

School of Computing and Information, University of Pittsburgh, Pittsburgh, United States

Abstract—This research investigates the potential of

Augmented Reality (AR) applications on mobile devices solely

using web browsers, focusing on 3D augmentation via WebGL.

It addresses the feasibility of AR in browsers, explores the

integration of device sensors, and assesses the performance of

WebGL on various mobile platforms. Despite technical

challenges, such as camera integration limitations, the study

demonstrates the successful implementation of other AR

prerequisites on mobile devices. Results reveal significant

performance variations between iOS and Android devices, with

rendering capabilities generally meeting the task requirements,

albeit with some limitations. Battery consumption during

WebGL usage is relatively high compared to standard web

browsing. Although AR standards in web browsers are not yet

mature, and implementations remain unstable, this research

suggests that WebGL, in its current state, can augment 3D

objects within a user’s mobile view. While widespread adoption

may not be immediate, ongoing advancements in both mobile

hardware and web standards may pave the way for ubiquitous

AR applications in mobile web browsers in the near future.

Keywords—WebGL, augmented reality, JavaScript, mobile

devices, benchmarks

I. INTRODUCTION

The evolution of technology continually reshapes the way

individuals interact with their surroundings. Initially, the web

primarily served static content, but it has since evolved into a

platform where dynamic and interactive experiences abound.

As smartphones became ubiquitous, native applications

dominated the landscape. However, there is a notable shift

towards browser-based applications, spurred by the

increasing influence of mobile web browsers. This trend is

expected to accelerate, with web applications projected to

eventually supplant traditional binary software [1].

Web applications are increasingly blurring the lines

between native and browser-based experiences. Services like

Google Docs for word processing and 280 Slides for

presentations offer functionalities previously exclusive to

native applications, thus narrowing the gap between them [2].

The development of HTML5 and WebGL has further

expanded browser capabilities, particularly in supporting

three-dimensional graphics natively. This native integration

of 3D functionality further enhances web applications,

paving the way for richer user experiences.

Augmented Reality (AR) stands at the forefront of

merging digital information with the physical world,

enhancing users’ views with additional context and data [3].

Its potential applications span diverse fields, including

healthcare [4], education [5, 6], and tourism [7]. The

popularity of AR apps has surged in recent years, thanks in

part to the widespread adoption of smartphones. Leveraging

AR, particularly through browserbased interfaces, holds

promise in revolutionizing how information is accessed and

presented, potentially transforming the user experience itself

[8–10].

The rise of smartphones is growing at a fast and still

accelerating pace and enabled displaying information in a

new way in a truly mobile context to many people.

Smartphones have been pivotal in reshaping how information

is consumed, offering users a truly mobile web experience

with the power of “real browsers.” Their exponential growth,

driven by advancements in technology, has led to

unparalleled accessibility to information. However,

disparities exist between desktop and mobile browsing

experiences, influenced by screen size, processing power,

and input methods.

This paper analyzes the status quo and potentials of

WebGL on mobile devices and answers the following

questions:

1) Are Augmented Reality applications possible on mobile

devices using only the browser?

2) Is 3D-augmentation of these applications possible using

WebGL?

3) How fast is WebGL on mobile devices?

The paper is structured as follows: Section II gives

background information on the relevant topics of augmented

reality and WebGL with mobile devices and their evaluation

criteria; Section III gives implementation details of the

WebGL environment used to capture the status quo; Section

IV presents the evaluation as well as limitations to this study;

and Section V gives a summary of the results and presents

future research opportunities.

II. BACKGROUND

In this chapter, we delve into key terms and technologies

essential for addressing the research questions, namely

WebGL and Augmented Reality (AR), and their respective

evaluation criteria.

A. WebGL

WebGL represents a significant advancement in web

technology by enabling the rendering of 3D graphics directly

within web browsers. It is a cross-browser and cross-platform

compatible software library and API, extending JavaScript’s

capabilities to generate websites with hardware-accelerated

3D content. Launched in 2011, WebGL leverages the

standard HTML5 <canvas> element and exposes its

functionality to developers through the Document Object

Model (DOM) interfaces.

Design and Functionality: At its core, WebGL utilizes

OpenGL ES 2.0 as its foundation and employs its shading

language, GLSL, for graphics rendering. While it shares

semantics with desktop OpenGL 2.0 to facilitate code

portability, some distinctions exist, such as requirements for

power-of-two textures and limited support for 3D textures.

Email: vinamrasingh19@gmail.com (V.S.)

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

67doi: 10.18178/ijfcc.2024.13.4.620

Manuscript received February 17, 2024; revised March 21, 2024; accepted May 1, 2024; published November 13, 2024

The integration of WebGL into web content allows

seamless combination with other web elements, facilitating

layering of 3D content with existing web content using

languages like JavaScript. This integration enables dynamic

and interactive web experiences, empowering developers to

create immersive environments where 3D graphics interact

with traditional web elements.

Desktop and Mobile WebGL: WebGL enjoys widespread

support on desktop browsers, with major players like Firefox,

Safari, Chrome, and Opera incorporating compatibility.

However, the landscape differs on mobile devices, where

support remains limited. While browsers like Firefox and

Opera Mobile 12 offer WebGL compatibility on Android

platforms, Google Chrome for Android is still in beta and

lacks WebGL support.

Apple introduced WebGL capabilities to iOS with iOS 4.2,

primarily for use within Apple’s iAd platform. However,

enabling WebGL in the Safari browser requires non-public

APIs and is not feasible for end-user applications due to

Apple’s App Store Review Guidelines. With a hack

discovered by Nathan de Vries, WebGL can also be enabled

in a UIWebView. Consequently, true WebGL support on iOS

devices remains elusive, hindering the proliferation of

WebGL-based applications in the mobile ecosystem.

As the desktop version of Internet Explorer does not

support WebGL [2] and Microsoft considers WebGL

“harmful,” I probably won’t see WebGL support on

Windows Phone 7 in the near future.

Also, RIM’s tablet, the BlackBerry PlayBook, supports

WebGL in web applications.

Security Issues: Although the support of WebGL seems to

be widespread, there are also critical voices, with Microsoft

probably being their most prominent spokesperson.

Microsoft believes “that WebGL will likely become an

ongoing source of hard-to-fix vulnerabilities” because

WebGL allows direct access to the computer’s hardware

from the web. WebGL security, therefore, relies on graphic

card drivers and other third-party components to mitigate the

risks.

Context, an information security consultancy

recommending disabling WebGL in the browser, published

and demonstrated two possible attack scenarios initiated by a

malicious website. They were not only able to perform a

successful Denial of Service attack, which led to the crashing

of operating systems and freezes of desktops, but they were

also able to gather confidential information by stealing the

content of the graphic memory with which they were able to

reconstruct screenshots of the desktop. Context states these

issues are inherent to the WebGL specification and can’t be

resolved without significant changes in WebGL’s

architecture. Although there are countermeasures in

development that could resolve these issues, at the moment,

WebGL allows malicious programs access to the graphics

hardware and software.

Status Quo and Evaluation criteria: Assessing the

prevalence of WebGL support presents challenges, with

unofficial trackers like WebGLStats offering insights into

adoption rates. Despite approximately 51.1% of desktop

users accessing WebGL-enabled browsers, mobile adoption

remains low at only 2.3%.

Evaluating WebGL implementations on mobile devices

involves various technical and performance assessments,

ranging from compatibility with official WebGL desktop

browser examples to performance tests and conformance

tests [2]. Security concerns also factor into evaluations,

focusing on potential vulnerabilities and mitigation

strategies.

B. Augmented Reality

Augmented Reality (AR) seamlessly integrates digital

information into the user’s view of the physical world,

bridging digital and physical environments. This technology

holds vast potential across diverse application areas, ranging

from healthcare and education to tourism and entertainment

[3].

New technologies have always influenced human

information behavior and will again with possible scenarios

because of AR. For example, it may be possible to provide

recommendation agents, which have been shown to reduce a

consumer’s information overload and search complexity [11],

directly in-store. Acquiring product information in-store has

often been linked to consumer decision-making and

information processing [11–13]. Besides cognitive factors,

the user’s affection may be impacted as well; social aspects

of mobile image recognition - attaching digital storytelling to

physical products - have been shown to have an impact on a

user’s affection [14], e.g., trust, engage consumers to

communicate and receive information about products [12].

In a survey about the expectations and usage of augmented

reality applications [3], people expected them to enhance

their lives by providing them with up-to-date information

about and proactive functions to act upon context-relevant

data that was not readily available before. Furthermore, users

expected them to offer “stimulating and pleasant experiences,

such as playfulness, inspiration, liveliness, captivation, and

surprise.” Applications dealing with practical problems were

regarded higher than applications for pure entertainment.

The main negative aspects were information flood, user’s

loss of autonomy, and a possible switch from real to virtual

experiences and information [3].

Augmented reality is occasionally used interchangeably

with virtual reality because of their similarities, but they have

an essential key difference. According to Yi Wu, a senior

research scientist in interaction and experience research at

Intel Labs, the difference is that augmented reality never

substitutes your view of the actual physical world; it merely

adds virtual information on top of the natural world. Virtual

reality, however, has no natural physical objects in view.

History: Although augmented reality has existed for about

half a century, the term was not coined before 1990 by a

researcher at aircraft manufacturer Boeing, Thomas Caudell

[15]. The definition has been slightly modified over time, but

Caudell applied the term to “a head-mounted digital display

that guided workers through assembling electrical wires in

aircraft.”

One of the first devices using augmented reality elements

was a machine called Sensorama, built by Morton Helig. This

machine was designed to give the users a cinematic

experience that is more than just visual. The demo film was a

cycle ride through Brooklyn where you were supposed to get

the feeling you were the one on the ride (this was done by

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

68

vibrating one’s seat, blowing wind in one’s face, etc). These

extra effects might be considered elements of augmented

reality as, in the sense of the word, it augmented the reality of

the experience.

Many current AR software, such as apps showing

points-ofinterest (POI) or product-related information, are

considered representatives of augmented reality applications

by users. A lot of these AR applications, however, are

technically “pseudoAR”, as “not all applications align

information properly on top of the view of the real world, or

the augmented information is not truly 3D” [15].

In April 2012, Google presented its vision of a future

technology called “Project Glass.” This futuristic vision

includes an augmented reality device in the form of glasses,

which should cover the functionality of current smartphones

(video conferencing, chatting, navigation, messaging,

scheduling meetings, etc.). However, constant wearing

makes it possible to augment a user’s vision continuously.

Despite the positive first impressions, some critics have

already emerged, targeting mainly the possibility of

excessive advertising and generally overwhelming users with

information, distraction, and concerns regarding the users’

privacy.

Categories: AR applications can be categorized into two

main classes: AR browsers and image recognition-based

applications AR browsers and image recognition-based AR

applications. AR browsers overlay digital information onto

the user’s view of the physical world, often sourced from web

content. In contrast, image recognition-based applications

trigger augmented information based on visual cues, such as

QR codes or object recognition [15].

AR browsers are applications that augment the real world

seen through the device’s camera and other sensors - with

digital information, usually from web sources, such as

graphics, links, and other objects, similar to mashups [16].

Examples include touristic applications showing POI in the

direction the device is oriented at, e.g., Layar (layar.com).

This type of AR is usually called a “magic lens” in the

literature [15].

Image recognition-based AR applications provide

augmented information to everyday objects in the user’s view

based on visual recognition, which acts as a trigger for the

digital information that is then presented, e.g., showing

product information like prices and reviews or search results.

Visual recognition can happen by identifying markers like

QR codes or objects.

Given the two classes, the technical requirements for AR

applications that can be deduced are access to the device’s

video camera, image registration, positioning, orientation,

and 2D and/or 3D image overlay.

Native apps and web applications: So far, augmented

reality applications are almost exclusively native apps, i.e.,

applications written in the system’s native programming

language (e.g., Objective-C for iOS or Java for Android).

The main reason is that up to recently, the ordinary web

browser couldn’t access necessary system resources, such as

the integrated video camera or the geolocation.

Lately, projects that target resolving this issue have begun

to form; these are still in a very early development phase. For

example, WebRTC (WebRTC) is a new standard that enables

real-time communication (RTC), i.e., the utilization of the

video camera and microphone using Javascript and HTML5

for a range of applications such as video chat or voice calls.

WebRTC is still in the pre-alpha phase, and so far, only one

smartphone web browser supports this technology (Opera

12).

Augmented reality web apps are beginning to emerge, e.g.,

Argon.

WebGL usage: Real augmented reality applications using

WebGL are rare, but tech demos begin to appear, given that

access to a device’s video camera is now possible, e.g.,

HTML5WebRTC.

Still, in the beta phase, WebGL Earth webGLEarth is

opensource software for visualizing maps similar to Google

Earth. It relies purely on HTML5 canvas, WebGL, and

JavaScript, which most modern browsers support. Nokia has

also created a WebGL-based software for visualizing maps

nokiaMap. As an extra feature, they have enabled

stereoscopic 3D, if you have 3D glasses, allows you to view

cities in 3D.

WebGL seems to spark the interest of game developers,

too. There are now games with the aesthetic value seen on

many games distributed as a native application on mobile

devices. Seeing this trend, Opera Software wants to

encourage new developers to this new paradigm.

Evaluation criteria: For AR evolution and adoption,

user-oriented issues are critical [3]. AR research, however,

“still lacks evaluation methods” [17], and metrics are still

very abstract [15]. Obstacles to evaluating the usability of

mixed reality systems are manifold and include “common

testing platforms and benchmarks” [18]. Many researchers

evaluate only early tech demos ([19]); some evaluations

oriented towards user experience based on HCI research exist

[18], and include subjective ratings, e.g., user surveys with

open questions [10].

Many researchers evaluate only early tech demos ([19]);

some evaluations oriented towards user experience based on

HCI research exist [18], and include subjective ratings, e.g.,

user surveys with open questions.

C. UI and UX Research

User experience (UX) can be defined as ‘a person’s

perceptions and responses that result from the use or

anticipated use of a product, system or service” [20]. In the

literature, instrumental and non-instrumental aspects are

essential, i.e., pragmatic elements like utility and subjective

elements like pleasure and aesthetics [21].

Research on human-computer interaction (HCI) has been

traditionally rooted in cognitive psychology, engineering,

and computer sciences. Besides these fields, research on

emotional factors of design is growing [22], which marks a

shift from usability to user experience analysis.

Academia evaluates user experience oftentimes by looking

at the emotional state of the user [23], e.g., by letting users fill

out pen-and-paper questionnaires during the usage or by

capturing user-made video diaries [24, 25].

III. IMPLEMENTATION

Given the two classes of augmented reality applications,

tests had to be made for the following requirements: access to

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

69

the device’s video camera, image registration, positioning,

orientation, and 2D and/or 3D image overlay. Furthermore,

WebGL had to be tested as a means of 3D augmentation.

To test the different requirements, I implemented a room

where you can look around and interact with several objects,

like displaying additional information or starting a movie

sequence. Geopositioning and orientation using the device’s

sensors and image overlays are integrated.

This section is structured as follows: I first describe the

application implemented to use WebGL on iOS. Afterward, I

go into detail, elaborating on which elements and their

properties populate the room. At the end of the section, I

explain how I fetch the user’s location and how movement

and viewing are done.

A. iOS WebGLViewer

As mentioned in section II-A2, implementing WebGL

support on iOS posed significant challenges due to the

absence of official browser support. Therefore, a custom iOS

application named WebGLViewer was developed based on

the methodology and instructions provided by Nathan de

Vries. WebGLViewer consists of a UIWebView, a reload

button, and an address bar. The UIWebView was modified to

show WebGL content (compare section II-A2).

In addition to rendering WebGL content, WebGLViewer

includes functionality to monitor battery consumption during

WebGL usage. When the device is shaken while running

WebGLViewer, the application displays information about

battery usage, including the current battery level, the level

upon page loading completion, the delta between these

values, the duration of webpage loading, and the

corresponding battery consumption rate per minute. Notably,

due to iOS restrictions, battery level updates occur in 5%

increments, limiting the precision of battery consumption

measurements.

The WebGLViewer application WebGLViewer serves as a

tool for viewing and evaluating WebGL content on iOS

devices, providing insights into performance and resource

utilization on mobile platforms.

B. Room

Our application, Room.html was developed to demonstrate

the capabilities and limitations of WebGL-based augmented

reality functionalities on mobile devices. The environment

simulates a room where users can interact with various

objects, including chairs, tables, a blackboard, and a rotating

cube, to explore different AR interactions and experiences.

The web application in question, the Room.html, is available

on oslo.paulsteinhilber.de/room.html.

Fig. 1 shows a screenshot of room.html running in Chrome

on a desktop computer while playing the video. Fig. 2 shows

a screenshot of room.html running in the WebGLViewer on

an iPhone.

The room environment incorporates primitive shapes and

imported 3D models created using tools like Three.js and

Blender. Basic shapes like planes and cubes form the room

structure, while more complex objects like chairs and tables

are imported from Blender. Each object is assigned specific

properties and behaviors, such as rotation, video playback,

and information display, to enable interactive experiences

within the room.

Fig. 1. Room.html with playing video in Chrome on a desktop computer.

Fig. 2. Room.html shown in the WebGLViewer on an iPhone.

The room is built using 6 planes put together to simulate a

cube. Each plane has 4 vertices, creating a single polygon.

The blackboard is also simple. It is just a single plane and a

single polygon. To make the windows and the door, I added

three additional planes with a texture, thus making the total

number of polygons 9.

Objects: WebGL objects can be built from scratch using

basic shapes or imported from 3D modeling software. For

our room, I decided to use the tools provided by Three.js, a

JavaScript 3D-library, to create the “primitives” (basic

geometric shapes such as a plane or a cube) and use Blender,

an open source 3D application, for objects of greater

complexity (such as the chairs and tables).

The blackboard is a simple plane consisting of 4 vertices,

which create a polygon together. I added a video element as a

texture for the blackboard. The user can touch it to interact

with the blackboard, which plays or pauses the video.

A single table contains 24 vertices, which creates 22

polygons. Considering that our scene contains 4 tables, this

means that the desks are responsible for 88 polygons. They

all have a grey Lambert material assigned, with the exception

of one table, which has a red basic material. This is to clearly

show that it differs from the others and is interactive. When

this table is touched, a box appears explaining where such a

table could be purchased.

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

70

A single chair consists of 56 vertices, which results in 57

polygons. I have eight chairs, so this amounts to 456

polygons. All chairs have a red Lambert material assigned, as

no chair is interactive.

The cube is natively created in Three.js and consists of 8

vertices and 6 polygons. A basic red shader has been assigned,

similar to the other interactive objects. When the cube is

touched, it starts rotating and changes its color. Another

touch stops the rotation and changes color one more time.

This gives us a total of 560 polygons in our application.

Interaction with Objects: With the Ray method/class the

Three.js library provides a simple method for interacting with

3D objects. By specifying a starting point and the direction of

the Ray, any objects caught in the ray’s path will be added to

an array. To identify these objects, I have created an

additional array holding all our “assigned” interactable

objects. The starting point will always be the camera position,

and the direction will be related to the mouse click or touch. I

am only interested in the first interacted object (or else, in a

larger project, I might be clicking on something in a separate

room). So, it is the only object I compare with our assigned

interactable objects. When I have identified the object, I

perform the corresponding function.

Textures: Textures in the implementation were imported

using THREE.ImageUtils.loadTexture(), which creates a

material based on the texture and combines it with the object.

Although compressed textures are technically possible and

are important for large applications, this technique was not

used in this tech demo.

Accessing Geolocation: To demonstrate that JavaScript

can access a mobile device’s physical position, I show a map

of its location at the bottom of the screen.

To get the device’s location, the W3C Geolocation API

was used. This API is independent of the underlying method

to get the location. The location can be obtained from, for

example, GPS or “inferred from network signals such as IP

address, RFID, WiFi and Bluetooth MAC addresses, and

GSM/CDMA cell IDs”.

Moving and Looking around in the Room: Although data

from a gyroscope is accessible with JavaScript and could be

used in a WebGL application, I have only used data provided

by a device’s accelerometer since not all of our test devices

included a gyroscope. The JavaScript onDeviceMotion-event

is used to get the accelerometer data. On iOS, “the

accelerometer measures the sum of two acceleration vectors:

gravity and user acceleration”. Using this data, I

implemented the feature to look up and down by moving the

device. It is implemented in such a way that if the device is

flat on a surface, it shows the floor of the room. When

holding the device vertically, you are looking at the

blackboard.

The room application is reacting to touch events. You can

swipe left or right to look to the left or right.

If the application is run from a browser on a stationary

machine or a laptop, it is possible to move and look around in

the room with the keyboard (W A S D and arrow keys).

IV. EVALUATION

To present the findings in our work in a structured and

readily available manner, I will devise a test matrix for our

results. Since WebGL technology is still relatively young and

its support varies from browser to browser and device, it

would be tough to devise common criteria for all the devices.

Therefore, I am approaching the problem by presenting the

results separately for each device in Device - OS - Browser

form. In that way, I can outline our observations in a much

more structured way and stress the peculiarities of WebGL

support on different devices.

Since we aim to investigate WebGL on mobile devices, I

chose one desktop computer as a reference. Which OS (Mac

OS, Windows or Linux) and particular machine (Mac or PC,

laptop or stationary) is used is not that important since all

modern computers should be powerful enough to render

WebGL graphics. The important thing is to choose a browser

that fully supports WebGL. I find that Google Chrome is a

good choice for that. All the measurements and observations

will be taken running the Room.html, as described in Section

III-B, developed for the purpose of this paper.

The parameters I am observing are, for the most part,

technical. As part of our application, I am measuring Frames

Per Second (FPS), which gives us the number of times the

browser refreshes the screen per second. In addition to the

FPS, I am also considering parameters like CPU usage and

battery consumption, but as noted before, the different

parameters will be mentioned when applicable.

Furthermore, in a similar approach to Golubovic et al. [2],

the common functionality of WebGL is tested by executing

the lessons of the WebGL tutorial. These lessons are based on

a popular OpenGL tutorial (NeHe, nehe.gamedev.net/) and

cover most of the standard functions, and should be enough

to put our target devices to the test. The results of these tests

are presented in table III.

In addition to technical parameters, another exciting area

of evaluation of WebGL is user experience. But since the

most valid and exhaustive results in that field come from a

large user survey [3], I will not do any work in that area.

A. Energy Consumption

The WebGLViewer application for iOS, as described in

Section III-A, was used to measure battery usage. The device

was fully charged. The accordant content was opened in the

WebGLViewer application. The device was then unplugged,

and the content reloaded. The time until the battery level

decreased to 90% as well and the battery consumption per

minute was measured and calculated by the WebGLViewer.

Using Apple Instruments, a part of Apple’s Developer Tools,

I measured the CPU Activity (Total Activity, Foreground App

Activity and Graphics) as well as the relative Energy Usage

on a scale from 0 to 20. All tests have been performed on an

Apple iPhone 4 with iOS 5.1 installed using the

WebGLViewer. I have compared the battery usage and CPU

activity of the implemented Room.html, the Quake 3 WebGL

Demo by Brandon Jones (as shown in Fig. 3) and google.com

as reference. The results are shown in Table 1.

Comparing the two WebGL applications to a regular

website like google.com shows a huge difference in CPU

activity. The overall CPU activity is below 10%, with a value

below 1% for Foreground App Activity as well as Graphics

Activity, while using google.com. In contrast, the overall

CPU activity is over 70%, with about 60% for Foreground

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

71

App Activity and up to 25% for Graphics Activity, while using a WebGL application.

Table 1. Battery consumption and CPU activity of different WebGL applications

Test Case
Battery and Energy Consumption CPU Activity

Time till 90 % Battery Usage Relative Energy Usage Total Foreground App Graphics

room.html 36.03 min 0.278 min/% 17 100 % 64 % 20 %

Quake 3 34.67 min 0.289 min/% 16 70 % 60 % 8 %

google.com 78.93 min 0.127 min/% 11 6 % 0.2 % 0.5 %

If I look at the battery consumption, there is also a

significant difference. The battery drains twice as fast while

using a WebGL-enabled website compared to google.com.

The difference regarding the Relative Energy Usage is not as

big; however, I don’t know how Apple calculates this value.

B. Frames Per Second

To test the performance of WebGL on different platforms,

I have measured and compared frames per second (FPS) for

different applications. FPS describes the frequency at which

images are generated. The values below 10-12 FPS are

recognizable by the human eye as separate images; for higher

FPS, single images cannot be recognized, and they blend,

creating motion [26]. Therefore, a higher number of FPS

creates a more fluid animation and is considered better. Since

the refresh rate of modern flat screens is 60 FPS, there is

usually no need to render with more than 60 FPS.

In Table 2, I compared the FPS of the implemented

Room.html, the Quake 3 WebGL Demo (as shown in Fig. 3),

and an example of a spinning cube, the SpiritBox (as shown

in Fig. 4), on different mobile devices as well as on one

laptop computer (2010 MacBook) and stationary computer

(2006 MacPro) as reference.

Table 2. Frames Per Second (FPS) of different WebGL applications on different devices

Device Operating System Browser Launched room.html Quake 3 SpiritBox

Apple iPad 2 iOS 5.1 WebGLViewer 2011 61 FPS 61 FPS 60 FPS

HTC EVO 3D Android 2.3.4 Firefox 2011 8 FPS 12 FPS N/A 1
Apple iPhone 4 iOS 5.1 WebGLViewer 2010 40 FPS 29 FPS 43 FPS
Apple iPod Touch (4th Gen.) iOS 5.1 WebGLViewer 2010 21 FPS 25 FPS 43 FPS
HTC Desire Android 2.2.2 Firefox 2010 2 FPS N/A 8 FPS
Apple iPhone 3GS iOS 5.1 WebGLViewer 2009 36 FPS 27 FPS 60 FPS

Reference Laptop 2 Mac OS X 10.7.3 Google Chrome 2010 34 FPS 36 FPS 50 FPS

Reference Computer 3 Mac OS X 10.7.3 Google Chrome 2006 58 FPS 59 FPS 85 FPS
1 The FPS value constantly alternates between values in the range from 10 FPS up to over 200 FPS, making it impossible to determine a realistic value.
2 Reference Laptop: MacBook 2010, Mac OS X 10.7.3, 2.26 GHz Intel Core 2 Duo, 4 GB DDR3 RAM
3 Reference Computer: MacPro 2006, Mac OS X 10.7.3, 2x 2.0 GHz Dual-Core Intel Xeon, 6 GB DDR2 RAM

Fig. 3. Quake 3 WebGL Demo shown in the WebGLViewer on an iPhone.

Fig. 4. WebGL demo SpiritBox.

Table 3. Frames per Second (FPS) using the lessons from the learning WebGL tutorial on different devices

8 Reference1 Desire EVO 3D iPhone 4 iPhone 3GS iPad 2 iPod Touch

3 - Simple animations 59 FPS 13 FPS 16 FPS 57 FPS 57 FPS 58 FPS 40 FPS
4 - 3D animations 58 FPS 12 FPS 19 FPS 57 FPS 57 FPS 58 FPS 57 FPS
5 - Textures 59 FPS 13 FPS 16 FPS 40 FPS 57 FPS 58 FPS 40 FPS
6 - Texture filters and keyboard 59 FPS 12 FPS 18 FPS 40 FPS 57 FPS 58 FPS 40 FPS
7 - Basic Lighting 59 FPS 12 FPS 17 FPS 57 FPS 57 FPS 58 FPS 57 FPS
8 - Transparency and blending 59 FPS 11 FPS 16 FPS 58 FPS 57 FPS 58 FPS 58 FPS
9 - Particles 59 FPS 8 FPS 17 FPS 39 FPS 31 FPS 60 FPS 40 FPS
10 - Loading a map 58 FPS 11 FPS 15 FPS 57 FPS 57 FPS 58 FPS 40 FPS
11 - Sphere and rotation 59 FPS 12 FPS 15 FPS 40 FPS 57 FPS 58 FPS 57 FPS

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

72

12 - Point lighting 58 FPS 11 FPS 15 FPS 40 FPS 57 FPS 58 FPS 40 FPS
13 - Per-fragment lighting 59 FPS 10 FPS 17 FPS 36 FPS 40 FPS 58 FPS 39 FPS
14 - Specular highlights and JSON model 58 FPS 9 FPS 15 FPS 35 FPS 39 FPS 58 FPS 36 FPS

15 - Specular maps 58 FPS 8 FPS 16 FPS 22 FPS 2 24 FPS 2 58 FPS 2 22 FPS 2
16 - Render to texture 58 FPS 6 FPS 16 FPS 22 FPS 22 FPS 58 FPS 22 FPS

1 Reference Computer: MacBook 2010, Mac OS X 10.7.3, 2.26 GHz Intel Core 2 Duo, 4 GB DDR3 RAM
2 Rendering results aren’t looking as expected

The lessons from learningWebGL.com have been used as

a benchmark to test the performance on different mobile

devices. For example, Fig. 5 shows a screenshot of lesson 9.

The results are shown in Table 3.

Fig. 5. “Lesson 9” WebGL demo.

Opera has advertised the WebGL capabilities beginning

with Opera Mobile 12, but the performance of WebGL

content on this browser is much worse than in Firefox.

Although all lessons from table III are rendered correctly, the

frame rate was always below 10 FPS, compared with 16 FPS

in average in Firefox on the HTC EVO 3D. On the other hand,

the SpiritBox is not rendered correctly (only a blue square is

visible) and the room.html doesn’t load at all.

The most obvious result is the big performance difference

between the iOS and Android devices. Even the HTC EVO

3D, launched in 2011, could not deliver results comparable to

the iPhone 3GS launched in 2009. On the Android devices,

the Room.html was unusable to interact with fluidly, whereas

it was rendered smoothly on all iOS devices.

While Android devices have always had lower frame rates

than iOS devices, they could render all lessons from Table 3

correctly. iOS-based devices, on the other hand, were not

able to render lesson 15 correctly. Screenshots to compare the

rendering of lesson 15 on Android and iOS are shown in Fig.

6 and Fig. 7, respectively.

Another interesting result is that the iPhone 3GS delivers

significantly higher frame rates in some tests compared to the

iPhone 4. An explanation could be that the iPhone 4’s display

resolution is significantly higher, thus requiring the

calculation of four times more pixels.

Comparing the performance of our reference machine, the

2010 MacBook, with iOS-based mobile devices indicates

that today’s mobile devices are powerful enough to render

3D applications with an acceptable frame rate.

Fig. 6. “Lesson 15” WebGL demo on Android.

Fig. 7. “Lesson 15” WebGL demo on iOS.

C. Limitations

Although most of the tests I have performed were

successful, I encountered a few limitations during our test

phase. I am listing them further down the text.

Device Sensors Access: WebRTC, an upcoming standard

for access to the device’s video camera and microphone, is

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

73

currently only available on Opera Mobile 12, a browser

currently not supported on iOS. I could not implement a

WebRTC application with Android devices that lacked

performance.

During our evaluation and testing on other devices, I

realized that the accelerometer wasn’t working as intended

on Android using an HTC EVO 3D running the Room.html in

Firefox. The room’s floor is shown as expected when the

device is flat on a surface. Holding it vertically in your hand,

however, still shows the floor. The accelerometer is

undoubtedly working, but it seems to be much less sensitive

than the one on iOS-based devices. Therefore, the feature to

look up and down with the accelerometer is deactivated when

a non-iOS device is detected.

Key and Mouse Events: As expected, key and mouse

events cannot be triggered in WebGL on mobile devices with

touch screens, but replacing them with touch events is a

working solution for this problem.

Video texture: Touching the blackboard should start

playing a movie on it. It worked perfectly on desktop

computers using Windows, Mac, and Linux as operating

systems and Chrome, Safari, and Firefox as browsers.

However, I could not get the video texture to work correctly

on mobile devices.

Namely, neither audio nor video was reproduced on the

mobile devices after touching the blackboard, except

working audio on the iPad 2. Using an iPhone 4, a significant

frame rate decrease could be observed after tapping the

blackboard. After touching the blackboard, the frame rate

dropped from 47 FPS to just 20 FPS. While measuring the

CPU activity, after wiping the blackboard, the Foreground

App Activity dropped from about 60% to 30% while the

Audio Processing increased from 0% to about 10%, with an

overall CPU activity of 100% on an iPhone 4.

The video played ideally using just the HTML5 video tag

on iOS using Safari or WebGLViewer; hence, a wrong video

encoding could be eliminated as a source of the problem.

Since the video texture works on all browsers and all desktop

operating systems, and the video’s audio is even played on

the iPad 2, I assume our implementation is correct.

Therefore, video texture not working for us is a limitation of

WebGL on mobile devices.

V. CONCLUSION

In this paper, I investigated the feasibility of augmented

reality (AR), specifically 3D augmentation, on mobile

devices using web browsers. Through developing an

application and rigorous testing, I aimed to assess the

technical capabilities and limitations of implementing AR

experiences in a browserbased environment.

The technical possibilities for accessing the device’s

sensors for interacting with the user’s context, crucial to

developing AR applications, are now given, even in an early

phase. One of the most common properties associated with

augmented reality is camera integration, and although it is

technically possible to realize this using pre-alpha software,

due to the limitations of the mobile devices I tested (as

mentioned in section IV-C1), I were not able to push

augmented reality in a browser using a camera. Other

requirements for augmented reality applications on mobile

devices were successfully shown.

As I can see from the results, there was a vast difference

between iOS and Android about performance, but both

seemed to handle the task, though with certain limitations, as

discussed previously. The application renders on all our

devices, making essential user interaction possible.

Compared to a reference machine, I saw that the rendering

cycle expressed through the FPS is a bit lower on mobile

devices but still good (except Apple’s iPad 2, whose frame

rate is comparable to the one on our reference machine).

Furthermore, I observed that battery consumption is

relatively high while running WebGL applications compared

to ordinary web surfing.

Our results, presented in this paper, indicate that WebGL

in its current state, can be used on mobile devices to augment

3D objects to a user’s view. The standards for AR

applications in web browsers are not yet completed, and

implementations are not stable yet, making widespread use

nearly impossible. However, if Moore’s law [27] applies to

the progression of mobile devices as well as web standards,

and mobile software continues to follow its current pace, I

can be sure that augmented applications in web browsers

could be ubiquitous on mobile devices in the near future.

INSTALLING WEBGLVIEWER

To install the WebGLViewer using the provided source

code on an iOS device, a membership in Apple’s iOS

Developer Program is needed. However, compiling and

running the WebGLViewer in the iOS Simulator is possible

using XCode. As an alternative, a registered developer can

provide you with a binary, which is built for your specific

device. I used testflight.com to distribute such binaries. To

request a binary, you must create an account on

http://bit.ly/zWoZQJ and register your device as soon as you

are accepted.

CONFLICT OF INTEREST

The author declares no conflict of interest

REFERENCES

[1] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen, “The

death of binary software: End user software moves to the web,” in Proc.

2011 Ninth International Conference on Creating, Connecting and

Collaborating through Computing, 2011, pp. 17–23.

[2] D. Golubovic, G. Miljkovic, S. Miucin, Z. Kaprocki, and V.

Velisavljev, “Webgl implemenation in webkit based web browser on

android platform,” in Proc. Telecommunications Forum (TELFOR),

2011, pp. 1139–1142.

[3] T. Olsson and K. Va än ̈ anen-Vainio-Mattila, “Expected user

experience ̈ with mobile augmented reality services. workshop of

mobile augmented reality,” MobileHCI 2011, 2011.

[4] W. L. D. Lui, D. Browne, L. Kleeman, T. Drummond, and W. H. Li,

“Transformative reality: Augmented reality for visual prostheses,” in

Proc. 10th IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), 2011.

[5] F. Mannuß, J. Rubel, C. Wagner, F. Bingel, and A. Hinkenjann,

“Augmenting magnet field lines for school experiments,” in Proc. 10th

IEEE International Symposium on Mixed and Augmented Reality

(ISMAR), 2011.

[6] G. Liestol, “Learning through situated simulations: Exploring mobile

augumented reality,” (ECAR Research Bulletin 1, 2011) Boulder, CO:

EDUCAUSE Center for Applied Research, 2011, pp. 1–14.

[7] A. Mulloni, H. Seichter, and D. Schmalstieg, “User experiences with

augmented reality aided navigation on phones,” in Proc. 10th IEEE

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

74

http://bit.ly/zWoZQJ

International Symposium on Mixed and Augmented Reality (ISMAR),

2011.

[8] T. Hollerer and S. Feiner, “Mobile augmented reality,” in

Telegeoinformatics: Location-Based Computing and Services, Taylor

and Francis Books Ltd, 2004.

[9] P. Wellner, W. Mackay, and R. Gold, “Back to the real world,”

Communications of the ACM, vol. 36, no. 7, pp. 24–26, 1993.

[10] X. Qiao, R. Pei, S. Dustdar, L. Liu, H. Ma, and C. Junliang, “Web ar: A

promising future for mobile augmented reality—state of the art,

challenges, and insights,” in Proc. the IEEE, vol. 107, pp. 1–16, 02

2019.

[11] T. Kowatch and W. Maass, “In-store consumer behavior: how mobile

recommendation agents influence usage intentions, product purchases,

and store preferences,” Computers in Human Behavior, vol. 26, no. 4,

pp. 697–704, July 2010.

[12] S. Karpischek and F. Michahelles, “my2cents—digitizing consumer

opinions and comments about retail products,” in Proc. Internet of

Things (IOT), 2010.

[13] B. Xiao and I. Benbasat, “E-commerce product recommendation

engines: use, characteristics, and impact,” Management of Information

Systems Quarterly, vol. 31, no. 1, 2007.

[14] R. Barthel, A. Hudson-Smith, M. Jode, and B. Blundell, “Tales of

things. the internet of ’old’ things: collecting stories of objects, places

and spaces,” in Proc. the Urban Internet of Things, 2010.

[15] T. Olsson and M. Salo, “Online user survey on current mobile

augmented reality applications,” in Proc. 10th IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), October 2011,

pp. 75–84.

[16] D. Schmalstieg, T. Langlotz, and M. Billinghurst, “Augmented reality

2.0,” Virtual Realities, Springer, Vienna, 2011.

[17] M. G. et al., “Experience with an ar evaluation test bed: Presence,

performance, and physiological measurement,” ISMAR 2010, 2010, pp.

127–136.

[18] C. Bach and D. L. Scapin, “Obstacles and perspectives for evaluating

mixed reality systems usability,” in Proc. the IUI-CADUI Workshop on

Exploring the Design and Engineering of Mixed Reality Systems

(MIXER), 2004.

[19] A. Dunster, R. Grasset, and M. Billinghurst, “A survey of evaluation¨

techniques used in augmented reality studies,” in Proc. ACM

SIGGRAPH 2008, 2008.

[20] I. organization for standardization, “Iso fdis 9241-2010:2009.

ergonomics of human system interaction—part 210: Human-centred

design for interactive systems (formerly known as 13407).”

[21] M. Hassenzahl and N. Tractinsky, “User experience—a research

agenda,” Behaviour and Information Technology, vol. 25, no. 2, pp.

91–97, 2006.

[22] D. A. Norman, “Emotion and design: Attractive things work better,”

Interactions, vol. 9, no. 4, 2002.

[23] V. Roto, “Web browsing on mobile phones—characteristics of user

experience,” Ph.D. dissertation, Helsinki University of Technology,

2006.

[24] M. Csikszentmihalyi and R. Larson, “Validity and reliability of the

experience-sampling method,” Journal of Nervous and Mental

Diseases, vol. 175, no. 9, pp. 526–536, September 1987.

[25] M. Isomursu et al., “Experience clip: method for¨ user participation and

evaluation of mobile concepts,” in Proc. the Eighth Conference on

Participatory design: Artful Integration: Interweaving Media,

Materials and Practices, 2004, pp. 83–92.

[26] P. Read and M.-P. Meyer, Restoration of Motion Picture Film

(Butterworth-Heinemann Series in Conservation and Museology).

Butterworth-Heinemann, 2000.

[27] R. R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum,

vol. 34, no. 6, pp. 52–59, June 1997.

Copyright © 2024 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Future Computer and Communication, Vol. 13, No. 4, 2024

75

https://creativecommons.org/licenses/by/4.0/

	IJFCC-V13N4-620-IJFCC-10099

