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Abstract—This paper presents a comprehensive video quality 

assessment that focuses on the comparison of two predominant 

video coders, H.264/AVC and MPEG-4, particularly at very low 

resolutions pertinent to web-based applications and security 

cameras. Objective quality metrics such as Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index Measure (SSIM) 

were employed to evaluate the performance of these coders. 

Through experimental analysis, it was observed that 

H.264/AVC offered superior performance over MPEG-4 in 

terms of both PSNR and SSIM values. This result underscores 

the efficiency of H.264/AVC in scenarios where high-quality 

video is essential, despite bandwidth or storage constraints. 

 
Keywords—video coding, quality metrics, standards, Peak 

Signal-to-Noise Ratio (PSNR), Similarity Index Measure 

(SSIM) 

I. INTRODUCTION 

We define video quality assessment as the study of a 

video’s visual characteristics in a specific encoding (or 

encoder implementation) in comparison with reference 

material deemed original [1]. Ideally, this original is the 

interaction with the real world, just as a human would see. In 

practice, we refer to static high-quality or camera-raw footage 

as the original. The goal is to derive quality metrics that 

measure the degradation of video quality. For higher 

deviations in quality metrics, it should be concluded the 

degradation level for the coding is also higher. The major 

reason for such quality degradation is the presence of noise 

[2]. However, this noise can be defined subjectively as the 

difference between the viewer’s perception of the depicted 

and the actual information. 

The objectives for video coding include various goals 

related to video compression and quality enhancement [3, 4]. 

Some common objectives highlighted in the sources are: 

reducing file size; reducing buffering for video streaming; 

changing video resolution or aspect ratio; changing audio 

formats or quality; converting obsolete files to modern 

formats, and making different types of videos (natural videos, 

videos with a human face, cartoons, video games, recorded 

videos of computer desktop) compatible with different 

devices [5]. These objectives aim to enhance the efficiency of 

video transmission, reduce storage requirements, and ensure 

high-quality video content across different platforms and 

devices. 

We were motivated to compare H.264/AVC, which is 

today the most commonly video coding used standard with 

previous standard MPEG-4 (less used), because H.264/AVC 

achieves higher compression ratios, allowing significantly 

smaller file sizes [6]. For example, a 30 second full HD (High 

Definition) video would require 5.2 GB without compression, 

but only 65.4 MB using H.264 compression. 

Furthermore, H.264/AVC supports HD video, enabling 

applications like Blu-ray, HD streaming on the internet, HD 

video on smart phones, and public TV broadcast in Europe. 

H.264/AVC trades off more computing power for requiring 

less bandwidth and storage space, which is a worthwhile 

trade-off for many applications [7]. One interesting advanced 

application is image processing in learning-based networks [8, 

9]. 

Last but not least, H.264/AVC exploits both spatial 

redundancy (correlation between neighboring pixels in a 

frame) and temporal redundancy (correlation between frames) 

to achieve high compression ratios [10]. 

In summary, the combination of much higher compression, 

support for HD video, hardware acceleration, and the ability 

to trade-off computing power for reduced bandwidth makes 

H.264/AVC an attractive standard for a wide range of video 

applications [11]. 

Video quality assessment is very important characteristic in 

a specific coding scenario to some reference material deemed 

the original. There are mainly two types of quality evaluation 

methods: subjective and objective [12]. Subjective methods 

are very time-consuming and complex to evaluate. Furthermore, it 

is difficult to perform an accurate scientific analysis. Therefore, 

this paper focuses on more objective metrics for quality 

assessment. When we classify the objective methods for 

evaluation that can be categorized into two types: 

Full-reference and No-reference [13]. 

Full-reference—In this approach, the sample video or 

image is compared with the reference image to assess the 

quality of the output video or image. In the case of higher 

similarity with the reference sample, it can be stated that the 

sample is likewise or similar. Among the full-reference 

approach the MSE (Mean Squared Error) is the most common 

method used for quality assessment. It evaluates the squared 

intensity difference between the ground truth and the test 

sample (distorted). 

No-reference—While in this approach there is no need for 

a reference image or ground truth, the measurement 

techniques are directly applied to the sample video or frames 

[14]. 

The degradation of quality shows artifacts like blurring, 

noise, signal distortion, etc. The quality assessment metrics 

mostly include MSE and PSNR (Peak Signal-to-Noise Ratio) 

as they are comparatively easier to compute and simple to 

implement. Hence, these two measures are the most 

commonly used in the community for video quality 

evaluation. 

This paper is organized as follows. In Section II, the main 
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video quality assessment methods are mentioned. The video 

coding approach is described briefly in Section III. Section IV 

presents some experimental results obtained using encoder 

options. Future work and conclusions are presented n Section 

V.  

II. OBJECTIVE QUALITY ASSESMENT METRICS 

In this section, we briefly explain the most common types 

of video quality assessment methods that are available and 

used today. Afterwards, we compare the assessment methods 

with our requirements. This section will help us to understand 

the advantages and disadvantages. This also aids in the 

decision on selecting a proper assessment tool. 

Peak Signal-to-Noise Ratio (PSNR) is a full-reference 

metric that requires two frames of video or images to compute 

[15]. Here, the values are interpreted as higher being the 

better result. The total PSNR is calculated on the basis of the 

geometric mean of the MSE of all frames [11]. However, it 

fails to recognize the difference in distortion of a frame to 

another. 

PSNR is the simplest method for video quality assessment, 

and its calculation is also faster than other methods. Hence, it 

is the most common method compared with other quality 

assessment methods. The signal is considered as the original 

data while the noise is considered to be the error mainly 

induced due to the degradation of video due to compression or 

distortion. If the data is of the 8-bit type, then the PSNR 

values are in the range of 30-50dB, whereas in the case of 

16-bit data, the typical range of PSNR is between 60 and 80 

dB [16]. In the case of wireless transmission of data 20-25 dB 

loss of quality is considered normal [17]. The PSNR 

mathematical formula can be expressed as [15] 
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where the peakvalue is the highest range of the image data. 

MSE is the mean squared error of the image frame. If the data are 

of the 8-bit type then the peakvalue is 255. 

Structural Similarity Index Measure (SSIM) is also a 

full-reference metric. Its value ranges are between -1 and 1 [18]. 

The value -1 means that the frames are completely different from 

each other, while 1 means that the frames are similar [19]. The 

values are interpreted as better for higher metric values, resulting 

in similar frames. Its visualization is pixel-wise unlike 

Naturalness Image Quality Evaluator (NIQE) and Video 

Multimethod Assessment Fusion (VMAF), which are block-wise 

visualization methods. 

SSIM mainly compares the three components of the images: 

luminance, contrast, and structure. The result of each 

component is compared pixel-wise and the arithmetic mean of 

the SSIM values is taken into the metric. The algorithm 

performs a window function that performs the convolution of 

the window. The SSIM mathematical formula can be 

expressed as [20] 
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The SSIM is based on the calculation of different window 

sizes. The values of x and y for a fixed window size are 

represented in the above formula, where x and y are the 

pixel sample means of (x,y).  

Furthermore, x and y denote variances of the input 

values, while xy is the covariance. C1 and C2 stabilize the 

division with a weak denominator.  

Basically, it is a model based on perception. If there is a 

change or degradation in the quality of frames then the 

structural information changes. These changes can be in the 

form of luminance and contrast. In the case of luminance, the 

parts of degradation are not clearly identifiable. On the other 

hand, for contrast the texture- based information is changed in 

the case of degradation [21]. 

III. METHODOLOGY FOR VIDEO SIGNAL METRIC 

CALCULATION 

The frame-by-frame version of the movie Bugs Bunny (Fig. 

1) will be the basis of our measurements, but more on that 

later. In order to actually get meaningful metrics, we must first 

re-encode the movie into the different formats that should be 

compared. In this study, these are H.264/AVC and MPEG-4 

coders [7, 22]. For both variants, we used ffmpeg version 4 for 

all encoding-related tasks, which allows us to use a Matroska 

container and select a different encoder for each output. 
 

 
Fig. 1. One frame of the short film Bugs Bunny. 

 

In total, dataset amount was about 500 GB of raw data. 

Since the experiments only target Common Intermediate 

Format (CIF) and Quarter CIF (QCIF) resolutions it is not 

necessary to keep all raw data. Our algorithm fetches the 

images, crops into form by discarding one of the two images 

and then only saves the resized versions which are ready for 

coding. This produces an output of about 2.4 GB – the other 

data from the render farm is discarded. 

Noteworthy here is that the input data doesn’t quite match 

our target resolutions in terms of aspect ratio: the movie is 

rendered at an industry-standard ratio of 16:9, whereas both 

CIF and QCIF use 22:15. Therefore, the resulting video files 

are bit smaller on the vertical axis than defined. This should 

not impose a problem for the analysis, but it should be noted 

nonetheless. Furthermore, all video is exported without audio, 

subtitles or any additional metadata. 
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To reasonably compare the two coders with each other, we 

settled on a few options for each, resulting in more than two 

output videos. H.264/AVC provides some templates here, 

like a predefined set of options for often used scenarios. 

These templates are named Tune and Preset. The former 

specifies the general content for which the video should be 

optimized, for example, for Animation or Film. With the other 

option, users may nearly specify the amount of time invested 

into efficient encoding – values here range from Ultrafast to 

Veryslow. Table 1 shows all the possible values for both 

parameters. In our analysis, we rendered one output file for 

each combination (a total of 72 files for each resolution). 

However, the options we used when encoding with 

MPEG-4 are a bit more limited. For this coder, we selected a 

sample of values for the Quality option. This argument is a 

numeric scale that ranges from 0 to 31. Higher values yield 

better results, but at the cost of encoding time.  
 

Table 1. Values used for the coder options 

H.264/AVC MPEG-4 

Tune Preset Quality 

Ultrafast Film 3 

Superfast Animation 12 

Veryfast Grain 16 

Faster Stilimage 20 

Fast Psnr 24 

Medium Ssim 27 

Slow Fastdecode 31 

Slower Zerolatency  

Veryslow   

 

For the actual metric calculation, we refer to ffmpeg’s fast 

toolset. Using the -lavfi option, ffmpeg lets users specify an 

output file. This requires providing two input files for 

comparison. In this study, the first input is the dataset of raw 

movie frames used to encode our video files. The second 

input is the encoded video in which we want to measure 

performance. This works well for both PSNR and SSIM. In 

both cases, the provided output file is filled with one line per 

frame of the video. Here, we obtain a metric for each dimension 

in the color space (YUV) as well as a weighted average. Because 

more information is contained in the luminance component Y 

than in the others (U,V), this value is weighted higher 

accordingly. 

After running this process on all input files, we receive a 

metric file for each combination of encoder and options. To 

extract information on the overall performance of each 

encoder, we aggregate the value for each frame over varying 

sets of parameters. That means we calculate median values for 

each H.264/AVC tune value, combining results from the 

different preset options. Similarly, for MPEG-4 files, the 

different quality metrics are combined. Furthermore, we 

aggregate these values once more to produce one value for each 

second of the film rather than each frame.  

IV. EXPERIMENTAL RESULTS  

In this section we evaluate and discuss the results obtained 

from our experiments. Again, see Table 1 for the set of 

encoder options that we used. 

Approximately 7½ minutes of the short film Bugs Bunny, 

both PSNR and SSIM values reach a global minimum, 

independent of the encoder. These few frames are a jump cut 

from one almost completely blue scene with the camera 

pointed upwards to the sky in the same location, but with the 

camera pointing directly down to the earth. This change is 

shown in Fig. 2. Here, a character is shown falling downwards, 

so a sudden camera change is necessary once it is out of view.  
 

 
Fig. 2. Still frames of the jump cut with minimal measured quality by both 

metrics. 

 

For H.264/AVC, the PSNR average is above 37 dB, while the 

corresponding MPEG-4 measurement starts higher, but falls 

to around 30 dB. We can definitely state that for our test video, 

the H.264/AVC encoding outperforms MPEG-4. 

A similar conclusion can be made for the second metric. 

SSIM values are not quite as stable as the corresponding 

PSNR, but that is to be expected because this metric is more 

subjective and varies more depending on the current scene of 

the movie. For H.264/AVC, the average values of SSIM are 

just over 0.95, with the lowest dip is still above 0.85. MPEG-4 

yields different results – SSIM values here go as far down as 

0.7. Another interesting observation is that the fluctuation is 

much higher for MPEG-4-based encoding. It appears that the 

other encoder is more resilient to sudden scene changes.  

However, this leads to encoders needing to effectively 

re-encode the entire picture because of the sudden change, 

which offers a few very low-quality frames. Because these 

changes only last for a small fraction of a second, they are not 

noticeable when watching the movie. This means that both en-

coders are perfectly suited for dealing with sudden changes 

and real-life video recordings (for example in the context of 

security cameras). 

Another observation can be made when looking at the 

relative difference between these two metrics. Here, a basic 

difference metric is calculated by first normalizing the PSNR 

value with the maximum observed value (excluding infinity). 

Then, the linear difference is calculated. What we can deduce 

is a confirmation that both metrics produce similar results. 

Instead of aggregating all possible option choices, we can 

produce a more fine-grained evaluation. An example can be 

seen in Fig. 3. Here, both metrics are evaluated with regard to 

the tune parameter given to the H.264/AVC encoder. As 

expected, the psnr tune produces the best PSNR results, 
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which are marginally better by 1-5dB throughout the video. 

An interesting observation is that this profile also performs 

best when measuring the SSIM metric. The self-proclaimed 

SSIM tune still comes second in our measurements. 

 
                                                

                                                 

                                                 

                                                 

                                                 

                                                 

                              

                   

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Values used for encoding regard to the tune parameter for H.264 measuring both metrics (PSNR for upper and SSIM for lower image). 

 

A similar evaluation was performed for various quality 

parameters of MPEG-4. The different quality values produce 

graphs that are approximately translated copies of each other. 

Another observation can be made when examining the 

relative difference between these two metrics. Here, we 

calculated a basic difference metric by first normalizing the 

PSNR value with the maximum observed value (excluding 

infinity). Then, the linear difference is calculated. We can 

deduce that this is a confirmation that both metrics produce 

similar results. 

V. CONCLUSIONS 

Future work in this area should consider broadening the 

scope to compare H.264/AVC and MPEG-4 across various 

applications beyond low-resolution environments. This could 

include testing performance in high-resolution scenarios, 

which are progressively relevant to the growth of 4K and 8K 

media content. Diverse genres and types of reference videos, 

including fast action clips and low-light environments, should 

be evaluated to provide a comprehensive understanding of the 

performance across different contexts. Furthermore, 

incorporating subjective quality assessment methods could 

complement the objective metrics used, offering insight into 

user perception of video quality. 

Understanding the applicability of each algorithm to 

different network conditions, storage capabilities, and 

streaming demands is also an avenue worth exploring. 

Assessing the computational efficiency and energy 

consumption of both standards would add valuable data for 

applications where these factors are crucial. 

The limitations of the current study are primarily related to 
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low resolutions and the singular reference video, which may 

not represent the varied use cases in modern video 

applications. Thus, it is necessary to confirm whether the 

observed superiority of H.264/AVC holds across different 

content types and resolutions. The conclusions are also based 

on just two quality metrics, PSNR and SSIM, which might not 

capture all aspects of perceived video quality, particularly for 

varied content and distortions introduced by different 

compression levels. Future research should involve a more 

diverse set of content, resolutions, and quality metrics to 

validate and expand upon our findings. 

H.264/AVC offers several benefits for video encoding, 

making it a popular choice for various applications. Some key 

benefits include: low bandwidth usage, high-resolution 

monitoring and low storage demands. H.264 provides good 

video quality at low bit rates, making it cost-effective for 

delivering video content over the internet, especially in areas 

with limited bandwidth. 

H.264 supports a wide range of resolutions, making it 

suitable for high-resolution video monitoring applications 

like security cameras and drones. Its efficient compression 

allows video to be stored in smaller file sizes, reducing 

storage requirements for video-intensive applications. These 

benefits highlight H.264’s versatility, efficiency, and 

compatibility, making it a valuable choice for video coding 

across different industries and applications. 

To conclude, this study clearly demonstrates that regarding 

to low-resolution video encoding H.264/AVC surpasses 

MPEG-4 in terms of objective quality metrics, PSNR and 

SSIM. The significant improvements in video quality, as 

illustrated by the increase in PSNR by approximately 10 dB 

and SSIM by 10-15%, emphasize the efficiency of 

H.264/AVC for applications requiring high-quality video 

streams under constrained bandwidth conditions.  

The results are particularly relevant for security-critical 

applications, where the superior performance of H.264/AVC 

can be leveraged in web-based platforms, IP security cameras, 

and camera network infrastructure. While MPEG-4 may still 

hold utility in situations with less stringent requirements, the 

study’s findings steer stakeholders toward considering 

H.264/AVC as the more suitable option in scenarios 

demanding high-fidelity video quality. Finally, this research 

has not only contributed valuable empirical evidence to the 

body of knowledge on video coding standards but has also 

opened avenues for further exploration in optimized video 

quality assessments, particularly for deep learning 

applications in security and surveillance fields. 
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