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Abstract—The current code size of the Linux kernel has 

exceeded 1 GB, with an extremely complex control flow. This 
complexity poses at least two obstacles for students to correctly 
understand the causal paths in the code: 1) The tendency to get 
lost; 2) Lack of concretization, making it difficult for learners to 
use constructivist approach to understand the Linux kernel. To 
address these obstacles, this study leverages VR (Virtual Reality) 
technology to concretize the Linux kernel as a city. For example, 
it represents Linux kernel function codes as buildings in the city 
and the control flow as running vehicles. This approach aids 
learners in comprehending the overall code structure, 
establishing a macro-level map of the code. By concretizing the 
concepts, learners can relate their existing rich knowledge of 
daily urban transportation to Linux kernel knowledge. This 
method facilitates the application of constructivist learning, 
reducing the difficulty of understanding the Linux kernel. 
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I. INTRODUCTION 

With the updates in Linux kernel versions, the codebase 
has now exceeded 1 GB. The Linux kernel itself exhibits high 
concurrency and incorporates a significant number of 
function pointers, leading to an exponential growth in the 
potential number of control flows [1]. Consequently, learners 
face immense difficulty comprehending the kernel, often 
getting lost in the complexities. Moreover, the code, being an 
abstract collection of two-dimensional characters, poses 
challenges in bridging the gap between code semantics and 
the learners’ existing knowledge, thus hindering the 
application of effective constructivist methods and increasing 
the cost of understanding Linux kernel code. 

To address the aforementioned issues, this paper employs 
virtual reality technology to visualize the Linux kernel as a 
city, called VR city. It maps folders and files within the Linux 
kernel codebase into nested regions within the city. Functions 
in the files are represented as buildings within these regions, 
and the control flow is depicted as moving vehicles. This 
approach assists learners in comprehending the overall code 
structure and creating a macro-level map of the code. By 
employing such visualization, learners can connect their 
knowledge of the Linux kernel with their extensive everyday 
knowledge of urban traffic, facilitating the use of 
constructivist methods to comprehend the Linux kernel, 
thereby reducing the difficulty in understanding it. 

In addition, VR has stronger immersion than normal 3D 
virtualization. Normal 3D virtualization transmits 
information through a two-dimensional display plane. In this 
case, the human eye not only receives the useful information 
output by the display, but also receives the useless 

information output by the surrounding environment, which 
causes attention to drift. After wearing a VR device, the 
human eye’s field of view is completely covered by the VR 
device. The human eye can only obtain information provided 
by the VR device, and cannot obtain other information, which 
increases immersion. High immersion is conducive to 
students to eliminate distractions and learn knowledge. This 
is why VR is chosen, not normal 3D virtualization. 

II. RELATED WORK 

Virtual Reality (VR) technology, representing a new 
generation of information technology, has been widely 
applied in the field of education. The core reason behind this 
lies in the 3I characteristics of VR, namely: Imagination, 
Interaction, and Immersion [2]. These features bring several 
benefits to learners:  
1)  The imaginative aspect of VR combines the rational and 

emotional aspects of learners, allowing the creation of 
artificially imagined scenarios or objects, deepening 
concepts, and fostering new ideas; 

2)  VR’s interactivity enables learners to receive feedback 
through multiple senses, providing an immersive and 
interactive learning experience, without relying on 
traditional computer devices like keyboards or mice. This 
allows for a more natural interaction with the virtual 
environment, thus reinforcing the impression of acquired 
knowledge; 

3) The immersive nature of VR facilitates the transformation 
of learners from observers to active participants, allowing 
them to feel present in the virtual world. This shortens the 
distance between learners and tedious code, ultimately 
increasing engagement and initiative in the learning 
process [3]. 

For instance, in 2019, Krokos’ study indicated that 
students retained more information and applied their acquired 
knowledge better after engaging in VR exercises. In 2020, 
Alalwan conducted research combining virtual reality, 
augmented reality, and mixed reality to explore their 
applications in education. 

Moreover, to visually represent code complexity, a 
software analysis integrated environment named  
“Code City” [4] was developed. In this environment, the 
software system is visualized as an interactive and navigable 
3D city, where classes are depicted as buildings within the 
city, and packages are described as regions where these 
buildings are located.  

In Code City, code has already been visualized as a city. 
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However, we have combined VR technology with 3D models 
to develop a new technology called VR City. Compared to 
Code City, VR City has the following key features: 
1) The goal of VR City is to help students understand the 

Linux kernel; 
2) VR City integrates the teacher’s prior knowledge with 

static 3D models of the code, effectively presenting the 
core architecture of highly complex software; 

3) VR City can dynamically display program control flow, 
reducing the cost of understanding complex control flow; 

4) VR City is presented through VR devices, providing users 
with better interactive experience and better immersion.  

In summary, our paper visualizes a city embodying the 
program control flow of the Linux kernel code in VR devices. 
The movement of cars within buildings symbolizes processes 
traversing between different parts of the codebase. 
Furthermore, to the best of our knowledge, we have not found 
any prior researchers have conducted such studies. 

III. CONCRETE DESIGN AND IMPLEMENTATION 

Concretization is a technique that transforms abstract 
concepts into tangible representations [5]. In this paper, the 
design of concretization adheres to the following three 
principles: 

Principle 1: The concretization corresponding to the code 
should be familiar and understandable to the learners. 

This principle ensures that the cost for learners to 
comprehend the concretization is minimized, preventing an 
increase in the learning curve. Following this principle, this 
paper represents the Linux kernel source code as a city and 
depicts the control flow as vehicles moving within this city. 

Principle 2: The cost of building concretization should be 
significantly lower than that of constructing the Linux kernel 
source code. 

This principle ensures the efficiency and usability of the 
concretization model. Otherwise, the concretization model 
would become overly complex, possibly surpassing or 
equaling the complexity of understanding the Linux kernel 
source code, rendering the model less valuable. Following 
this principle, this paper focuses on concretizing key portions 
of the Linux kernel source code based on the learner’s 
objectives. 

Principle 3: Users should have a clear understanding of 
their current position in the control flow at any given time. 

This principle aims to reduce the probability of users 
getting lost in the concretization model. Accordingly, this 
paper adopts a hierarchical representation to illustrate the 
user’s control flow during concretization. 

A. Design Principles 

Before conducting the concretization design, it’s essential 
to comprehend the structure and functionalities of the object 
to be visualized. Here are the structure and functions of the 
Linux kernel [6]: 

The Linux kernel source code comprises numerous folders, 
their corresponding subfolders, and source code files. These 
source code files contain function code. When running a 
Linux system, processes are created and these processes will 
call functions in the source code. 

Having understood the structure and functionalities of the 
Linux kernel, we will attempt to concretize it. The process of 

concretization is as follows [7]: 
The Linux kernel, as a whole, is concretized as a city; in 

the Linux kernel source code, folders and files are  
concretized as multiple districts within the city; in the Linux 
kernel source code, folders often contain many subfolders 
and source code files, and these subfolders and source code 
files are concretized as subdivisions of districts, and even 
further as sub-districts; for the functions in source code files 
are concretized as buildings within the districts; the static call 
relationships between different functions in the Linux kernel 
source code are concretized as roads within the buildings [8]. 
The overall mapping relationship of the software is illustrated 
in Fig. 1. 

 

 
Fig. 1. The overall mapping relationship of the software. 

 
Through the aforementioned mapping relationships, the 

abstract Linux kernel code can be visualized as a city, 
presenting complex and abstract concepts of the operating 
system in a more vivid and intuitive manner. Next, let’s 
illustrate the application value of this mapping relationship 
by focusing on the visualization of function call stack. 

Within the Linux kernel, the intricate function call stacks 
have always been a challenging aspect of the visualization 
model. To vividly display the call stacks, this software uses a 
planar representation. Specifically, all functions within the 
Linux kernel correspond to buildings on the first level plane. 
When a process calls a   function, the buildings corresponding 
to the called function and all its child functions are placed on 
the second level plane.  This sequence continues, creating a 
new plane for each subsequent function call. As the call stack 
grows, a new plane is established on the existing plane, 
including the buildings corresponding to the called function 
and its child functions. The call stack mapping relationship is 
illustrated in Fig. 2. 

 

 
Fig. 2. Call stack mapping relationship. 

 

B. Static Scene Design Details 

We will elaborate on the various elements of the concrete 
model. Initially, we’ll delve into the different aspects of static 
concretization, from the city down to districts, and then onto 
buildings. 

1） City 

We employ a city to represent a Linux kernel. At present 
we build five districts in the city: Process Scheduling 
(SCHED), Memory Management (MM), Virtual File System 
(VFS), Networking (NET), and Inter-Process 
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Communication (IPC). Their source code is stored in 
respective folders within the kernel source code files - kernel, 
mm, fs, net, and ipc folders. The setup of the district model is 
illustrated in Fig. 3. 

2） Buildings 

Buildings are used to represent functions within the source 
code files. Districts consist of numerous buildings, with each 
building within a district representing functions included in 
the files of that district. These buildings represent actual 
functions that need to be executed in Linux kernel. Each 
building’s attributes mirror the respective function’s 
attributes. For instance, the building’s name signifies the 
function’s name, and its description represents the function’s 
purpose. To ensure a clearer and more intuitive model, the 
design of buildings should align with the characteristics of 
the functions, thereby visually displaying various functions’ 
features. For example, a building that represents a function 
like “do_task_dead”, responsible for destroying cars, can be 
styled like a factory. Furthermore, different functions possess 
varying levels of importance, and consequently, their 
corresponding buildings should reflect these differences. 
Specifically, functions can be categorized into three levels of 
importance. Buildings representing the most crucial 
functions could be skyscrapers, those representing 
moderately important functions could be modeled high-rise 
residential buildings, and those representing the least 
important functions could be modeled bungalows. 

 

 
Fig. 3. Aerial view of city. 

 

C. Dynamic Execution Design Details 

Now, we introduce dynamic visualization, specifically the 
moving cars. 

1） Process cars 

In the program control flow visualization software, we will 
represent running processes with cars, called process cars. 
The appearance of a process car is similar to that of a 
common sedan, characterized by a progress bar indicating the 
progress status. The modeling of process cars is depicted in 
Fig. 4. 

 

 
Fig. 4. Process car. 

Navigation system. The car’s automatic path-finding 
module is implemented using Unity automatic navigation 
components. The baking result of the navigation system is 
shown in Fig. 5. 

 

 
Fig. 5. The blue area indicates the automatically navigable region. 

 

2） UI interface  

Menu bar. Players interact with the software through the 
menu interface to control perspective switching, change the 
car’s driving speed and other operations. The menu bar is 
shown in Fig. 6. 

 

 
Fig. 6. Menu bar. 

 
Car information window. When the controller clicks the 

car route map button or enters the car perspective, a 
translucent car information window which includes 
process-related information pops up on the right side. In this 
window, click the details button in the task list window being 
executed to pop up all the program control flows that the 
process needs to execute. As shown in Fig. 7. 

 
Fig. 7. Task list window. 

 
Building information window. Click on the building from 

the scene perspective to pop up the building information 
window. The building information window displays the 
name and function introduction of the function represented 
by the building, and includes the function call list which 
displays all sub-functions of the function.  The building 
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information window is shown in Fig. 8. 
 

 
Fig. 8. Building information window. 

 
Speed. There is a speed drop-down list in the menu bar. 

Selecting any one of the options can change the driving speed 
of all cars in the scene. The vehicle speed is determined by 
the speed attribute whose unit is meters per second in the 
automatic pathfinding component Navigation Mesh 
(NavMesh) agent. For example, the X6 has a vehicle speed of 
6 meters per second. The speed dropdown list is displayed as 
shown in Fig. 9. 

 

 
Fig. 9. Speed dropdown list. 

 

3） Perspective 

This software has three perspectives: 
1) Free perspective. It will allow learners to freely explore the 

scene through the first-person perspective, avoiding the 
negative impact of boring and abstract code on learners, 
thereby enhancing their interest in learning and deepening 
their impression and understanding of the code; 

2) Car perspective. Learners can ride in the process car and 
experience the control flow journey of the kernel, 
transforming learners from observers to participants, and 
shortening the distance between learners and kernel; 

3) Panoramic perspective. It is for the camera to overlook the 
city, making it convenient for students to observe the 
entire VR City and the running routes of cars, thereby 
quickly establishing a clear macro-understanding of the 
Linux kernel. 

In free perspective, user can do following operations: 
1) Click the ground with the controller to move to the 

clicked position; 
2) Turn the head sensor to rotate the perspective; 
3) Click on the building to pop up the building information 

window. 
When the controller clicks the panorama mode button in 

the menu, the perspective will jump to the panoramic scene. 
The panoramic view is shown in Fig. 10. 

 

 
Fig. 10. Panoramic perspective. 

 
Now we click “Enter the scene” button to return to free 

perspective. In free perspective, by clicking the track parent 
process button or track child process button with the 
controller, the user can switch to the car perspective. The 
“Track parent process” and “Track child process” buttons in 
the drop-down menu are hidden, the “Get off” button is 
displayed, and the car information window pops up. The car 
perspective is depicted in Fig. 11. 

 

 
Fig. 11. Track parent and child processes from car perspective. 

 

4） Layering 

When VR city is running, on the main plane, let the plane 
be P1, the car drives to the first building, and the function 
represented by the building is B1, which means that the 
process calls the first function. If B1 needs to call a function, 
then in order to clearly represent the function call stack, we 
need to establish a secondary plane, let this plane be P2. On 
P2, it includes B1 and the buildings corresponding to all 
functions called by B1. The set of all functions called by B1 
is set to B1S1. If a function in B1S1, set it to B2, needs to call 
other functions, then you can create a new plane in the same 
way and set it to P3. P3 contains B2 and the buildings 
corresponding to all functions called by B2. The hierarchy is 
depicted in Fig. 12. 

 

 
Fig. 12. Stepwise hierarchy. 
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IV. EXPERIMENTAL RESULTS 

In order to verify the effectiveness of VR-based program 
control flow visualization research, we carried out activities 
to use VR City to teach selected students some subsystems of 
the Linux kernel, and distributed questionnaires to them. 

To ensure the feasibility and validity of the experiment, we 
selected 60 students from the operating system course design 
experiment course at XiDian University as subjects. All 
students were between the ages of 18 and 22, with similar 
intelligence levels. 

The experimental design is as follows: 
First, all students are given the same test, called the first 

test, and scored. The first test is designed to assess students’ 
basic understanding of Linux system calls. 

Then, the subjects are evenly randomly divided into two 
groups A and B, with 30 people in each group. The division 
results should ensure that the average scores and variances of 
the two groups of students in the first test are close, otherwise 
the division should be redone. 

Next, different teaching methods are used to teach the two 
groups of students. An experienced teacher records a video 
lecture in advance. Group A learns by watching the video 
lecture. Group B learns by using VR City and listening to the 
audio portion of the lecture. It is important to note that the 
audio portions of the lecture that the two groups listen to are 
identical and include the internal control flow of Linux 
system calls. This is done to avoid the influence of teachers’ 
bias on the experimental results. The lecture time for both 
groups is 60 minutes. 

Finally, both groups of students are re-tested again, called 
the second test, and scored. The second test is designed to 
assess students’ understanding of the internal control flow of 
Linux system calls. 

A. Select Experimental Subjects 

Screen students who meet the following requirements in 
advance through questionnaires: 
1) Have a basic understanding of the Linux kernel and have 

done Linux system call programming; 
2) Interested in the internal control flow of Linux system 

calls. 
The reasons for screening these students are twofold. First, 

learning should be incremental, from outside to inside, and 
from shallow to deep. Students who are completely 
unfamiliar with the Linux kernel will not be able to quickly 
understand the control flow with the help of VR City, and 
they may also become confused by the various basic concepts 
of Linux. Second, this experiment is designed for students 
who are interested in understanding the internal control flow 
of Linux system calls. Therefore, students who are not 
interested in this topic will not be considered. 

Based on the above criteria, we decided to select 
participants from the operating system course design 
experiment course at XiDian University. The reasons are as 
follows: 

On the one hand, students who can choose this course are 
all sophomore computer science students. They have already 
learned relevant knowledge of operating systems and have a 
certain understanding of operating systems. On the other 
hand, the operating system course design experiment is an 
advanced course. Learning the internal control flow of Linux 

system calls helps to complete the course, so students are 
more interested in participating in the experiment [9,10]. 

In summary, these students meet the requirements. 

B. Experimental Process 

The experimental process is listed as follows: 
On the day of the experiment, a pre-test was conducted 

from 9:00 to 10:00 AM. The subjects were randomly divided 
into two groups, A and B. If the average scores and variances 
of the two groups in the pre-test are too different, then the 
groups must be re-divided. This is because if the groups are 
too different, then it will be difficult to determine whether 
any differences in post-test scores are due to the lecture or to 
other factors, such as differences in the groups’ baseline 
knowledge and skills. 

The experimental time for both Group A and Group B is 
from 3:00 to 4:00 PM. 

For group A, a pre-recorded video lecture on the internal 
control flow of Linux system calls was played. Group A 
learned based on the video content and Linux kernel source 
code. 

For Group B, the subjects wore VR devices and entered a 
virtual city environment to listen to the audio lecture (the 
audio content was the same as group A). A teacher was 
responsible for explaining the corresponding relationship 
between various elements in the city and the components of 
the Linux kernel, then guiding the students into the correct 
building.  Subjects could freely explore the virtual city in 
scene mode and observe various components of the city; they 
could also take a car in car perspective to experience process 
creation; in panoramic perspective they can also observe the 
car driving routes and understand the connections between 
different functions. 

The second test for Group A and Group B was held from 
8:00 PM to 9:00 PM. Thus, the experiment was over. 

C. Analysis of Results 

In the first test, the questionnaire distributed to everyone 
contained the following: 
1) What is a system call? 
2) How do Linux system calls work? 
3) What are some common Linux system calls? 
4) What are the advantages and disadvantages of system 

calls? 
5) Describe the function and parameters of the fork() system 

call. 
6) And so on. 

The total score of the first survey was 100 points. The 
average scores and variances of Group A and Group B are 
shown in Fig. 13. 

 

 
Fig. 13. In the first test, average of scores(left) and variance of scores(right). 

 
As can be seen from Fig. 13, the average scores of Group A 

and Group B are close, and the variances are approximate, 
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indicating that the abilities of Group A and Group B are 
almost the same. 

In the second test, the questionnaire distributed to 
everyone contained the following: 
1) Explain the internal control flow of the fork() system call. 
2) Explain the internal control flow of the exec() system call. 
3) Explain the internal control flow of the munmap() system 

call. 
4) And so on. 

The total score of the second survey was also 100 points. 
The results of the second tests are shown in Fig. 14. 

 

 
Fig. 14. In the second test, average of scores(left) and variance of 

scores(right). 
 
As can be seen from Fig. 14, the average score of Group B 

is 8.3 higher than that of Group A. This indicates that using 
VR city can help students better understand the Linux kernel 
source code. 

In addition, Group B filled out an additional questionnaire, 
which contained the following: 

Did the everyday knowledge of the city life help in 
enhancing the understanding of the Linux kernel?  

The survey results are shown in Fig. 15. 

 
Fig. 15. In additional testing, Group B’s opinion of VR City’s help in 

understanding Linux kernel code. 

V. CONCLUSION 

Linux kernel code is massive. When explaining the 
internal control flow of Linux system calls using 
conventional teaching methods, such as reading source code, 
learners often get bogged down in the abstract and complex 
code logic, which increases the learning cost and even leads 
to deviations in the understanding of the control flow. In this 
paper, we propose VR City, which provides a virtual city 

environment to help learners wearing VR devices understand 
the internal control flow of Linux system calls. The key idea 
of VR City is to map the abstract and complex code logic to 
the city traffic that everyone is very familiar with in their 
daily lives, thereby reducing learners’ cost of studying 
unfamiliar code. Our study has shown that VR City does 
indeed reduce the probability of learners getting lost when 
understanding the Linux kernel, and help learners 
comprehend the Linux kernel using the constructivist 
approach. 
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