

VR City: A Tool for Understanding Control Flow
 in Linux Kernel

Shuanghui Yi1, Xiaoyan Su1, Tong Wang 1, Shaobo Yu1, Bingru Wu2,*, and Hang Li2

1Systems Engineering Institute, Academy of Military Sciences, Beijing, China
2School of Computer Science and Technology, Software Engineering, Xidian University, Xi’an, China

Email: yshbise@foxmail.com (S.Y.); suyan_sxysxy@foxmail.com (X.S.); tongwss@foxmail.com (T.W.); qilinbo@foxmail.com (S.Y.);
21151213685@stu.xidian.edu.cn (B.W.); hangli@mail.xidian.edu.cn (H.L.)

*Corresponding author
Manuscript received July 3, 2024; revised August 16, 2024; accepted August 22, 2024; published February 25, 2025

Abstract—The current code size of the Linux kernel has

exceeded 1 GB, with an extremely complex control flow. This
complexity poses at least two obstacles for students to correctly
understand the causal paths in the code: 1) The tendency to get
lost; 2) Lack of concretization, making it difficult for learners to
use constructivist approach to understand the Linux kernel. To
address these obstacles, this study leverages VR (Virtual Reality)
technology to concretize the Linux kernel as a city. For example,
it represents Linux kernel function codes as buildings in the city
and the control flow as running vehicles. This approach aids
learners in comprehending the overall code structure,
establishing a macro-level map of the code. By concretizing the
concepts, learners can relate their existing rich knowledge of
daily urban transportation to Linux kernel knowledge. This
method facilitates the application of constructivist learning,
reducing the difficulty of understanding the Linux kernel.

Keywords—VR city, Linux kernel, visualization

I. INTRODUCTION

With the updates in Linux kernel versions, the codebase
has now exceeded 1 GB. The Linux kernel itself exhibits high
concurrency and incorporates a significant number of
function pointers, leading to an exponential growth in the
potential number of control flows [1]. Consequently, learners
face immense difficulty comprehending the kernel, often
getting lost in the complexities. Moreover, the code, being an
abstract collection of two-dimensional characters, poses
challenges in bridging the gap between code semantics and
the learners’ existing knowledge, thus hindering the
application of effective constructivist methods and increasing
the cost of understanding Linux kernel code.

To address the aforementioned issues, this paper employs
virtual reality technology to visualize the Linux kernel as a
city, called VR city. It maps folders and files within the Linux
kernel codebase into nested regions within the city. Functions
in the files are represented as buildings within these regions,
and the control flow is depicted as moving vehicles. This
approach assists learners in comprehending the overall code
structure and creating a macro-level map of the code. By
employing such visualization, learners can connect their
knowledge of the Linux kernel with their extensive everyday
knowledge of urban traffic, facilitating the use of
constructivist methods to comprehend the Linux kernel,
thereby reducing the difficulty in understanding it.

In addition, VR has stronger immersion than normal 3D
virtualization. Normal 3D virtualization transmits
information through a two-dimensional display plane. In this
case, the human eye not only receives the useful information
output by the display, but also receives the useless

information output by the surrounding environment, which
causes attention to drift. After wearing a VR device, the
human eye’s field of view is completely covered by the VR
device. The human eye can only obtain information provided
by the VR device, and cannot obtain other information, which
increases immersion. High immersion is conducive to
students to eliminate distractions and learn knowledge. This
is why VR is chosen, not normal 3D virtualization.

II. RELATED WORK

Virtual Reality (VR) technology, representing a new
generation of information technology, has been widely
applied in the field of education. The core reason behind this
lies in the 3I characteristics of VR, namely: Imagination,
Interaction, and Immersion [2]. These features bring several
benefits to learners:
1) The imaginative aspect of VR combines the rational and

emotional aspects of learners, allowing the creation of
artificially imagined scenarios or objects, deepening
concepts, and fostering new ideas;

2) VR’s interactivity enables learners to receive feedback
through multiple senses, providing an immersive and
interactive learning experience, without relying on
traditional computer devices like keyboards or mice. This
allows for a more natural interaction with the virtual
environment, thus reinforcing the impression of acquired
knowledge;

3) The immersive nature of VR facilitates the transformation
of learners from observers to active participants, allowing
them to feel present in the virtual world. This shortens the
distance between learners and tedious code, ultimately
increasing engagement and initiative in the learning
process [3].

For instance, in 2019, Krokos’ study indicated that
students retained more information and applied their acquired
knowledge better after engaging in VR exercises. In 2020,
Alalwan conducted research combining virtual reality,
augmented reality, and mixed reality to explore their
applications in education.

Moreover, to visually represent code complexity, a
software analysis integrated environment named
“Code City” [4] was developed. In this environment, the
software system is visualized as an interactive and navigable
3D city, where classes are depicted as buildings within the
city, and packages are described as regions where these
buildings are located.

In Code City, code has already been visualized as a city.

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

1doi: 10.18178/ijfcc.2025.14.1.622

However, we have combined VR technology with 3D models
to develop a new technology called VR City. Compared to
Code City, VR City has the following key features:
1) The goal of VR City is to help students understand the

Linux kernel;
2) VR City integrates the teacher’s prior knowledge with

static 3D models of the code, effectively presenting the
core architecture of highly complex software;

3) VR City can dynamically display program control flow,
reducing the cost of understanding complex control flow;

4) VR City is presented through VR devices, providing users
with better interactive experience and better immersion.

In summary, our paper visualizes a city embodying the
program control flow of the Linux kernel code in VR devices.
The movement of cars within buildings symbolizes processes
traversing between different parts of the codebase.
Furthermore, to the best of our knowledge, we have not found
any prior researchers have conducted such studies.

III. CONCRETE DESIGN AND IMPLEMENTATION

Concretization is a technique that transforms abstract
concepts into tangible representations [5]. In this paper, the
design of concretization adheres to the following three
principles:

Principle 1: The concretization corresponding to the code
should be familiar and understandable to the learners.

This principle ensures that the cost for learners to
comprehend the concretization is minimized, preventing an
increase in the learning curve. Following this principle, this
paper represents the Linux kernel source code as a city and
depicts the control flow as vehicles moving within this city.

Principle 2: The cost of building concretization should be
significantly lower than that of constructing the Linux kernel
source code.

This principle ensures the efficiency and usability of the
concretization model. Otherwise, the concretization model
would become overly complex, possibly surpassing or
equaling the complexity of understanding the Linux kernel
source code, rendering the model less valuable. Following
this principle, this paper focuses on concretizing key portions
of the Linux kernel source code based on the learner’s
objectives.

Principle 3: Users should have a clear understanding of
their current position in the control flow at any given time.

This principle aims to reduce the probability of users
getting lost in the concretization model. Accordingly, this
paper adopts a hierarchical representation to illustrate the
user’s control flow during concretization.

A. Design Principles

Before conducting the concretization design, it’s essential
to comprehend the structure and functionalities of the object
to be visualized. Here are the structure and functions of the
Linux kernel [6]:

The Linux kernel source code comprises numerous folders,
their corresponding subfolders, and source code files. These
source code files contain function code. When running a
Linux system, processes are created and these processes will
call functions in the source code.

Having understood the structure and functionalities of the
Linux kernel, we will attempt to concretize it. The process of

concretization is as follows [7]:
The Linux kernel, as a whole, is concretized as a city; in

the Linux kernel source code, folders and files are
concretized as multiple districts within the city; in the Linux
kernel source code, folders often contain many subfolders
and source code files, and these subfolders and source code
files are concretized as subdivisions of districts, and even
further as sub-districts; for the functions in source code files
are concretized as buildings within the districts; the static call
relationships between different functions in the Linux kernel
source code are concretized as roads within the buildings [8].
The overall mapping relationship of the software is illustrated
in Fig. 1.

Fig. 1. The overall mapping relationship of the software.

Through the aforementioned mapping relationships, the

abstract Linux kernel code can be visualized as a city,
presenting complex and abstract concepts of the operating
system in a more vivid and intuitive manner. Next, let’s
illustrate the application value of this mapping relationship
by focusing on the visualization of function call stack.

Within the Linux kernel, the intricate function call stacks
have always been a challenging aspect of the visualization
model. To vividly display the call stacks, this software uses a
planar representation. Specifically, all functions within the
Linux kernel correspond to buildings on the first level plane.
When a process calls a function, the buildings corresponding
to the called function and all its child functions are placed on
the second level plane. This sequence continues, creating a
new plane for each subsequent function call. As the call stack
grows, a new plane is established on the existing plane,
including the buildings corresponding to the called function
and its child functions. The call stack mapping relationship is
illustrated in Fig. 2.

Fig. 2. Call stack mapping relationship.

B. Static Scene Design Details

We will elaborate on the various elements of the concrete
model. Initially, we’ll delve into the different aspects of static
concretization, from the city down to districts, and then onto
buildings.

1） City

We employ a city to represent a Linux kernel. At present
we build five districts in the city: Process Scheduling
(SCHED), Memory Management (MM), Virtual File System
(VFS), Networking (NET), and Inter-Process

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

2

Communication (IPC). Their source code is stored in
respective folders within the kernel source code files - kernel,
mm, fs, net, and ipc folders. The setup of the district model is
illustrated in Fig. 3.

2） Buildings

Buildings are used to represent functions within the source
code files. Districts consist of numerous buildings, with each
building within a district representing functions included in
the files of that district. These buildings represent actual
functions that need to be executed in Linux kernel. Each
building’s attributes mirror the respective function’s
attributes. For instance, the building’s name signifies the
function’s name, and its description represents the function’s
purpose. To ensure a clearer and more intuitive model, the
design of buildings should align with the characteristics of
the functions, thereby visually displaying various functions’
features. For example, a building that represents a function
like “do_task_dead”, responsible for destroying cars, can be
styled like a factory. Furthermore, different functions possess
varying levels of importance, and consequently, their
corresponding buildings should reflect these differences.
Specifically, functions can be categorized into three levels of
importance. Buildings representing the most crucial
functions could be skyscrapers, those representing
moderately important functions could be modeled high-rise
residential buildings, and those representing the least
important functions could be modeled bungalows.

Fig. 3. Aerial view of city.

C. Dynamic Execution Design Details

Now, we introduce dynamic visualization, specifically the
moving cars.

1） Process cars

In the program control flow visualization software, we will
represent running processes with cars, called process cars.
The appearance of a process car is similar to that of a
common sedan, characterized by a progress bar indicating the
progress status. The modeling of process cars is depicted in
Fig. 4.

Fig. 4. Process car.

Navigation system. The car’s automatic path-finding
module is implemented using Unity automatic navigation
components. The baking result of the navigation system is
shown in Fig. 5.

Fig. 5. The blue area indicates the automatically navigable region.

2） UI interface

Menu bar. Players interact with the software through the
menu interface to control perspective switching, change the
car’s driving speed and other operations. The menu bar is
shown in Fig. 6.

Fig. 6. Menu bar.

Car information window. When the controller clicks the

car route map button or enters the car perspective, a
translucent car information window which includes
process-related information pops up on the right side. In this
window, click the details button in the task list window being
executed to pop up all the program control flows that the
process needs to execute. As shown in Fig. 7.

Fig. 7. Task list window.

Building information window. Click on the building from

the scene perspective to pop up the building information
window. The building information window displays the
name and function introduction of the function represented
by the building, and includes the function call list which
displays all sub-functions of the function. The building

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

3

information window is shown in Fig. 8.

Fig. 8. Building information window.

Speed. There is a speed drop-down list in the menu bar.

Selecting any one of the options can change the driving speed
of all cars in the scene. The vehicle speed is determined by
the speed attribute whose unit is meters per second in the
automatic pathfinding component Navigation Mesh
(NavMesh) agent. For example, the X6 has a vehicle speed of
6 meters per second. The speed dropdown list is displayed as
shown in Fig. 9.

Fig. 9. Speed dropdown list.

3） Perspective

This software has three perspectives:
1) Free perspective. It will allow learners to freely explore the

scene through the first-person perspective, avoiding the
negative impact of boring and abstract code on learners,
thereby enhancing their interest in learning and deepening
their impression and understanding of the code;

2) Car perspective. Learners can ride in the process car and
experience the control flow journey of the kernel,
transforming learners from observers to participants, and
shortening the distance between learners and kernel;

3) Panoramic perspective. It is for the camera to overlook the
city, making it convenient for students to observe the
entire VR City and the running routes of cars, thereby
quickly establishing a clear macro-understanding of the
Linux kernel.

In free perspective, user can do following operations:
1) Click the ground with the controller to move to the

clicked position;
2) Turn the head sensor to rotate the perspective;
3) Click on the building to pop up the building information

window.
When the controller clicks the panorama mode button in

the menu, the perspective will jump to the panoramic scene.
The panoramic view is shown in Fig. 10.

Fig. 10. Panoramic perspective.

Now we click “Enter the scene” button to return to free

perspective. In free perspective, by clicking the track parent
process button or track child process button with the
controller, the user can switch to the car perspective. The
“Track parent process” and “Track child process” buttons in
the drop-down menu are hidden, the “Get off” button is
displayed, and the car information window pops up. The car
perspective is depicted in Fig. 11.

Fig. 11. Track parent and child processes from car perspective.

4） Layering

When VR city is running, on the main plane, let the plane
be P1, the car drives to the first building, and the function
represented by the building is B1, which means that the
process calls the first function. If B1 needs to call a function,
then in order to clearly represent the function call stack, we
need to establish a secondary plane, let this plane be P2. On
P2, it includes B1 and the buildings corresponding to all
functions called by B1. The set of all functions called by B1
is set to B1S1. If a function in B1S1, set it to B2, needs to call
other functions, then you can create a new plane in the same
way and set it to P3. P3 contains B2 and the buildings
corresponding to all functions called by B2. The hierarchy is
depicted in Fig. 12.

Fig. 12. Stepwise hierarchy.

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

4

IV. EXPERIMENTAL RESULTS

In order to verify the effectiveness of VR-based program
control flow visualization research, we carried out activities
to use VR City to teach selected students some subsystems of
the Linux kernel, and distributed questionnaires to them.

To ensure the feasibility and validity of the experiment, we
selected 60 students from the operating system course design
experiment course at XiDian University as subjects. All
students were between the ages of 18 and 22, with similar
intelligence levels.

The experimental design is as follows:
First, all students are given the same test, called the first

test, and scored. The first test is designed to assess students’
basic understanding of Linux system calls.

Then, the subjects are evenly randomly divided into two
groups A and B, with 30 people in each group. The division
results should ensure that the average scores and variances of
the two groups of students in the first test are close, otherwise
the division should be redone.

Next, different teaching methods are used to teach the two
groups of students. An experienced teacher records a video
lecture in advance. Group A learns by watching the video
lecture. Group B learns by using VR City and listening to the
audio portion of the lecture. It is important to note that the
audio portions of the lecture that the two groups listen to are
identical and include the internal control flow of Linux
system calls. This is done to avoid the influence of teachers’
bias on the experimental results. The lecture time for both
groups is 60 minutes.

Finally, both groups of students are re-tested again, called
the second test, and scored. The second test is designed to
assess students’ understanding of the internal control flow of
Linux system calls.

A. Select Experimental Subjects

Screen students who meet the following requirements in
advance through questionnaires:
1) Have a basic understanding of the Linux kernel and have

done Linux system call programming;
2) Interested in the internal control flow of Linux system

calls.
The reasons for screening these students are twofold. First,

learning should be incremental, from outside to inside, and
from shallow to deep. Students who are completely
unfamiliar with the Linux kernel will not be able to quickly
understand the control flow with the help of VR City, and
they may also become confused by the various basic concepts
of Linux. Second, this experiment is designed for students
who are interested in understanding the internal control flow
of Linux system calls. Therefore, students who are not
interested in this topic will not be considered.

Based on the above criteria, we decided to select
participants from the operating system course design
experiment course at XiDian University. The reasons are as
follows:

On the one hand, students who can choose this course are
all sophomore computer science students. They have already
learned relevant knowledge of operating systems and have a
certain understanding of operating systems. On the other
hand, the operating system course design experiment is an
advanced course. Learning the internal control flow of Linux

system calls helps to complete the course, so students are
more interested in participating in the experiment [9,10].

In summary, these students meet the requirements.

B. Experimental Process

The experimental process is listed as follows:
On the day of the experiment, a pre-test was conducted

from 9:00 to 10:00 AM. The subjects were randomly divided
into two groups, A and B. If the average scores and variances
of the two groups in the pre-test are too different, then the
groups must be re-divided. This is because if the groups are
too different, then it will be difficult to determine whether
any differences in post-test scores are due to the lecture or to
other factors, such as differences in the groups’ baseline
knowledge and skills.

The experimental time for both Group A and Group B is
from 3:00 to 4:00 PM.

For group A, a pre-recorded video lecture on the internal
control flow of Linux system calls was played. Group A
learned based on the video content and Linux kernel source
code.

For Group B, the subjects wore VR devices and entered a
virtual city environment to listen to the audio lecture (the
audio content was the same as group A). A teacher was
responsible for explaining the corresponding relationship
between various elements in the city and the components of
the Linux kernel, then guiding the students into the correct
building. Subjects could freely explore the virtual city in
scene mode and observe various components of the city; they
could also take a car in car perspective to experience process
creation; in panoramic perspective they can also observe the
car driving routes and understand the connections between
different functions.

The second test for Group A and Group B was held from
8:00 PM to 9:00 PM. Thus, the experiment was over.

C. Analysis of Results

In the first test, the questionnaire distributed to everyone
contained the following:
1) What is a system call?
2) How do Linux system calls work?
3) What are some common Linux system calls?
4) What are the advantages and disadvantages of system

calls?
5) Describe the function and parameters of the fork() system

call.
6) And so on.

The total score of the first survey was 100 points. The
average scores and variances of Group A and Group B are
shown in Fig. 13.

Fig. 13. In the first test, average of scores(left) and variance of scores(right).

As can be seen from Fig. 13, the average scores of Group A

and Group B are close, and the variances are approximate,

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

5

indicating that the abilities of Group A and Group B are
almost the same.

In the second test, the questionnaire distributed to
everyone contained the following:
1) Explain the internal control flow of the fork() system call.
2) Explain the internal control flow of the exec() system call.
3) Explain the internal control flow of the munmap() system

call.
4) And so on.

The total score of the second survey was also 100 points.
The results of the second tests are shown in Fig. 14.

Fig. 14. In the second test, average of scores(left) and variance of

scores(right).

As can be seen from Fig. 14, the average score of Group B

is 8.3 higher than that of Group A. This indicates that using
VR city can help students better understand the Linux kernel
source code.

In addition, Group B filled out an additional questionnaire,
which contained the following:

Did the everyday knowledge of the city life help in
enhancing the understanding of the Linux kernel?

The survey results are shown in Fig. 15.

Fig. 15. In additional testing, Group B’s opinion of VR City’s help in

understanding Linux kernel code.

V. CONCLUSION

Linux kernel code is massive. When explaining the
internal control flow of Linux system calls using
conventional teaching methods, such as reading source code,
learners often get bogged down in the abstract and complex
code logic, which increases the learning cost and even leads
to deviations in the understanding of the control flow. In this
paper, we propose VR City, which provides a virtual city

environment to help learners wearing VR devices understand
the internal control flow of Linux system calls. The key idea
of VR City is to map the abstract and complex code logic to
the city traffic that everyone is very familiar with in their
daily lives, thereby reducing learners’ cost of studying
unfamiliar code. Our study has shown that VR City does
indeed reduce the probability of learners getting lost when
understanding the Linux kernel, and help learners
comprehend the Linux kernel using the constructivist
approach.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Shuanghui Yi conducted the research. Xiaoyan Su and
Shaobo Yu analyzed the data. Bingru Wu wrote the paper.
Tong Wang revised and formatted the manuscript. Hang Li
coordinated the research and provided critical feedback. All
authors approved the final version of the manuscript.

REFERENCES
[1] Shi, J., Ji, W., Zhang, J., Gao, Z., Wang, Y., & Shi, F. (2018). Kernel

Graph: Understanding the kernel in a graph. Information Visualization,
 18(14), 283–296. https://doi.org/10.1177/1473871617743239

[2] Burdea, G., & Coiffet, P. (2003). Virtual reality technology (2nd ed., c
h. 2). John Wiley & Sons, Inc.

[3] Marougkas, A., Troussas, C., Krouska, A., & Sgouropoulou, C. (2023).
 Virtual reality in education: A review of learning theories, approaches
 and methodologies for the last decade. Electronics, 12(13), 2832. http
s://doi.org/10.3390/electronics12132832

[4] Wettel, R., & Lanza, M. (2007). Visualizing software systems as cities.
 In 2007 4th IEEE International Workshop on Visualizing Software for
 Understanding and Analysis (pp. 92–99). https://doi.org/10.1109/VIS
SOF.2007.4290706

[5] Milenković, A., Takači, Đ., & Božić, R. (2020). On the influence of so
ftware application for visualization in teaching double integrals. Intera
ctive Learning Environments, 30(7), 1291–1306. https://doi.org/10.10
80/10494820.2020.1719164

[6] Artho, C., Pande, M., & Tang, Q. (2019). Visual analytics for concurr
ent Java executions. In 2019 34th IEEE/ACM International Conferenc
e on Automated Software Engineering (ASE) (pp. 1102–1105). https:/
/doi.org/10.1109/ASE.2019.00112

[7] Davies, M. (2011). Concept mapping, mind mapping and argument ma
pping: What are the differences and do they matter? Higher Education,
 62(3), 279–301. https://doi.org/10.1007/s10734-010-9387-6

[8] Mauerer, W. (2008). Professional Linux kernel architecture (ch. 1). Wr
ox.

[9] Bannert, M. (2002). Managing cognitive load—recent trends in cognit
ive load theory. Learning and Instruction, 12(1), 139–146. https://doi.
org/10.1016/S0959-4752(01)00021-4

[10] Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and in
structional design: Recent developments. Educational Psychologist, 38
(1), 1–4. https://doi.org/10.1207/S15326985EP3801_1

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Future Computer and Communication, Vol. 14, No. 1, 2025

6

