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Abstract—Group switch-and-stay combining (GSSC) with 

branch partitions is proposed for a low-complexity 

multi-antenna selection in a receiver diversity system. The 

GSSC can enhance the performance of conventional 

switch-and-stay combining (SSC), and also has a lower 

complexity than maximal-ratio combining (MRC) or selection 

combining (SC). With the GSSC scheme, multiple antenna 

branches are divided into non-overlapped groups. In each group, 

the branch with the maximum signal-to-noise ratio (SNR) is 

used for threshold-based group switch. With particular 

grouping and threshold choosing, both SC and SSC schemes 

become different special cases of the GSSC scheme. For 

performance illustration, BPSK signaling on independent and 

identically distributed (i.i.d.) flat Rayleigh fading channels is 

considered, and the corresponding bit error probability (BEP) 

and outage probability are derived and manipulated into 

closed-forms. To minimize the BEP, locally optimal switch 

thresholds (STs) are defined and derived. For grouping with the 

same number of branches and an identical switch threshold (ST), 

the locally optimal ST becomes globally optimal. Numerical 

results are presented for the performance illustration and 

comparison. 

 

Index Terms—Group switch-and-stay combining, space 

diversity, switch-and-stay combining, selection combining, 

optimal switch threshold. 

 

I. INTRODUCTION 

To combat fading effects in wireless channels, diversity 

combining with multiple antennas is useful for wireless 

communication systems [1]. Traditional combining schemes, 

such as MRC or SC, will use all available diversity branches, 

and thus have higher implementation complexity [2]. To 

reduce the complexity, switch-based SSC has been 

considered [3]-[5], where no real combiner is required. The 

SSC is particularly valuable for mobile stations that have 

limited resource and power, and it has been applied to 

cooperative diversity systems [6]-[8]. However, the 

conventional SSC scheme has a diversity order of two even if 

more antennas are available, and no performance 

improvement can be obtained by using more than two 

branches [9]-[11]. Moreover, the performance of SSC is 

much worse when compared to other combining schemes. On 

the other hand, although many antenna branches are available, 

using all of them for diversity combining is complex and 

expensive in implementation. Thus, the antenna selection 

problem is also important for many practical wireless 

 

 

 

complexity of antenna diversity and enhance reception 

performance of conventional SSC scheme, the GSSC is 

proposed and analyzed. With the GSSC, multiple branches 

are divided into arbitrary non-overlapped groups, and in each 

group, the branch with the maximum signal-to-noise ratio 

(SNR) is used for threshold-based group switch.  

In the context, for performance evaluation, BPSK signaling 

on i.i.d. Rayleigh fading channels is considered, and the 

corresponding BEP and outage probability are derived and 

manipulated into closed-forms. To minimize the BEP of the 

GSSC scheme, the globally optimal STs will not have 

closed-forms and can only be obtained through numerical 

search, which is frequently inaccurate and intractable. Thus, 

to simplify the threshold design, the locally optimal ST is 

defined.  The locally optimal ST can be derived and written in 

closed-form. Furthermore, if the antennas can be partitioned 

into groups with the same number of branches and use an 

identical ST, the locally optimal threshold is globally optimal. 

The paper is organized as follows. In Section II, the GSSC 

operation is given. In Section III, the BEP and outage 

probability are derived In Section IV, numerical results are 

illustrated. Conclusions are drawn in Section V. 

 

II. GSSC ON RAYLEIGH FADING CHANNELS 

With GSSC, total L antenna branches of a receiver 

diversity system are partitioned into K groups (K  1) as 

shown in Fig. 1. Let l  be the faded SNR of the signal 

received at the l
th

 
branch for 1,2, , .l L   For i.i.d. Rayleigh 

fading channels, l  
is  exponentially distributed with the 

probability density function (pdf) given by /( ) /xf x e 
   

for 0,x   where   is the average SNR. 

 

L

Diversity 
Receiver

cL cL cL rL

Group 1 Group 2 Group K-1 Group K

 
Fig. 1. The partition of GSSC with total L antenna branches.  

 

In Fig. 1, each of the first ( 1)K   groups in the GSSC 

scheme contains the same number of antenna branches Lc, and 

the last group consists of the rest ( 1) cL K L   antenna 

branches. Let ( 1) .r cL L K L    Notice that if the L 

antennas are equally partitioned, Lc = Lr.   
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communication systems [12]-[15]. In this paper, to reduce the 



  

In each group of the GSSC scheme, the branch with the 

maximum SNR is used for the decision of group switching. 

Throughout the paper, a discrete-time model is used for the 

switching behavior. For a reception slot at discrete-time n, let 

, ( )S k n  denote the maximum SNR for group k, and then 

, ( )S k n  is given by 
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For the i.i.d. Rayleigh fading channels, the pdf of ,S k  is  
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Let ˆ( )k n k ( 1,2, , )k K 
 
represent the event that 

branch k is used for signal reception at discrete-time n. With 

GSSC, for 1,2, , ,k K  the group switching based on 

, ( )S k n  and the preset ST k  is characterized by 
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(3) 

The above switch operation will be completed within the 

guard time between consecutive reception slots. If group k is 

chosen for 1,2, , ,k K  then the branch with ,S k  is 

employed for the corresponding signal reception. 

Notice that if 1cL   is set, the GSSC reduces to the 

conventional SSC. In addition, if cL L  (i.e., 1K   without 

partition), the only choice of the ST is 0,   and then the 

GSSC becomes the traditional SC. Thus, both SSC and SC 

schemes are different special cases of the GSSC scheme. 

Throughout the following analysis, the case of 2K  is 

considered. 

 

III. PERFORMANCE EVALUATION 

A. Markov Chain Model   

For performance analysis, the Markov chain model similar 

to those used in [5] and [9] is applied to the group switching. 

In the following analysis, the time index n will be omitted for 

notation simplification. We also assume that the event k̂ k  

is a stationary Markov chain. Then, the corresponding state 

transition probability ,i jp  from k̂ i  to k̂ j  is given by 
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Then, it is straightforward to show that the stationary 

distribution of state k of the Markov chain is given by 
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where  
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Notice that if an identical ST   is employed for all 

diversity branches, the stationary distribution becomes 
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 (7) 

B. BEP Analysis 

With the above stationary distribution, the total BEP is 

given by 
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where |e iP  is the BEP conditioned on that the i
th

 group is used  

in the previous slot for signal reception. For i.i.d. fading 

channels, this conditional BEP has the form 
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(10) 

If 2,K   where P0() denotes the error probability of 
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detection when “0” has been transmitted by using BPSK 

signaling. With some manipulations for the conditional error 

probability given in (9), we obtain following closed-forms for 

different cases 
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and 
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where erfc() is the complementary error function, and 
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For the case of 2,K  conditional error probabilities 

similar to (12) and (13) can be employed. 

If an identical ST is used for all branches, i.e., k  for 

1,2, , ,k K   the BEP reduces to the form 
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C. Optimization of ST 

For 2,K  to obtain the multiple optimal STs 

1 2( , , , )K    that minimize the BEP given by (8) is difficult 

and intractable. On the other hand, we may define the locally 

optimal ST i  that minimize | ( ).e i iP   

By taking the derivative of | ( )e i iP   given by (11)-(13), 

respectively, and solving the relevant minimization problems, 

we obtain the locally optimal ST i  as 
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for 2,K   and  
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for 2,K  where erfc
-1

() is the inverse function of the 

complementary error function. Notice that, if c rL L  (i.e., 

for equally partitioned branches) with an identical ST, the 

above locally optimal ST becomes globally optimal. 

D. Outage Probability 

The outage probability is given by 
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where |out iP  is the outage probability when the i
th

 group is 

used  in the previous slot of signal reception. With the outage 

threshold x, |out iP  for i.i.d. channels is given by 
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for 2,K  where the ST symbols are omitted to alleviate 

notations. With (19), |out iP  can be obtained as  
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for 2.K   When 2,K   we can obtain 
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(21) 

 

To evaluate the outage probability, the locally optimal STs 

given by (16) and (17) will be also applicable. 

 

IV. NUMERICAL RESULTS 

The BEP and outage probability with the locally optimal 

STs are evaluated numerically for different cases.  

 

 
Fig. 2. The BEP comparison for L=6 with different partitions. 

 

 
Fig. 3. The BEP comparison for L = 7 with different partitions. 

 

As examples for performance illustrations, the BEP with 

different partitions (i.e., different values of cL ) is illustrated 

for 6L   in Fig. 2 and for 7L   in Fig. 3, where the 

conventional SSC and SC are also plotted for comparisons. 

From Fig. 2 and Fig. 3, the diversity gain of GSSC is larger 

much larger than that of SSC, and the performance 

improvement enhances when the average SNR or cL   

increases. For example, with 6L   and 2,cL   the power 

gain of GSSC over SC will be more than 10dB.  

The comparison for different values of L with 2cL   and 3 

is shown in Fig. 4 (on the next page). From the comparison, 

we notice that, with the same ,cL  the BEP improvement by 

increasing the total number of antennas is not much. 

The outage probabilities with outage thresholds 0dBx   

and 5dB are illustrated for 6L   in Fig. 5 and for 7L   in 

Fig. 6, where the outage probability of SC is also plotted for 

comparisons. From the results in Fig. 5 and Fig. 6, we notice 

that the outage improvement is also remarkable by increasing 

the value of cL  for GSSC. In addition, the GSSC scheme has 

a much better outage probability than the SC scheme that uses 

the total number of branches equal to .cL  

 

 
Fig. 4. The BEP comparison for different values of L with partitions Lc = 2 

and 3.  

 

 
Fig. 5. The outage probability for L = 6. 

 

 
Fig. 6. The outage probability for L = 7. 

 

V. CONCLUSIONS 

The GSSC scheme has been addressed, and its BEP and 

outage probability have been derived for performance 

evaluation. To minimize the BEP, locally optimal STs are 
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derived. When antenna branches can be equally partitioned in 

some cases and an identical ST is used for all branches, the 

locally optimal ST also becomes globally optimal. The 

performance evaluation for GSSC on i.i.d. channels can be 

extended to independent and non-identically distributed 

channels. In addition, with feedback information from a 

receiver to a transmitter, the GSSC scheme can also be 

applied to transmission antenna diversity or multi-input 

multi-output systems. 
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