

Abstract—A receiving and sending algorithm is proposed to

prevent the packet loss in Linux-based EtherCAT master. The

algorithm is implemented by modifying the IgH EtherCAT

master stack module, and can be used in the application

program for EtherCAT master. The performance of the

modified EtherCAT master is verified by experimenting it with

the EtherCAT slave hardware provided from Texas

Instruments Inc. Experiment results show the improved data

throughput as well as the compensation of communication jitter

compared to the existing IgH EtherCAT open master stack.

Index Terms—Communication jitter, data receiving and

sending algorithm, EtherCAT, packet loss, throughput.

I. INTRODUCTION

In recent years, the software-based network master stacks

with non-dedicated computer have been increasingly used as

industrial automation systems [1]. In some cases, this trend

led to various approaches related to both the implementation

and evaluation of software-based master using open-source

operating system (OS) supporting the real-time capability [2],

[3].

As for an industrial fieldbus, EtherCAT, an Ethernet-based

high-performance fieldbus system, has been widely used for

the industrial network solution [4]. It enables the network

control system to be built without additional customized

interface card on the controller. Moreover, this kind of

systems can be built entirely from open-source components

due to the availability of open-source EtherCAT master

components like IgH EtherLab [5].

Several different real-time extensions of Linux have been

chosen for the EtherCAT network applications in the recent

past [6]. Their real-time performance has been thoroughly

evaluated because Linux has sometimes been used as a

platform to develop and benchmark novel scheduling

paradigms and algorithms [7], [8]. However, they do not

consider the improvement of the inner stack program and the

compensation of communication jitter incurred by a periodic

networked control task for receiving and sending process of

EtherCAT frame.

In this study, we propose a receiving and sending algorithm

to improve the data throughput of Linux-based EtherCAT

master. The modified master stack eliminates the data skip

which occurs in process data handling of high-speed

EtherCAT communication. The performance of Linux-based

master stack applied with the proposed receiving and sending

Manuscript received Aril 1, 2015; revised June 25, 2015. This work was

not supported by any organization

The authors are with the Department of Electrical and Computer

Engineering, Pusan National University, Busan, 609-735, Korea (e-mail:

cja@pusan.ac.kr, hcy@pusan.ac.kr, hwkim0314@pusan.ac.kr,

psm2689@pusan.ac.kr, jyc@pusan.ac.kr).

algorithm is experimented with the EtherCAT slave

controllers, TMDSICE3359, provided in Texas Instrument.

The experimental results show that the proposed solution not

only enhances data throughput but also have a positive effect

on the communication system in terms of transfer period

compared to existing IgH EtherCAT master stack.

II. DESCRIPTION OF THE ETHERCAT PROTOCOL

EtherCAT is an industrial protocol built on the Ethernet

specifications. The particular method of EtherCAT to process

frames makes it possible to be the fastest industrial Ethernet

technology [4], [9]. Key functional principle lies in how its

nodes process Ethernet frames. Each node reads the data

addressed to it and writes its data back to the frame all while

the frame is moving downstream. This leads to improved

bandwidth utilization while also eliminating the need for

switches or hubs [4].

Data communication structure of EtherCAT network can

be characterized as Master and Slave. The EtherCAT master

sends a telegram that passes through each node. Each of

EtherCAT slave devices reads the data addressed to it

expeditiously and inserts its data in the frame moving

downstream. The frame is delayed only by hardware

propagation delay times. The last node in a segment or branch

detects an open port and sends the message back to the mater

using full duplex feature of Ethernet.

Fig. 1. Flowchart of receiving and sending algorithm at EtherCAT master.

The receiving and sending algorithm of master software

between the data-link layer and the application layer can be

explained as in Fig. 1 [10]. In this study, IgH EtherCAT

master stack which is the qualified open-source master

software is used as the basis of analysis. First, the program

receives the datagrams sent from the slaves periodically.

Second, the program processes the received process data and

queues the domain datagrams. After all of the applications in

the master finish, the program put the new process data in the

send datagram queue. Then, the master sends the queued

Cheol-Jin An, Hyun-Chul Yi, Hyoung-Woo Kim, Sung-Mun Park, and Joon Young Choi

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

24610.7763/IJFCC.2015.V4.394DOI:

Preventing Data Loss in Linux-Based EtherCAT Master

datagrams to the slaves. After then, master sleeps for the

established time by a Linux function, clock_nanosleep(), and

one cycle of the master process is finished. This cyclic

process continuously repeats until the program is finished.

III. PROBLEM STATEMENT

The transfer period of EtherCAT master is affected by the

communication jitter depend on the hardware performance

[5], [11], [12]. Communication jitter can be classified into

two kinds; the transfer period to be shorter than the defined

value and to be longer than the defined value. Both kinds of

jitters imply a potential risk on network system and lead to

instability of the communication between master and slaves.

The focus of this paper is the case of transfer period being

shorter than defined value. When the transfer period is shorter

than the previous cycle time, the receive command is

performed in the state that master have not yet received new

data from slaves. Then, the master is not able to receive the

data consequentially. Cycle time is the time taken for data to

pass through the network and return to the master [13].

Fig. 2 shows that the difference in data exchange sequence

between a normal circumstance and the shorten transfer

period circumstance. In this case, the process data keeps being

the same as in the last cycle because it is not erased by the

domain. When the domain datagrams are queued again, the

master notices that they are already queued. It is noticed by

domain process as the working counter of processing

datagrams is not increased. In the case of IgH EtherCAT

master stack, the master is programed to print warning

messages that inform datagrams were skipped [5]. It is able to

be confirmed by the system log as shown in Fig. 3.

Fig. 2. Data exchange sequence when (a) the network works normally (b)

transfer period is shorter than cycle time.

Fig. 3. System log including data warning messages.

Although the transfer period is set as a constant value, the

problem usually occurs since the performance of hardware is

not able to perform the programmed tasks. Therefore, the

problem could get solved with sufficiently high-performance

hardware [5]. However, we suggest the solution of this

problem only with modifying the master stack by proposed

receiving process.

IV. PROPOSED SOLUTION

In this section, we propose a simple method to overcome

the defect of EtherCAT master outlined above. The proposed

algorithm is depicted in Fig. 4.

Fig. 4. Flowchart of the proposed algorithm.

A step for decision whether receiving has been completed

or not is added to the receiving and sending algorithm. Under

this algorithm, if the master have not received all of data from

the slaves, it has master wait and execute the receive function

in succession until master receives all response frames sent

from master to slave just before.

This additional process is implemented by checking the

working counter. The working counter enables information in

each datagram to be monitored for consistency within the

frames [4], [5]. Every node addressed by the datagram and

whose memory is accessible increments working counter

automatically. If the working counter has a different value

than it should, the master waits until working counter change

to the value it should. The master device is then able to

automatically detect the reason for the unexpected behavior

with help from status and continue the job. The pseudo code

for decision on receiving data to prevent data skip is shown in

Fig. 5.

In the proposed algorithm, the additional receiving process

works during the working counter being not three only if the

state of master is operation mode. The working counter being

three means slaves has finished reading and writing data in the

arrived frame. For that condition, the program continue to

attempt to receive frame until the working counter being

changed to the expected working counter value using the three

functions; ec_master_receive, ecrt_domain_process and

check_domain_state.

When this algorithm is applied to the existing master stack,

it is possible to send and receive frames stably without data

loss because master do not send next packet until finishing the

processing for previous packet. Consequently, the data

throughput of EtherCAT network master is improved without

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

247

hardware which has remarkable performance.

Fig. 5. Pseudo code for data receiving algorithm.

V. EXPERIMENT

A. The Hardware and Software Platform

Fig. 6. Block diagram of experimental station.

The experiment is conducted with one PC master and four

slaves. The block diagram of experimental station is

presented in Fig. 6 [14]. The blocks can be classified into a

master and slaves. Solid boxes and arrows represent hardware

components and causality relationships within the modules.

Dashed boxes and arrows signify interfering components and

concurrent activities. In order to reduce the interferences

caused by operating system tasks not required by the control

application, unnecessary tasks for implementing an

EtherCAT network had been removed and the static priority

of the control application for experiment is set to 49, the

highest value.

The EtherCAT system was implemented and tested on a

general purpose PC equipped with an Intel Core i7 running at

2.67GHz and 4GB of DDR3 RAM as the master. The network

interface card carrying EtherCAT traffic is based on the Intel

gigabit network card. The PC has been set up with a Linux

kernel version 3.2.0 patched with the RT version 10

components which are calibrated to schedule and synchronize

hard real-time tasks. The Linux kernel with RT patch offers

real-time performance comparable with commercial RTOS as

well as IgH EtherCAT master stack installed is optimally

designed for Linux kernel module. As for the slave device,

TMDSICE3359 provided by Texas Instrument was used as

slave devices.

B. Experimental Results

The experiment is conducted using program a master send

process data to slaves on a regular period. Executing the

program for 20 minutes in each transfer period, we measure

the number of skipped EtherCAT frames. As depicted in Fig.

7, the number of skipped EtherCAT frames is in inverse

proportion to the transfer period before collecting the process.

On the other hand, there is no skipped frame when the

proposed solution is applied. It means that there was any data

loss in the process of communication as the proposed process

clearly had got rid of the skipping data problem.

Fig. 7. The number of data skip for each transfer period.

In addition, a point to be considered for this solution is

whether it has an adverse effect on real-time communication

system. In order to verify it, the average duration of the

receiving step with the proposed algorithm and change of

transfer period are measured. All of the values are measured

by the Master PC using the clock_gettime() function which

gets the current time from CPU.

The average duration of the receiving step as it is repeated

more than twice on each condition is measured and the results

are shown in Fig. 8.

Fig. 8. Duration of the proposed process.

Fig. 9. Transfer period (a) in normal situation (b) when the receiving process

is repeated with the proposed algorithm (c) when data are skipped without

the proposed algorithm.

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

248

According to the results of Fig. 8, the receiving process

takes much less time comparison with the programmed

transfer period and the maximum time of the receiving

process also shorter than time for the programmed transfer

period.

Fig. 9 is the measured transfer period of the system in the

same condition. According to the results, the transfer periods

in the situation that the receiving process being repeated do

not exceed the real transfer periods in normal situation which

are different with the programmed values since an actual

system is not able to work ideally as it had been programmed

by external factors. It means that the proposed solution

doesn't have an adverse effect on the communication system

at all in terms of time.

The additional receiving process of the proposed algorithm

is also able to compensate a shorten time by a quick execution

of the first data receiving function. It is also can be known by

the result of Fig. 9. The transfer period in case of the receiving

process being repeated with the proposed algorithm is longer

than the transfer period in the case of data being skipped

without the proposed algorithm and is closer to the

programmed transfer period.

VI. CONCLUSION

In this paper, we proposed a method to solve the weakness

of EtherCAT protocol that EtherCAT master skips data in the

case of transfer period being shorter than defined value. It had

been verified through the experiments with EtherCAT

network system applying the receiving and sending algorithm.

We also confirmed that the algorithm is able to prevent data

loss effectively between master and slaves as well as does not

influence on existing program aspect of delay and even the

short delay helps to maintain the cycle time of communication.

This proposal is all the more meaningful in that the EtherCAT

network can be improved with a simple code modification

without any hardware upgrades.

REFERENCES

[1] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,

“Evaluation of EtherCAT distributed clock performance,” IEEE Trans.

Ind. Inf., vol. 8, no. 1, pp. 20-29, Feb. 2012.

[2] P. Gerum, “Xenomai — Implementing a RTOS emulation framework

on GNU/Linux,” 2004.

[3] P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes,

and D. Beal, “RTAI: Real-time application interface,” Linux J., no. 72,

pp. 142-148, Apr. 2000.

[4] Introduce of EtherCAT. [Online]. Available:

http://www.ethercat.org/pdf/ethercat e.pdf

[5] IgH EtherLab EtherCAT master. [Online]. Available:

http://www.etherlab.org/en/ethercat

[6] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari, “Resource

reservations for general purpose applications,” IEEE Trans. Ind. Inf.,

vol. 5, no. 1, pp. 12-21, Feb. 2009.

[7] L. Palopoli and L. Abeni, “Legacy real-time applications in a

reservation-based system,” IEEE Trans. Ind. Inf., vol. 5, no. 3, pp.

220-228, Aug. 2009.

[8] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar,

“Rate-harmonized scheduling and its applicability to energy

Cheol-Jin An received the B.S. degree in electronic and

electrical engineering from Pusan National University,

Pusan, Korea in 2014. He is now a M.S. candidate in

electrical and computer engineering at Pusan National

University, Korea since 2014. His research interests are

nonlinear control and embedded systems.

Hyun-Chul Yi received the B.S. degree in computer

science engineering from Pusan National University,

Pusan, Korea in 2010 and the M.S. degree in electronic

and electrical engineering from Pusan National

University, Pusan, Korea in 2012. He is now a Ph.D.

candidate in electrical and computer engineering at

Pusan National University, Korea since 2012. His

research interests are embedded system and wireless

sensor network.

Hyoung-Woo Kim received the B.S. and M.S. degrees

in electronics engineering from Pusan National

University (PNU), Pusan, Korea in 2013 and 2015,

respectively. He is currently a Ph.D. candidate in

electronics engineering at PNU since 2015. His research

interests include nonlinear control, embedded systems,

and power systems.

Sung-Mun Park received the B.S. degree in electronic

and electrical engineering from Pusan National

University, Pusan, Korea in 2014. He is now a M.S.

candidate in electrical and computer engineering at

Pusan National University, Korea since 2014. His

research interests are nonlinear control and embedded

systems.

Joon Young Choi received the B.S., M.S. and Ph.D.

degrees in electronic and electrical engineering from

Pohang University of Science and Technology

(POSTECH), Pohang, Korea in 1994, 1996 and 2002,

respectively. From 2002 to 2004, he worked as a senior

engineer at Electronics and Tele-Communication

Research Institute (ETRI), Daejeon, Korea. From 2004

to 2005, he worked as a visiting associate in the

Departments of Computer Science and Electrical Engineering at California

Institute of Technology (CALTECH), Pasadena, CA. Since 2005, he has

been with the Department of Electronics Engineering, Pusan National

University, Pusan, Korea, where he is currently a professor. His research

interests include nonlinear control, internet congestion control, embedded

systems, and automation.

International Journal of Future Computer and Communication, Vol. 4, No. 4, August 2015

249

management,” IEEE Trans. Ind. Inf., vol. 6, no. 3, pp. 265-275, Aug.

2010.

[9] I.-S. Song, Y.-H. Jeon, J.-H. Kim, S.-H. Seo, K.-H. Kwon, J.-H. Chun,

and J.-W. Jeon, “Implementation and analysis of the embedded master

for EtherCAT,” in Proc. Inst. Elect. Eng., in Proc. Int. Conf. Control

Automation and Systems, Oct. 2010, pp. 2418-2422.

[10] IgH EtherCAT master reference manual. [Online]. Available:

http://www.etherlab.org/en/ethercat/

[11] S. Potra and G. Sebestyen, “EtherCAT protocol implementation issues

on an embedded Linux platform,” in Proc. Autom., Quality and

Testing Robotics, May 2006, pp. 420-425.

[12] AM3359 industrial communications engine (ICE) schematic. [Online].

Available: http://www.ti.com/tool/tmdsice3359

[13] D. Hristu-Varsakelis and W. S. Levine, “Handbook of networked and

embedded control system,” 2005.

[14] M. Cereia, I. Cibrario-Bertolotti, and S. Scanzio, “Performance of a

real-time EtherCAT master under Linux,” IEEE Trans. Ind. Inf., vol. 7,

no. 4, pp. 679-687, Nov. 2011.

