
  

 

Abstract—Nature abounds with complex patterns emerging 

from biological, chemical, physical and social systems. Cellular 

Neural Networks (CNNs) may produce patterns similar to those 

found in nature, which implies that CNNs may be used as 

prototypes to describe some systems in nature.  The Cow Patch 

CNNs introduced by Chua et al. can generate pattern that cow 

patches and checkerboards coexist from any random initial 

pattern. In order to investigate the characteristics of the Binary 

Cow Patch CNNs, this study introduces concepts of so-called 

inherent (final) active, inherent (final) passive, and inherent 

(final) neutral for pattern pixels, and proposes Global Task and 

Local  Rules of the Binary Cow Patch CNNs, and establishes a 

set of theorems. Three simulation examples have been carried 

out to verify the effectiveness of theoretical results. 

 

Index Terms—Binary cow patch CNN, initial state, binary 

image, global task, local rules. 

 

I. INTRODUCTION 

The CNN introduced by Chua & Yang ([1], [2]) is a new 

information processing paradigm. In term of its local 

connectivity, CNN has been made of CNN universal chips, 

whose theoretical computation speed is typically three orders 

of magnitude faster than the current digital processor [3]. 

Now the CNNs and its generalization have been widely 

studied  for practical applications in image and video signal 

processing, robotic and biological visions, higher brain 

functions, and cryptography ( [3]–[15]). 

The Hopfield Neural Network (HNN) requires fully 
connected and grows exponentially with the size of the array. 

Therefore it cannot be built, even in modest array sizes, as 

VLSI circuits [3].   

In an analog CNN, the parameter levers usually have 5% 

~10% of perturbation [16]. Therefore, the robust design of 

CNN template parameters is an important issue. Chua and 

Dogaru ([3], [7]) have studied the robust design of a large 

kind of CNN-uncoupled Boolean CNNs, which provides 

optimal design schemes for CNNs with prescribed tasks. 

Nature abounds with complex patterns and structures 

emerging from homogeneous media operating far from 

widely observed in both inanimate (nonbiological) and 

biological  media, can be modeled and studied via the CNN  

paradigm in an in-depth and unified way [17]. 

In a Chua’s monograph on CNN [3], he has invested 
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spontaneous pattern formations with several kinds of coupled 

CNNs from random initial conditions. In [18], Thiran, 

Crounse,Chua, and Hasler have provided a categorization of 

the patterns that they can formed with 3 3  template. They 

have found that for the CNN with “diagonal cross template” 

(DCT) 
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if the parameters satisfy the following inequalities 

 

2 1 0a c                                        (2) 

 

       1 0a                                             (3) 

 

0,c                                              (4) 

 

any initial random state input pattern will give rise to stable 

output pattern that cow patches and checkerboards coexist, 

which is called the Cow Patch CNN.  

In a conference paper [19], Zhang and Min have invested 

the dynamic behaviors of the stripe CNN with parameter a = 1 

for any random binary initial input patterns. 

In this paper, we introduce a kind of the Binary Cow Patch 

CNNs. Several theorems are set up to describe the dynamics 

for the Binary Cow Patch CNNs. Three numerical simulation 

examples are given to verify the theorems to be efficient in 

practical applications for computer digital image processing. 

The rest of this paper is organized as follows. Section II 

introduces some definitions related to the behaviors of the 

Binary Cow Patch CNN, and describes the Global Task and 

the Local Rules of the Binary Cow Patch CNN. Section III 

sets up a group of theorems to determine the properties of the 

output patterns of the Binary Cow Patch CNN. Numerical 

simulation examples are implemented in Section IV. Finally, 

Section V gives some conclusions. 

 

II. BINARY COW PATCH CNN 

In this section, we will show that under conditions (2), (3) 

and (4), DCT CNN is able to generate output pattern that cow 

patches and checkerboards coexist from a random initial 
pattern. First let us remember some basics on CNN. 

The standard CNN with 3 3  template is composed of a 

two-dimensional M by N array of cells. Each cell is denoted 

by 
,i jC ，where 1,2, , ; 1,2,i M j N   . 

The dynamics of  
,i jC  is given by  
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Fig. 1. The dynamic route of Binary Cow Patch CNN with a < 1. 

 

 
Fig. 2. The dynamic route of Binary Cow Patch CNN with a = 1. 

 

where 
,i ju ,

,i jx , and
,  i jy are the input, state, and output 

variables of the cell; 
,k la  s, 

,k lb  s, and z are the elements of 

the A-template, the B-template, and threshold, respectively. 

The output 
,  i jy  is the piece-wise linear function given by 

 

, , ,

1
( 1 1)

2
i k j l i k j l i k j ly x x        

 
 

The state equation of the Binary Cow Patch CNN has the 

form 
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(6) 

 

The dynamic routes of the Binary Cow Patch CNN are 

shown in Fig. 1 and Fig. 2. Since the translation term 
,i jw is 

dependent on time t , this makes the dynamic routes of the 

Binary Cow Patch CNN are very complex. 

In order to describe possible stable equilibria of the Binary 

Cow Patch CNN, we introduce following definitions. 

Definition 1 Let 
,( )i j M NU u   be a binary image with 

M N  pixels. A pixel 
,i jC  at ( , )i j th position with 

gray-scale 
,i ju is said to be inherent active if 

 

, ( ) 1 , 0 1,i jw t a t if a     
 

 

or 
, ,( ) 0, 0 1 1,i j i jw t t if a and u      

or 
, ,( ) 0, 0 1 1.i j i jw t t if a and u        

The set consisting of all inherent active pixels is said to be 

an inherent active network. 

A pixel 
,i jC  is said to be inherent passive if 

 

, ( ) 1, 0 1,i jw t a t if a     
 

 

 
Fig. 3. A pattern P consists of the inherent passive network and inherent 

active network. 

 

or 
, ,( ) 0, 0 1 1,i j i jw t t if a and u       

or 
, ,( ) 0, 0 1 1.i j i jw t t if a and u       

The set consisting of all inherent passive pixels is said to be 

an inherent passive network. 

A pixel 
,i jC  is said to be inherent neutral if 

 

,1 ( ) 1 , 0 1.i ja w t a t if a       
 

 

The set consisting of all inherent neutral pixels is said to be 

an inherent neutral network. 

Definition 2 Let 
,( )i j M NU u  be a binary image with 

M N pixels. A pixel 
,i jC at ( , )i j th position with 

gray-scale 
,i ju  is said to be final active if there is a constant 

* 0t  such that 
 

, ( ) 1 , 1,i jw t a t t if a   
 

 

or  
 

, ( ) 0, 1.i jw t t t if a     

 

The set consisting of all final active pixels is said to be a 

final active network. 

A pixel 
,i jC  is said to be final passive if there is a constant  

* 0t   such that 
 

, ( ) 1, 1,i jw t a t t if a   
 

 

or 
 

, ( ) 0, 1.i jw t t t if a     

 

The set consisting of all final passive pixels is said to be a 

final passive network. 

A pixel 
,i jC  is said to be final neutral if there is a constant 

* 0t  such that 
 

,1 ( ) 1 , 1,i ja w t a t t if a      
 

 

or 

, ( ) 0, 1.i jw t t t if a     

 

The set consisting of all final neutral pixels is said to be a final 
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neutral network. 

Definition 3 Let 
,( )i j M NU u  be a binary image 

with M N pixels. An active network is the set consisting of 

the inherent active network and the final active network. A 

passive network is the set consisting of the inherent passive 

network and the final passive network. A neutral network is 

the set consisting of the inherent neutral network and the final 

neutral network. 

Remark 1. The output of a passive network is a white 

(gray-scale is -1) image. The output of an active network is a 

black (gray-scale is +1) image. The output of a neutral 
network is a gray (gray-scale is belong to [-1, 1]) image. 

Example 1. Now consider a = 1 and the binary image P 

shown in Fig. 3, whose gray scales are listed as follows. 

 

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

-1 -1 -1

1 -1 1

1 1 1

C C C

P C C C

C C C

   
   

    
     

 

 

Now we investigate the dynamic behaviors of  
, ( )i jw t  s as 

follows. 

 

1,1C : 
1,1 0,0 0,2 2,0 2,2( ) ( ( ))w t c u u u y t     

2,2( 1 1 1 ( )) 0, 0.c y t t        

                

1,3C : 
1,3 0,2 0,4 2,4 2,2( ) ( ( ))w t c u u u y t     

2,2( 1 1 1 ( )) 0, 0.c y t t        

 

3,1C : 
3,1 2,0 4,0 4,2 2,2( ) ( ( ))w t c u u u y t     

2,2(1 1 1 ( )) 0, 0.c y t t       

 

3,3C : 
3,3 2,4 4,2 4,4 2,2( ) ( ( ))w t c u u u y t     

2,2(1 1 1 ( )) 0, 0.c y t t     
 

 

It follows that 
1,1C ,

1,3C are inherent passive cells and 
3,1C , 

3,3C  are inherent active cells. And we conclude that 
2,2C  is an 

inherent passive cell. On the other hand, 

1,2 :C  
1,2 0,1 0,3 2,1 2,3( ) ( ( ) ( ))w t c u u y t y t     

2,1 2,3( 1 1 ( ) ( )) 0, 0.c y t y t t      
 

3,2 :C  
3,2 4,1 4,3 2,1 2,3( ) ( ( ) ( ))w t c u u y t y t     

2,1 2,3(1 1 ( ) ( )) 0, 0.c y t y t t     
 

It follows that 
1,2C is an inherent passive cell and 

3,2C is an 

inherent active cell. 

 

2,1C :  
2,1 1,0 3,0 1,2 3,2( ) ( ( ) ( ))w t c u u y t y t     

1,2 3,2( 1 1 ( ) ( )) 0, 0.c y t y t t      
 

 

2,3 :C  
2,3 1,4 3,4 1,2 3,2( ) ( ( ) ( ))w t c u u y t y t     

1,2 3,2( 1 1 ( ) ( )) 0, 0.c y t y t t        

It follows that 
2,1C and

2,3C are inherent active cells.  

Therefore
1,1C ,

1,2C , 
1,3C  and

2,2C  are consist of inherent 

passive network. 
2,1C , 

2,3C , 
3,1C , 

3,2C and  
3,3C are consist of 

inherent active networks. 

In order to describe the stable output images of Binary Cow 

Patch CNN, we introduce following definitions. 

Definition 4 A cow patch black/white island is the cow 

patch-shaped area. This area is composed of black/white 

pixels connected by edges, and every black/white pixel has at 

least three black/white pixels connected with it. 

Remark 2. If an initial state  0X U . Then the stable 

output image of a cow patch black /white for a Binary Cow 

Patch CNN is the same cow patch-shaped black/white island. 

Definition 5 A checkerboard black/white island is the 

checkerboard-shaped area. This area is composed of 

black/white pixels connected diagonally and every 

black/white pixel has at least two black/white pixels 
connected with it. 

 

 
a)                                   b)  

Fig. 4. a) A Cow Patch black island; b) A Checkerboard black island. 

 

Remark 3. If an initial state  0X U . Then the stable 

output image of a checkerboard black/white for a Binary Cow 

Patch CNN is the same checkerboard-shaped black/white 

island. 

Example 2. The area marked in Fig. 4 a) is a cow patch 

black island, and the area marked in Fig. 4 b) is a 

checkerboard black island. 

Now we propose the Global Task and Local Rules for the 

Binary Cow Patch CNN. 

A. Global Task of the Binary Cow Patch CNN 

1) Given: A static binary image U  . 

2) Initial State:  0X U . 

3) Boundary Conditions: State variable is reflected across 

the boundary. 

4) Output:   ( )Y t Y  consists of pattern that cow 

patches and checkerboards coexist [18]. 

B. Local Rules of the Binary Cow Patch CNN 

,i ju       
, ( ).i jy   

1) 
,/ ,

.

i jwhite black black if C is inherent active

or final active

     

  


  

2) 
,/ ,

.

i jwhite black white if C is inherent passive

or final passive

    

  


 

3) 
,/ ,

.

i jwhite black gray if C is inherent neutral

or final neutral

    

  


 

 

III. MATHEMATICAL ANALYSIS 

In 1999, Lin and Shih showed the following: 
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Theorem 1: ([20]) Any Standard CNN with symmetric 

space-variant feedback template is completely stable 

It follows that each CNN with diagonal cross template is 

complete stable, that is, has a stable state output for any initial 

condition.  

From Fig. 1, we can conclude that: 
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From Fig. 2, we can conclude that: 

 

, ,

, ,

, ,

, ,

,
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1 ( ) 0, 0, 1;

1 ( ) 0, 0, 1;

1 ( ) 0, 0, 1;
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( ) 0, ;

0,

( ) 0, .

i j

i j

t w t t t

gray if there exists a constant t

such that w t t t




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

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

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 


  

      (8) 

 

                  
a)                                  b)                                      c)    

Fig. 5. a) Input image; b) Output image; c) Image selected from. 

 

Fig. 5 a) is a random input binary image, Fig. 5(b) is the 

stable output image by the Binary Cow Patch CNN, Fig. 5(c) 

is an extracted area marked in Fig. 5 b). 

The following theorem gives necessary conditions to make 

the Binary Cow Patch CNN has the output shown in Fig. 5 b). 

Theorem 2: Let the positions of CNN template parameters 

be described by (1). If a CNN can generate cow patch-shaped 

pattern from a random binary initial pattern then the following 

parameter inequality must hold, 

 

2 1 0a c                                          (9) 

 

 1 0a                                               (10) 

 

0c                                                  (11) 

 

Proof: If the stable output images of the CNN has a pattern 

as shown in Fig. 5 c). According to Local Rule 1, formulas (7) 

and (8), for cell 
2,2C   should meet 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 2 1 , 1,

w c y y y y

c c a if a

        

      
 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 2 0, 1.

w c

i

y y y y

c c af

       





      
 

 

Hence formulas (9), (10) and (11) must hold. 

We present two theorems on inherent active network and 

inherent passive network. 

Theorem 3: A pixel 
,i jC is inherent active if there are at 

least three nearest fixed black neighbors on its diagonal lines. 

Proof: By there are at least three nearest fixed black 

neighbors on its diagonal lines, therefore, 
 

, ( ) (3 1) 2 1 , 0 1,i jw t c c a t if a       
 

 

or  
 

, ( ) (3 1) 2 0, 0 1.i jw t c c t if a        

 

From definition 1, it follows that  
,i jC is inherent active. 

Theorem 4: A pixel 
,i jC  is inherent passive if there are at 

least three nearest fixed white neighbors on its diagonal lines. 

Proof: By there are at least three nearest fixed white 

neighbors on its diagonal lines, therefore, 
 

, ( ) ( 3 1) 2 1, 0 1,i jw t c c a t if a         
 

 

or  
 

, ( ) ( 3 1) 2 0, 0 1.i jw t c c t if a          

 

From definition 1, it follows that 
,i jC  is inherent passive. 

Then, we present two theorems about final active network, 

final passive network and final neutral network. 

Theorem 5: Let a pixel 
,i jC neither be inherent active nor 

inherent passive. Then 

1) if there are at least three nearest diagonal neighbors are 

inherent active, then 
,i jC  is final active. That is, 

, ( ) 1i jy   . 

2) if there are at least three nearest diagonal neighbors are 

inherent passive, then 
,i jC is final passive. That is,  

, ( ) 1i jy    . 

3) if there are exactly two nearest diagonal neighbors are 

inherent active and two nearest diagonal neighbors are 

inherent passive, then 
,i jC is final neutral. That is, there 

exists a constant * 0t   such that 
* *

, ,  ,) )  ( (i j i jy x t t tt    . 

Proof: 

1) By the Definition of the inherent active pixels and Local 

Rule 1, there is a constant * 0t  such that * t t  , there 

are at least three nearest diagonal neighbors become 

black. Therefore, 
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, ( ) (3 1) 2 1 , 1,i jw t c c a t t if a       
 

 

or 
 

, ( ) (3 1) 2 0, 1.i jw t c c t t if a        

 

By Definition 2, it follows that 
,i jC  is final active. 

 

 

, ( ) ( 3 1) 2 1, 1,i jw t c c a t t if a         
 

 

or 
 

, ( ) ( 3 1) 2 0, 1.i jw t c c t t if a          

 

By Definition 2, it follows that 
,i jC is final passive. 

3) By the Definition of the inherent active, passive pixels 

and Local Rule 3, there is a constant * 0t  such that 
* t t  , there are two nearest diagonal neighbors become 

black and two become white. Therefore, 
 

, ( ) (2 2) 0, 1.i jw t c t t if a     
 

 

By Definition 2, it follows that  
,i jC is final neutral. 

 

 
a)                                     b)  

Fig. 6. a) White pixel in isolated way; b) Black pixel in isolated way. 

 

 
a)                                             b)      

Fig. 7. a) Two white pixels connected by edge in isolated way; b) Two black 

pixels connected by edge in isolated way. 

 

Theorem 6: Let a pixel 
,i jC  neither be inherent active nor 

inherent passive. If there is a constant * 0t  such that * t t   

 

, , ,

, , ,

, , , ,

1) ( ) 1 ( ) 0, ( ) 1,

2) ( ) 1 ( ) 0, ( ) 1,

3) 1 ( ) 1 ( ) 0, ( ) ( )

i j i j i j

i j i j i j

i j i j i j i j

w t a or w t then y

w t a or w t then y

a w t a or w t then y x t

         

          

           
 

 

Proof: It can be concluded from Local Rules, formulas (7) 

and (8). 

In the following discussions, we will present several 

theorems and corollaries on the properties of the output 

images processed by the Binary Cow Patch CNN. 

Theorem 7: For any random binary initial input image, the 

stable output image of the Binary Cow Patch CNN does not 

have the following properties: 

1) An white/black pixel (see Fig. 6) exists in isolated way. 

2) Two white/black pixels connected by edge (see Fig. 7) 

exist in isolated ways. 

Proof: 

1) For cell 
2,2C in Fig. 6 a), 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1)

4 2 1 , 1,

w c y y y y

c

ifc c a a

        





  

    
 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 4 0, 1.

w c

i

y y y y

c c af

       





      
 

 

Hence the stable output gray-level of the cell 
2,2C  must be 

black. Similarly, the stable output gray-level of cell 
2,2C in Fig. 

6 b) should be white. 

2) For cell 
2,2C in Fig. 7 a), 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1)

4 2 1 , 1,

w c y y y y

c

ifc c a a

        





  

    
 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 4 0, 1.

w c

i

y y y y

c c af

       





      
 

 

Hence the stable output gray-level of the cell 
2,2C must be 

black. Similarly, the stable output gray-level of cell 
2,3C  in 

Fig. 7 a) should be black, and the stable output gray-level of 

cells 
2,2C , 

2,3C in Fig. 7 b) should be white. 

 

 
a)                                    b)   

Fig. 8. a) Two pixels wide white striped band which are connected by edges 

in isolated way; b) Two pixels wide black striped band which are connected 

by edges in isolated way. 

 

. 

a)                                         b)               
Fig. 9. a) White rectangle in isolated way; b) Black rectangle in isolated way. 

 

Corollary 1: For any random initial input image, 

horizontal or vertical lines consisting of white/black pixels 

which connected by edge in isolated way cannot exist as the 

stable output image of the Binary Cow Patch CNN. 

Theorem 8: For any random binary initial input image, the 
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2) By the Definition of the inherent passive pixels and Local 

Rule 2, there is a constant * 0t  such that * t t  , there 

are at least three nearest diagonal neighbors become 

white. Therefore,



  

stable output image of the Binary Cow Patch CNN does not 

have the following properties: 

1) Two pixels wide striped bands which are connected by 

edges (see Fig. 8) exist in isolated ways. 

2) Rectangle/square white/black blocks which are 

connected by edges (see Fig. 9) exist in isolated ways. 

Proof: 

1) For cell 
2,2C  in Fig. 8 a), 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1)

2 1 , 1,

w c y y y y

c

c a if a

        

   

  
 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 2 0, 1.

w c

i

y y y y

c c af

       





      
 

 

Hence the stable output gray-level of the cell 
2,2C  must be 

black. Similarly, the stable output gray-level of cells 

2,3C ,
4,2C ,

4,3C ,
3,2C ,

3,3C  in Fig. 8 a) should be black, and the 

stable output gray-level of cells 

2,2C ,
2,3C ,

4,2C ,
4,3C ,

3,2C ,
3,3C  in  Fig. 8 b) should be white.  

2) For 
2,2C  in Fig. 9 a), 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1)

2 1 , 1,

w c y y y y

c

c a if a

        

   

  
 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 2 0, 1.

w c

i

y y y y

c c af

       





      
 

 

Hence the stable output gray-level of the cell 
2,2C  must be 

black. Similarly, the stable output gray-level of cells  

2,5C ,
6,2C ,

6,5C in Fig. 9 a) should be black, and the stable 

output gray-level of cells 
2,2C ,

2,5C ,
6,2C ,

6,5C  in Fig. 9 b) 

should be white. 
 

 
a)                                     b)       

Fig. 10. a) Two white pixels diagonally connected pattern in isolated way; b) 

Two black pixels diagonally connected pattern in isolated way. 

 

      
a)                                              b)     

Fig. 11. a) White blocks which are connected by diagonal points; b) Black 

blocks which are connected by diagonal points. 

 

Theorem 9: For any random binary initial input image, two 

white/black pixels diagonally connected pattern (see Fig. 10) 

in isolated ways cannot exist as the stable output image 

generated by the Binary Cow Patch CNN. 

Proof: For cell 
2,2C  in Fig. 10 a), 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1)

2 1 , 1,

w c y y y y

c

c a if a

        

   

  
 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 2 0, 1.

w c

i

y y y y

c c af

       





      
 

 

Hence the stable output gray-level of the cell 
2,2C must be 

black. Similarly, the stable output gray-level of cell 
3,3C  in 

Fig. 10 a) should be black, and the stable output gray-level of 

cells 
2,2C , 

3,3C in Fig. 10 b) should be white. 

Corollary 2: For any random initial input image, diagonal 

lines consisting of white/black pixels which diagonally 

connected in isolated ways cannot exist as the stable output 

image of the Gray Cow Patches and Checkerboards coexist 

CNN. 

Theorem 10: For any random binary initial input image, 

white/black blocks which are connected by diagonal points 

(see Fig. 11) in isolated ways cannot exist as the stable output  

image generated by the Binary Cow Patch CNN. 

Proof: For cell 
2,2C  in Fig. 11 a), 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1)

2 1 , 1,

w c y y y y

c

c a if a

        

   

  
 

 

2,2 1,1 1,3 3,1 3,3( ) ( ( ) ( ) ( ) ( ))

(1 1 1 1) 2 0, 1.

w c

i

y y y y

c c af

       





      
 

 

Hence the stable output gray-level of the cell 
2,2C must be 

black. Similarly, the stable output gray-level of cell 
6,10C in 

Fig. 11 a) should be black, and the stable output gray-level of 

cells 
2,2C , 

6,10C in Fig. 11 b) should be white. 

In summary, we complete the proof. 

Remark 4. For any 2 1 0, 1, 0a c a c        and any 

random binary input image, the output of the Binary Cow 

Patch CNN is the same, that is, the performance of the Binary 

Cow Patch CNN is robust. 

 

IV. NUMERICAL SIMULATION 

In this section, we will provide three experimental 

simulation examples in three initial states for designed Binary 

Cow Patch CNN. 

Now let us consider the following Binary Cow Patch  

CNN template for simulation. 

 

0.2 0 0.2 0 0

  = 0 1 , , 0

0.2 0 0.2

0

0 0

0

0

0 0

0A B Z

   
   

 
   
      

      (12) 

 
 

Fig. 12 a) – Fig. 12 c) are random binary images with  

pixels generated via the Matlab command 

2*(randi([0 1], 60, 60) 0.5)      
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Fig. 12 d) – Fig. 12 g) are the corresponding output images 

generated via the Binary Cow Patch CNN with template (12). 

Observe that although inputs are three different random 

binary images, the output images show similar cow 

patch-shaped and checkerboard-shaped patterns, as the 

theories predict. 
 

        
a)                                              d) 

          
    b)                                               e) 

           
c)                                                f) 

Fig. 12. The inputs and outputs of three simulation examples. 

 

V. CONCLUSIONS 

This paper investigates a kind of Binary Cow Patch CNNs. 

Ten theorems and two corollaries describe the main 

characteristics of the output images for the Binary Cow Patch 

CNNs, and prove. 

This study introduces the definitions of inherent (final) 

active network, inherent (final) passive network, and inherent 

(final) neutral network. These definitions have significant 

biological meanings. Practically, we are difficult to confirm 

whether a cell is inherent (final) active, inherent (final) 

passive, or inherent (final) neutral. However, these concepts 

suggest that for a specific Binary Cow Patch CNN, there is a 

threshold interval (or the threshold 0 in the case that the 

template parameter a = 1) such that the pixels as output 

pattern of the Binary Cow Patch CNN are classified three 

kinds: 

1) Active networks. They may represent a kind specific 

substance, or specific pattern that cow patches and 

checkerboards coexist or normal (uninfected or 

undamaged) cells. 

2) Passive networks. They may represent another kind 

specific substance, or another specific pattern that cow 

patches and checkerboards coexist or abnormal (infected 

or damaged) cells. 

3) Neutral networks. They may represent interim substances, 

or interim pattern that cow patches and checkerboards 

coexist or interim (infecting or damaging) cells. 

The three simulation examples confirm that the theoretical 

analysis is efficient in practical applications for computer 

numerical simulations. 

The dynamic behaviors of other kind CNNs with diagonal 

cross templates are also quite interesting ([3], [18]). 

The further researches on those CNNs may be helpful for 

interpreting or describing some physical, chemical, biological 

and social phenomena. 
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