
  

 

Abstract—In this work, we present an accurate 3D human 

pose recognition (HPR) work via multi-sensor fusion. Lately, 3D 

HPR is widely performed using a depth imaging sensor, but this 

approach has limitations: 1) orientations of body parts cannot be 

accurately recognized and 2) it suffers from occlusion. 

To achieve an accurate and stable recognition of human poses 

in real-time, in this study, we propose to use inertial 

measurement units (IMUs) which are used to estimate the 

orientation of body limbs and solve the occlusion problem. Via 

fusion of depth and IMU sensors, our results demonstrate 

significantly improved 3D human pose reconstruction: our 

results show the accurate recognition of twist and location of the 

arms even under occlusion. Our presented approach could be 

critical if 3D HPR is to be used for medical applications such as 

musculoskeletal analysis via in 3D as demonstrated in this study. 

 

Index Terms—Human pose recognition, depth sensors, 

inertial measurement units, sensor fusion, musculoskeletal 

analysis. 

 

I. INTRODUCTION 

Human Pose Recognition (HPR) is a technique of 

accurately estimating a human body posture in 3D. Recently, 

HPR has been an active research topic not only in computer 

vision, user interface, virtual reality, and body shape analysis 

but also in biomedical fields such as rehabilitation. 

There are classical approaches to estimate human pose. 

One approach, which is widely used for motion capture in 

movies, is to utilize optical markers. However, this technique 

requires attaching multiple optical markers on human body 

parts and a special setup with multiple cameras. Another 

approach is to use multiple Inertial Measurement Units (IMUs) 

requiring at least 10 IMUs attached to the human body parts. 

Although these sensors are very sensitive to motion, this 

approach is not practical because of their cost and 

inconvenience.  

Recently, a marker-free method for HPR is proposed. In 

particular, a RGB-Depth (RGB-D) sensor which produces 

both RGB images and a distance image is actively employed. 

For instance, in the work of Luong et al. [1], HPR based on 

body parts recognition using a single depth image was 
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presented. Another example of HPR based on inertial sensors 

could be found in the work of Roetenberg et al. and Brigante 

et al. [2], [3] in which human motion tracking using miniature 

inertial sensors was presented. 

However, either depth or inertial sensors only based 

approaches have their own strengths and limitations. 

Although the depth-based methodology works without optical 

markers, it cannot detect twist information of body parts. Also 

it fails under occlusions. In contrast, the inertial sensor based 

approach is stable in tracking during fast motion, but it needs 

wearing of multiple sensor units as a set of 17 sensors was 

used in [3]. Accordingly, it would be beneficial if these 

approaches or sensors are fused for HAR as attempted in [4] 

where both sensors were used for a single arm tracking. 

However, their approach had a limited success since only skin 

color information from RGB images was utilized. 

In this work, we present a novel 3D HPR work via fusion of 

a single depth sensor and a minimum number of IMUs in 

order to overcome the limitations of each approach. In the 

presented methodology, we reconstruct human body poses 

using a single depth camera for a whole body as done in [5], 

[6]. In addition, we acquire information of the body limb (i.e., 

position and twist information of arms or legs) from two 

IMUs which are separately attached onto the right and left 

wrists or legs. Thereby, our proposed method takes both 

advantages of each sensor by acquiring accurate joint position 

and orientation information of the limbs, and finally 

reconstructs an accurate 3D whole body pose. 

Our results show the proposed methodology is a practical 

solution for accurate pose estimation in 3D. Also with it, one 

can obtain the joint twist information of the arms and solve the 

occlusion problem. We have applied our proposed 

methodology for a medical application in which a 

musculoskeletal analysis of the recognized human pose is 

performed as a function of a future rehabilitation system. 

 

II. METHODS 

In this section, we present a hybrid HPR methodology 

using a depth sensor and a set of two IMUs. A flow chart of 

our proposed methodology is shown in Fig. 1 consisting of the 

following steps. First, we estimate a 3D human pose from a 

single depth sensor. Second, we also estimate rotation (i.e. 

twist) and location information of the lower arms from IMUs. 

Finally, we reconstruct a full body pose with fused 

information on a combined ellipsoidal and hexahedral rigid 

body model. To verify our methodology, we have performed 

real-time pose recognition in 3D. In addition, as a biomedical 

application where precise information of musculoskeletal 

analysis is needed, we have reconstructed musculoskeletal 
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poses from the recognized poses with the proposed method. 

A. Sensors 

For the depth based HPR, we obtain the human depth 

silhouettes from a single depth camera (PrimeSense Inc.). The 

imaging parameters of the depth camera are an image size of 

640 × 480, field of view 57.5, 45 and 69 degree (horizontal, 

vertical, and diagonal respectively), frame speed of 30fps, and 

operating range of 0.8~3.5m. 

In order to estimate the motion information of the arms, we 

have used two wireless IMUs (EBIMU24GV2, E2box). The 

parameters of the IMUs are the baud rate of 9600bps, data bit 

of 8bits, digital low pass filter of 98Hz, data processing speed 

of 225Hz, and output format of quaternion angle. 

B. Training Random Forests 

We utilize Random Forests (RFs) which are a combination 

of trees to classify all depth pixels of a silhouette into 

thirty-one body parts [7], [8]. Our implemented RFs include 5 

trees, maximum tree depth of 20, 2,000 feature vectors, 2,000 

random pixels, threshold range from -500 to 500, and 31 

classes. The RFs are trained with our training database 

created using multiple synthetic human body models from a 

commercial software (3Ds Max 2012, [9]) with motion 

database from Carnegie-Mellon Graphics Lab [10] as shown 

in Fig. 2. 

C. Body Parts Recognition and 3D Joint Proposals 

From a given depth silhouette image I, a feature f is 

calculated by taking difference of two depth values dI(·) at two 

vectors of u and v from a pixel x as in (1). dI(x) is a 

normalization factor which decides a window size for u and v 
 

 
Fig. 1. A flow chart of our proposed hybrid HPR methodology.  
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For all pixels in the silhouette, the trained RFs decide what 

body parts each pixel belongs to. Finally, a recognized body 

part map gets obtained. Then, we estimate 3D joint positions 

from the body parts map utilizing Mean Shift algorithm [11].  

D. Depth Based HPR 

We reconstruct a 3D human pose from the estimated joint 

proposals. From each joint to the next joint, a directional 

vector gets estimated to represent the direction of each body 

part. Then the set of directional vectors are converted into the 

spherical coordinates to represent the pose. For each joint, a 

rotation matrix RU is obtained by multiplying two rotation 

matrices computed by two angles of each joint. 

Since the depth based HPR can only estimate the 

directional information of body parts, it has two degree of 

freedom (DOF) without twist information of all body parts. 

Therefore, the reconstructed pose is represented with several 

ellipsoids for torso, arms, legs, and the head. 

E. Hybrid Depth and IMU HPR 

In our proposed hybrid HPR approach, we reconstruct a 

body pose first using the depth based HPR, and then we utilize 

two IMUs which are attached to the lower arms to get the twist 

and location information of the arms. In order to avoid the 

gimbal-lock effect (i.e. the loss of one DOF in 3D), 

quaternion angles are used. The quaternion angle is 

represented by 2 elements {W, V} where W is a scalar for 

rotation angle, and V is a vector of rotation axis in 3D, V= {Vx, 

Vy, Vz}. We compute a rotation matrix for the lower arms RL 

from the normalized quaternion angle using (2). 
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To reflect the twist information of the arms, we have 

modified the ellipsoidal model to the rigid human body model 

as shown in Fig. 3 the lower arms are represented with the 

hexagonal boxes. The orientation of hexahedral body part is 

derived from IMUs data. The twist of the arm is represented 

by rotating the hexagonal body part. 
 

 

a)                           b)                         c) 
Fig. 2. Examples from a synthetic database. a) a synthetic human body 

model, b) its corresponding depth silhouette, and c) color labeled body parts 

map. 

 

The three dashed arrows in different color in Fig. 3 indicate 

the palm (red), fingertip (black), and outer side (green) of the 

left hand. In the same way, the red surface of each lower arm 

is the palm, yellow is the backside of the hand, and blue and 

green parts indicate the inner and outer side from the initial 

pose. 

In order to keep the kinematic chain of all body parts, (4) is 
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used to get the transform matrix for the upper arm TU. As 

shown in (5), the transformation matrix for the lower arm TL is 

obtained by multiplying the transformation matrix for the 

upper arm TU to the lower arm RL. Finally, we have a fully 

reconstructed human body pose with the arm twist 

information. 

U torso torso UT = t R R                                    (4) 

L U LT = T R                                            (5) 

where ttorso,, Rtorso  are the translation and rotation matrix of 

torso respectively, and RU  the rotation matrix of the upper 

limb from the depth based HPR approach. 
 

 
Fig. 3. Our whole human body model (left, front view), its front side view 

(right top), and its back side view (right bottom). 

 

III. RESULT AND DISCUSSION 

A. 3D HPR via Depth Only 

Fig. 4 shows the pose recognition results using the depth 

only. Fig. 4 a) shows some sample depth silhouettes of four 

different poses. Fig. 4 b) shows the labeled body parts map 

and estimated joint proposals. Fig. 4 c) shows the 

reconstructed poses in 3D. Since the twist information of the 

arms is not available, they are represented only with the 

ellipsoids. 
 

 
a) 

 
b) 

 
c) 

Fig. 4. Result of depth only based HPR. a) input depth silhouette, b) labeled 

body parts and joint proposals, and c) reconstructed body poses using the 

ellipsoidal model. 

B. Hybrid HRP via Depth and IMUs 

We have evaluated our proposed hybrid pose recognition 

system by comparing the results to the pose reconstructed 

from the depth only. Fig. 5 shows the result of the comparison 

work. Fig. 5 a), the first row, shows the RGB images of 

various poses, b) their corresponding depth silhouettes, c) the 

reconstructed poses from depth only, and d) the reconstructed 

poses from the proposed hybrid. Our hybrid HPR system 

produces the poses with the precise poses of the arm. The 

colors of the hexagonal arms show their correct directions. In 

contrast to the results from the hybrid, the correct directions 

of the lower arms are not shown in Fig. 5 (c). 

Table I shows the Euler angles of the left lower arm (LLA) 

and right lower arm (RLA) for the first six frames in Fig. 5. 

The depth based approach could estimate two angles only 

excluding the rotation angle of the arm which is indicated as 

N/A. Their correct angular values from the hybrid system are 

given in the table. 

The last three columns in Fig. 5 show the result for the 

cases of occlusion. When the lower arm is behind the body, 

the depth based approach could not recognize the correct pose. 

Also when the arm is in front of the body b close to the body, 

the depth based approach could not distinguish the arm from 

the main body. However, the hybrid approach could 

recognize the correct poses even in these occlusion cases. 
 

TABLE I: EULER ANGLES IN DEGREE OF THE LOWER ARMS FROM THE 

DEPTH ONLY AND THE HYBRID HPR SYSTEMS 

Frame # 1 2 3 

Depth 

Only 

LLA* -118 23.9 N/A -149 94.4 N/A 82.7 10.8 N/A 

RLA* 147.5 13.2 N/A 173.8 109.4 N/A 99.3 9.5 N/A 

Hybrid 

LLA -118 -80.6 -84.5 -99.9 18.5 -125 9.9 60.2 -170 

RLA 156.1 -72.4 19.4 104.6 21.4 120.7 -6.1 53.4 156.8 

Frame # 4 5 6 

Depth 

Only 

LLA -47.9 10.9 N/A -162 99.7 N/A -67.1 16.3 N/A 

RLA 37.5 17.4 N/A 167.2 116.6 N/A 128.9 8.6 N/A 

Hybrid 
LLA 76.3 3.5 -112 -85.0 4.7 3.7 5.5 4.0 163.4 

RLA -84.5 5.9 77.8 75.0 16.3 -14.6 -10.0 -4.8 171.0 

*LLA: Left Lower Arm; RLA: Right Lower Arm 

C. 3D Musculoskeletal Analysis 

As an application of our hybrid system, we have 

established a link to the musculoskeletal model of OpenSim 

[12] which is a publically available biomechanics analysis 

package. Fig. 6 shows the musculoskeletal pose reconstructed 

from its corresponding pose from the hybrid system. Fig. 6 b) 

shows the result from depth only, c) from the hybrid. In this 

example, both palms are facing front, but the result of the 

depth only shows incorrect poses of the arms. However, our 

proposed hybrid approach reconstructs the arm poses 

correctly as shown in Fig. 6 c). 

This kind of analysis can be used for home-rehabilitation 

services in the future as smart physical therapy. For stroke 

patients, muscle parameters such as muscle force and length 

of muscles information during physical exercise could be 

monitored at home. 
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Fig. 5. Comparison of our proposed hybrid HPR and depth based HPR Systems. a) Input RGB and depth images, b) depth silhouette, c) depth based and d) 

hybrid HPR results using rigid body model. Each column indicates one frame case. The last row indicates the direction of the arm: front in red, back in yellow, 

side in green or blue. 

 

 
 

 
a)                              b)                           c) 

Fig. 6. Example of the musculoskeletal analysis using OpenSim. a) RGB 

image, b) result of the depth based and c) hybrid HPR. 

 

IV. CONCLUSION 

In this paper, we present accurate 3D HPR via multi-sensor 

fusion approach. Our proposed methodology performs in high 

accuracy at its low cost and practicality. Also, the proposed 

approach achieves fast tracking even for complex movement 

by taking advantages of both depth and IMU. Our proposed 

approach estimates not only direction but also rotation 

information of the limbs for accurate HPR. We expect that our 

research can be utilized in various biomedical applications. 
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