
  

 

Abstract—Mining high-dimensional business data is a 

popular and important problem. However, there are two 

challenges for mining such data, including 1) the curse of 

dimensionality and 2) the meaningfulness of the similarity 

measure in the high dimension space. This paper proposes a 

novel approach to overcome the problems, which builds a 

generalized multiple kernel machine (GMKM) on a special 

subspace created by the kernel orthonormalized partial least 

square (KOPLS). GMKM takes products of 

kernels-corresponding to a tensor product of feature spaces. 

This leads to a richer and much higher dimensional feature 

representation. Therefore, GMKM is powerful in identifying 

relevant features and their apposite kernel representation. 

KOPLS finds a low dimensional representation of data, which 

uncovers the hidden information and simultaneously respects 

the intrinsic geometry of data manifold. Our new system 

robustly overcomes the weakness of traditional multiple kernel 

machines, and outperforms traditional classification systems. 

 

Index Terms—Data mining, multiple kernel learning, 

dimensionality reduction, support vector machine.  

 

I. INTRODUCTION 

Mining high-dimensional data is a great challenge for most 

existing data mining algorithms. There are two common 

challenges for analyzing high-dimensional data (Wang and 

Yang [1]). The first one is the curse of dimensionality. The 

complexity of many existing data mining algorithms is 

exponential with respect to the number of dimensions. With 

increasing dimensionality, these algorithms soon become 

computationally intractable and therefore inapplicable in 

many real applications. Secondly, the specificity of 

similarities between points in a high dimensional space 

diminishes. For any point in a high dimensional space, the 

expected gap between the Euclidean distance to the closest 

neighbor and that to the farthest point shrinks as the 

dimensionality grows. This phenomenon may render many 

data mining tasks (e.g., clustering) ineffective and fragile 

because the model becomes vulnerable to the presence of 

noise. The objective of this paper is to overcome the above 

problems by a novel embedding, which fully respects the data 

manifold and maps data to a low-dimensional subspace for 

further handling. 

Reviewing recent literature, many advanced approaches 

from data mining or artificial intelligence were developed to 
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solve the problems as mentioned above. These methods 

(Witten and Frank [2]) include inductive learning, case-based 

reasoning, neural networks, rough set theory (Ahn et al. [3]), 

and support vector machines (SVM) (Wu et al. [4]; Hua et al. 

[5]). SVM, a special form of kernel classifiers, has become 

increasingly popular. SVM considers the structural risk in 

system modeling, and regularizes the model for good 

generalization and sparse representation. SVMs are 

successful in many applications. They outperform typical 

methods in classifications. However, the success of SVM 

depends on the good choice of model parameters and the 

kernel function, (namely, the data representation). In kernel 

methods, the data representation is implicitly chosen through 

the so-called kernel. This kernel actually plays two important 

roles: it defines the similarity between two examples, while 

defining an appropriate regularization term for the learning 

problem. 

The success of SVMs is often dependent on the choice of 

kernel and features are typically hand-crafted and fixed in 

advance. However, hand-tuning kernel parameters can be 

difficult as can selecting and combining appropriate sets of 

features. Recent applications have also shown that using 

multiple kernels instead of a single one can enhance the 

interpretability of the decision function and improve 

performances. Multiple Kernel Learning (MKL) seeks to 

address this issue by learning the kernel from training data. In 

particular, it focuses on how the kernel can be learnt as a 

linear combination of given base kernels. 

Traditional multiple kernel learning (MKL) approaches are 

limited in that they focus on learning linear combinations of 

base kernels-corresponding to the concatenation of individual 

kernel feature spaces. Conventional MKL formulations can 

be easily extended to learn general kernel combinations 

subject to general regularization on the kernel parameters 

(Varma and Babu [6] and Varma and Ray [7]). Far richer 

representations, this paper took products of 

kernels-corresponding to a tensor product of their feature 

spaces. This leads to a much higher dimensional feature 

representation as compared to feature concatenation. The 

generalized multiple kernel machine (GMKM) based on 

products of kernels gives good results for feature selection 

problems. The advantages of GMKM is two folds: 1) it can 

learn to achieve the same classification accuracy but using far 

fewer features. 2) the model learning can also be achieved 

very efficiently based on gradient descent optimization and 

existing large scale SVM solvers. 

In financial data mining, high dimensional data from public 

financial statements and stock markets can be used for 

bankruptcy predictions. However, the high dimensional data 

make kernel classifiers infeasible due to the curse of 
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dimensionality (Bellman [8]). Regarding dimensionality 

reduction, linear algorithms such as principal component 

analysis (PCA) and linear discriminant analysis (LDA) are the 

two most widely used methods due to their relative simplicity 

and effectiveness. However, classical techniques for manifold 

learning are designed to operate when the submanifold is 

embedded linearly, or almost linearly, in the observation 

space. Such algorithms often fail when nonlinear data 

structure cannot simply be regarded as a perturbation from a 

linear approximation. The task of nonlinear dimensionality 

reduction (NLDR) is to recover meaningful low-dimensional 

structures hidden in high dimensional data. 

The method of partial least squares (PLS) (Rosipal and 

Kramer [9]) creates score vectors of inputs and outputs, which 

have a maximum covariance with each other. PLS could be 

thought of as a method for finding directions that are good at 

distinguishing between different output labels. However PLS 

is not invariant to linear transformations. This means that the 

analysis will be different depending on how the inputs are 

scaled. For example, doubling a input, or choosing different 

inputs within the same space, will give different answers. We 

could overcome the lack of invariance by simply 

orthonormalizing the inputs first. This is the orthonormalized 

PLS (OPLS, Worsley et al. [10]). OPLS can also be seen as a 

form of penalized canonical correlation analysis (CCA), 

which produces more compact data representation and is 

useful in high-dimensional data with heavy multicollinearity. 

The remainder of this paper is organized as follows: 

Section 2 introduces the KOPLS. Subsequently, Section 3 

describes the study data and discusses the empirical findings. 

Conclusions are given in Section 4. 

 

II. KERNEL ORTHONORMALIZED PARTIAL LEAST SQUARE 

ANALYSIS 

Notationally, the basic PLS algorithm consider that we are 

given a set of pairs 
=1{ , }l

i i ix y , with ,N M

i ix R y R  . Let 

us now introduce matrices 
1= [ ,..., ]T

lX x x  and 

1= [ ,..., ]T

lY y y , where the T  superscript denotes matrix 

or vector transposition. Let us also denote by =X XU  and 

=Y YV  two matrices, each one containing 
pn  projections 

of the original input and output data, U  and V  being the 

projection matrices of sizes 
pN n  and pM n , 

respectively. The goal of PLS is to find the directions ( ,U V ) 

of maximum covariance between the projected input and 

output data: 

max: { }T

XYTr U C V                           (1) 

subject to : = = ,T TU U V V I                     (2) 

 

where I  is the identity matrix of size 
pn , and XYC  

represents the covariance between the input and output 

datasets; namely, 
1

= T

XYC X Y
l

  , where ,X Y   are the 

centered versions of X  and Y . 

Traditional PLS is not invariant to linear transformations. 

To overcome the lack of invariance one can simply 

orthonormalize the inputs first. This is the orthonormalized 

PLS (OPLS, Worsley et al. [11]), which tackles the following 

maximization problem:  

 

}{:max UCCUTr T

XYXY

T

                            
 (3) 

 

.=:tosubject IUCU XX

T

                             
(4) 

 
All previous methods assume that there exists a linear 

relation between the latent variables of X  and of Y . 

However, this might not necessarily hold, and thus non-linear 

versions have become necessary to solve this problem. Kernel 

methods are a promising approach to formulate non-linear 

versions from linear algorithms. Notationally, consider 

HNRx :)(  a function that maps the input data into 

some Reproducing Kernel Hilbert Space (RKHS), usually 

referred to as feature space, of very large or even infinite 

dimension. Let 
T

lxx )](),...,([= 1   and 

T

lyyY ],...,[= 1
, and denote by U =  the projection 

containing 
pn  features of the original input data, U  being a 

projection matrix. The kernel OPLS cab be stated as:  

 

}
~~~~

{:max UYYUTr TTT 
                      

(5) 

 

,=
~~

:tosubject IUU TT 
                       

(6) 

 

where 
~

 and Y
~

 are centered versions of   and Y , 

respectively. 

Making use of the Representer’s Theorem, which states 

that all projection vectors U  can be expressed as a linear 

combination of the training data; namely, AU T
~

= , where 

],...,[= 1 npA   and i  is an column vector containing 

the coefficients for the i th projection vector, and the 

maximization problem of KOPLS can be reformulated as 

follows:  

 

}{:max AATr XYX

T KKK
                     

(7) 

 

,=:tosubject IAA XX

T KK
                    

(8) 

 
where 

T

X 
~~

=K  is the centered kernel matrices, and 

T

Y YY
~~

=K . 

 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

This study used bankrupt companies listed in the Taiwan 

Stock Exchange (TSE) for analysis. Their public financial 

information is used for the model input. These bankrupt 
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companies were matched with normal companies for 

comparison. The sample data covers the period from 2000 to 

2007. 

For the balance of positive and negative samples, one 

company in financial crisis should be matched with one or two 

normal companies in the same year, in the same industry, 

running similar business items. Namely, they should produce 

the same products with the failed company and have similar 

scale of operation. Additionally, the normal company whose 

total asset or the scale of operation income should be close to 

the failed company. In our samples, 50 failed firms and 100 

non-failed firms were selected. The study traced the data up to 

5 years, which started from the day a respective company falls 

into financial distress backward up to a period of 5 years. The 

financial reports of the non-failed companies will be matched 

(pooled together) with the failed company in the same year. 

For example, company A failed in 2005 and company B failed 

in 2007. We will pool them and their matched companies A’, 

B’ in the same file labeled C0 representing their financial 

status in the year of bankruptcy. Companies A and A’ (or 

company B and B’) will be traced backward up to five years. 

These data were put in separate files labeled C0, C1, C2, C3, 

and C4 respectively for classification. 

The variables of this research are selected from the TEJ 

(Taiwan Economic Journal) financial database, which 

contains the following five financial indexes: profitability 

index, per share rates index, growth rates index, debt-paying 

ability index, management ability index. Altogether, there are 

54 financial ratios covered by the five indexes. If some values 

of a ratio lost on some firms, this ratio was deleted. As a result, 

overall 48 financial ratios were obtained for analysis. 

This study tested five conventional classifiers and a kernel 

classifier (SVM) for bankruptcy predictions, including 

decision tree (J48), nearest neighbors with three neighbors 

(KNN), logistic regressions, Bayesian networks 

(BayesianNet), radial basis neural network (RBFNetwork), 

and SVM (with gaussian kernels). The data set was randomly 

divided into ten parts, and ten-folds cross validation was 

applied to evaluate the model performance. 

Table I shows that SVM outperforms other classifiers. 

Namely, kernel classifiers outperform traditional classifiers 

due to their flexibility in dealing nonlinear and 

high-dimensional data. Consequently, this study implemented 

an advanced kernel classifier, the GMKM, for subsequent 

classifications. 

 
 

TABLE I: PERFORMANCE COMPARISON ON BASIC PREDICTION MODELS (ACCURACY %) 

      Sample C0   Sample C1   Sample C2   Sample C3   Sample C4  

J48   90.7007   87.5912   84.6715   81.3433   71.8750  

KNN   88.3212   90.5109   81.7518   76.1194   73.4375  

BayesianNet   90.2409   90.5109   85.4015   84.3284   80.0313  

Logistic   88.4058   84.0580   75.3623   71.1111   70.5426  

RBFNetwork   89.1304   90.5797   85.5072   74.8148   78.2946  

SVM   91.2409   91.3043   86.2319   83.5821   80.6875  

 

TABLE II: PERFORMANCE IMPROVEMENTS BY DIMENSIONALITY REDUCTIONS 

    Sample C0   Sample C1   Sample C2   Sample C3   Sample C4  

ICA+SVM   74.8350   65.2200   72.1980   65.2750   65.3210  

PCA+SVM   82.6400   84.0700   76.0990   78.6810   78.4620  

LDA+SVM   86.2091   81.0989   81.0990   80.0550   77.5640  

KPCA+SVM   88.8680   87.0330   80.9340   81.5930   79.2310  

Isomap+SVM   83.2970   86.2641   82.6919   83.0770   76.0260  

KOPLS+GMKM   96.0600   95.5900   94.1200   93.1200   90.1800  

 

Next, we compare our method (GMKM on KOPLS) with 

other dimensionality reduction methods. We compared our 

system with other famous subspace or manifold learning 

algorithms such as the PCA, ICA (Independent Component 

Analysis, Hyvärinen et al. [11]), LDA, kernel PCA (KPCA), 

and Isomap (Tenenbaum et al. [12]). The dimension of 

subspace was set to five for all algorithms. 

Table II shows that GMKM on KOPLS significantly 

outperform other classifiers. It achieved the highest accuracy. 

This results fully demonstrate that financial data are not 

sampled from a linear manifold. Hence, linear algorithms 

such as PCA ICA, and LDA fail to extract discriminative 

information from data manifold. Considering nonlinear 

dimensionality reduction algorithms (KOPLS) are more 

effective. On the other hand, our data come from diverse 

sources, only multiple kernel machines such as GMKM are 

powerful enough to handle the complex data. We also find in 

Table II that supervised algorithms are better than 

unsupervised ones, and nonlinear dimensionality reduction 

methods (such as kernel PCA) is not always better than linear 

algorithms. KPCA works in an unsupervised manner which 

lacks information to guide the mapping learning that could 

maintain most discriminant power. However, KOPLS is a 

supervised algorithm which nonlinearly forms a manifold not 

only preserving local geometry of the data samples, but also 

contains label information to discriminate the data. 

 

IV. CONCLUSIONS 

Multiple kernel learning approaches are limited in that they 

focus on learning linear combinations of base 

kernels-corresponding to the concatenation of individual 

kernel feature spaces. Far richer representations, this paper 

took products of kernels-corresponding to a tensor product of 

their feature spaces. This leads to a much higher dimensional 

feature representation as compared to feature concatenation. 

The advantage of GMKM is that it can learn to achieve the 

same classification accuracy but using far fewer features. This 

study developed KOPLS to find a good low dimensional 

projection that respected the discriminant structure inferred 

from the output. KOPLS maximizes the covariance between 

inputs and outputs. Constructing classifiers on KOPLS 
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reduces the computational loading and simultaneously 

enhances performance. The success of our hybrid classifier is 

attributed to the combination of these two techniques. The 

empirical results confirmed the superiority of the proposed 

system. 

Future research may consider semi-supervised subspace or 

manifold learning algorithms to enhance system performance, 

or to include more variables such as non-financial and 

macroeconomic variables to improve accuracy. 
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