
  

  
Abstract—This paper is devoted to predicting trends on the 

social media. Typical methods in the literature are based on 
temporal changes in usage of words or phrases on the media, 
and try to find a rapid increase, called a burst, of them. 
Therefore, these methods can be applied only after a burst is 
emerging. In this paper, we propose an index, called the 
infectious capacity, to detect potential trends on the social media 
before they would emerge. To achieve this, we focus on labels 
and items, and predict trends of a label, instead of those of a 
target object, such as contents of a social media, where an item 
is a concept represented by an object and a label categories 
items. On a photo sharing service, for example, a photo is an 
object, a tag is a label, and concepts represented by a photo are 
items for the photo. Using labels and items, the infectious 
capacity for a label is defined as the ratio of the variety of items 
with the label to the number of occurrences of the label in given 
data. That is, the larger value an infectious capacity of a label is, 
more infectious the label is. Our experiments on real data 
showed that the infectious capacities for most labels are 
substantially constant over time. This result means that we can 
forecast the variety per usage for a label just after the label is 
used. Moreover, we found that infectious capacities for popular 
labels have similar values. Combined with the first result, we 
are able to predict latent trends before labels become popular. 
In fact, this is also supported by experiments on tweets, where 
we were able to find potentially popular hashtags, regarding 
hashtags as labels, before they become popular. As far as the 
authors know, this is the first result of future trend prediction 
on the social media. 
 

Index Terms—Category, constant index, future trend 
detection.  
 

I. INTRODUCTION 
Predicting trends has been extensively studied in many 

fields because we can make appropriate decisions based on 
the predicted trends if the prediction is accurate, although 
predicting trends is extremely difficult in advance [1]. Such 
studies include forecasting physical phenomena [2], 
predicting financial indexes or indicators [3]-[5], estimating 
the number of patients of a disease [6], and forecasting sales 
of cultural products, such as movies [7] and songs [8]. 

The rapid increase of the data on the social media, such as 
tweets on Twitter (https://twitter.com/), leads to a rise in the 
importance of studying predicting trends from data on the 
media. However, unlike the time series data, which has serial 
correlation in time series models, such as ARMA and 
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ARIMA [9], we can not assume such models for data or 
trends on the social media. Therefore, typical methods to 
predict trends for data on the social media try to grasp trends 
by analyzing occurrences of words or phrases in given data 
[10]-[16]. For example, [11] uses mentions to movies in 
tweets, [16], [17] mentions about earthquakes, and [3], [6], [7] 
query words used at search engines. 

However, such methods can predict trends only after they 
are emerging because such a method counts occurrences of 
target objects such as tweets mentioning earthquakes and 
outputs some of them as bursty objects if a temporal change 
of their occurrences is beyond a predefined threshold. 
Therefore, it is impossible for them to predict future trends. 

In this paper, we propose an index, called the infectious 
capacity to detect potential trends on the social media before 
they would emerge. It is defined for a label based on items to 
which the label is attached, where an item is a concept 
involved in an object of the social media and a label 
represents a concept involved in items. On a photo sharing 
service, for example, a label is implemented as a tag, an 
object is a photo, and items for a photo represent concepts of 
it. If a photo includes a character of a Ninja animation then 
“ninja” could be an item for the photo, and “animation” and 
“Cool Japan” labels for the items (see Fig. 1). 

 

 
Fig. 1. On a photo sharing service, for example, a label is implemented as a 
tag, an object is a photo, and items for a photo represent concepts of it. If a 
photo includes a character of a Ninja animation then “ninja” could be an item 
for the photo, and “Cool Japan” labels for the items. 

 
Using the infectious capacity, we propose a method to 

detect labels which will be popular. As described above, 
focusing on characteristics of occurrences of target objects 
for prediction do not enable to predict future trends of 
themselves. However, we will show focusing on 
characteristics of occurrences of labels to predict future 
trends of labels. Therefore, our focus to predict is not objects, 
but items. 

So predicting trends of labels is also important. A label is 
used to classify target objects and so we can easily grasp the 
meaning of them via labels. Besides, a label has a wider 
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influence than individual items. 
This goal is quite challenging due to the following reasons: 

first popular labels are rare by definition; second we can not 
assume that occurrences of target items follow deterministic 
or even stochastic models. In case that we focus on a specific 
type of target items, such as influenza [6], songs [8], or 
movies [11], we can assume some knowledge about a 
phenomenon of trends. For example, a patient of some 
disease may try to search information about the disease at a 
search engine. However, a label is widely used for many 
kinds of items. Instead of assuming knowledge about specific 
target objects or items, we generally assume that a potentially 
popular label would be used for many kinds of items. In other 
words, the variety of items attached to a label shows potential 
popularity of the label. 

Our contribution is three fold: firstly, we experimentally 
show that the infectious capacity for labels is substantially 
constant over time, where we use hashtags of Twitter as 
labels. Obtaining a constant of a system is quite interesting 
since, in general, such a constant shows us some important 
findings of the system. In addition, such a constant is useful 
because we can forecast the variety of a label per usage just 
after the label is used; secondly, we find that values of the 
infectious capacity for popular labels are concentrated in 
some range; and finally, we can predict some latent trends of 
labels, which means potentially popular hashtags, using 
thresholds defined by the found range. 

 

II. RELATED WORK 
The researches about future or current trends prediction 

are divided into three types: The first type is based on a 
physical model. A typical method of this type is modeled by a 
differential equation, such as Newton's second law, which 
precisely shows the position of a body in the future. In other 
words, a method based on this type can deterministically 
describe current and future of target objects; the second a 
stochastic model. A typical model of this type is used for time 
series data [8]; the last type does not assume models. 

For the first two types, models generally describe the 
evolution of some system over time. Therefore, we can 
predict future trends of the system using such a model. On the 
other hand, for the data on the general social media, we do 
not have an appropriate model which describes future 
behavior of the data. Needless to say, we do not know 
existence of a deterministic mechanism for the data on the 
social media, and we can not assume a stochastic model for 
the general data on the social media since the data seems not 
to have serial correlation. For example, given two successive 
tweets, there is not a correlation in general between them. In 
other words, a tweet does not influence the next tweet 
because various topics are mixed in timeline of Twitter. 
Without deterministic or stochastic models, it is quite 
difficult to forecast future trends on the social media. 

Basically, methods for the social media are to predict 
current trends, instead of forecasting future trends. To do so, 
there are two types of methods. The first one is based on 
temporal changes in the occurrence of target objects [12], 
[13]. The other type assumes some correlations of the data on 
the social media and other data sources, and use statistical 

models, such a linear model, among them. For example, after 
an earthquake occurs, many people tweets about it [16], [17], 
when people are infected influenza, many people search 
about influenza [6], and popular movies are likely to be 
tweeted more frequently [11]. Basically, the later type just 
uses data on the social media, but predict trends for other 
objects, such as movies or patient of influenza. Consequently, 
the later type does not predict future in social media but 
predict future in the real world. 

 

III. INFECTIOUS CAPACITY 
In this section, we define an infectious capacity for a label 

after we explain the idea of it along with items and labels for 
the data on the social media. 

To explain the idea of an infectious capacity, we give an 
example of a popular label “Cool Japan” at Instagram 
(http://instagram.com/). This label is attached to photographs 
which include the concepts representing Japanese culture, 
such as Fujiyama, Ninja and Ukiyo-e (see Fig. 2). Therefore, 
we assume that the label is virtually attached to the concepts 
included in photographs, though users attach a label to 
photographs themselves. In summary, regarding photographs 
as objects, an item is a concept involved in the objects and a 
label represents a generic concept involved in the items. 

 

 
Fig. 2. Relationships with a label, objects and items on the social media.  

 
For the label “Cool Japan”, some objects are labeled with it, 

and “Fujiyama”, “Ukiyo-e” and “Ninja” are associated with 
them. We can think that the label is also attached to the items. 

We think that a label which has relations to many items 
would become popular in the future, and we introduce the 
infectious capacity of a label as the ratio of the variety of 
items with the label to the number of occurrences of the label. 

Let I  be a set of items, L  a set of labels for items. An 
object o  can be attached with a label l . In this case, we say 
that o  is labeled with l . The object o  can represent many 
concepts, that is items. In this case, we also say that each item 
is labeled with l . For a label l , we say that an item i  is 
labeled with l , and an object o  is associated with the item, 
therefore o  represents the item and includes it. For an item i , 
we use O(i)  to denote the set of objects associated with i . 
In general, an object o  can be associated with many items. If 
an object o  is labeled with a label l , we say that an item i  
associated with o  is also labeled with l . 

For a label l , we also use I(l)  and O(l) to denote the set 
of items and objects labeled with l , respectively. For a label 
l , the frequency f (l)  of the label is defined to be the number 
of objects labeled with l , that is, f (l) = O(l) . Similarly, for 

a label l , the variety v(l) of the label is defined to be the 
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number of items labeled with l , that is, . For a label l , the 
infectious capacity α(l) is defined as follows: 

 

                                 (1) 

 
For example, for a label l , given I(l) = {i1, i2, i3}  and 

O(l) = {o1, o2,o3, o4 ∈ O(i) | o1 ∈ O(i1), o2 ∈ O(i2 )∩O(i3),
o3 ∈ O(i3), o4 ∈ O(i1)∩O(i3)}

, 

then O(l) = 4 and α(l) = 3 / 4 . 

Our final goal is to predict future trends of a label. 
Therefore, we need the infectious capacity at some time point 
t , denoted by αt (l), for a label l  , where αt (l) is defined 
using sets of items and objects at t  or before t . 

 If a value of αt (l) for a label l  is higher, the label is used 

for many different items, and if a value of αt (l) for a label l  
is lower, the label is used only particular items. 

 

IV. EXPERIMENTS 
In this section, we conduct experiments utilizing tweets 

and hashtags of Twitter. First, we explain our data set. 
Second, we reveal two properties of the infectious capacities 
of hashtags (Section B.). In Section C., thresholds about the 
infectious capacity for prediction are determined utilizing 
training data in which manually detected popular hashtags 
are given. In Section D., we forecast potentially popular 
hashtags using determined thresholds. 

 
In this section, we explain our data set and the following 

notes on the data: 
 How to define items in tweets. 
 How to process prevailed labels among collected data. 
We collected tweets posted in Japan from July 6, 2012 to 

July 14, 2012. There exist about 146,000 hashtags and 3.5 
million tweets labeled with the hashtags in the period. 

We consider the infectious capacity of hashtags in tweets, 
regarding hashtags as labels, that is, L  is a set of hashtags. In 
this case, a tweet is labeled with a hashtag, so O is a set of 
tweets and I  is considered to be a set of concepts 
represented tweets. However, in general, it is quite difficult to 
automatically determine concepts included in a tweet. In our 
experiments, we regard common nouns in tweets as the 
concepts, that is, I  is the set of common nouns in tweets. For 
example, given an object “My favorite foods are sushi and 
tempura #FavoriteFood”, a label is FavoriteFood, and items 
are foods, sushi and tempura.  

As preprocessing, we utilize MeCab 
(http://mecab.googlecode.com/svn/trunk/mecab/doc/index.h
tml/) to extract nouns in a tweet. MeCab is a Japanese 
morphological analyzer. When people make tweets, they 
frequently use slangs in tweets, and it is difficult for MeCab 
with standard dictionaries to extract them. To extract 
common nouns and attempt to improve accuracy of 
morphological analysis, we add title lists of Wikipedia and 
keywords of Hatena Diary (http://d.hatena.ne.jp/) as common 

nouns to the dictionary of MeCab. Further, we separated the 
Japanese words in texts with space and removed 
alphanumeric characters. 

In a tweet, a tweet can contain two or more different 
hashtags. In this case, we think that the tweet is labeled with 
all hashtags, that is, the tweet is treated as the corresponding 
object for each hashtag. For example, given a tweet “My 
favorite foods are sushi and tempura #FavoriteFood #Cool 
Japan”, the tweet is an object labeled with both FavoriteFood 
and Cool Japan. 

General tags such #tbt and #nofilter can be used for many 
items. Too general tags have a problem in predicting future 
trends of labels. Considering the life cycle of such a general 
hashtag, we can say that it prevails after it is used for many 
items, and we find it as a background tag. In this case, the 
infectious capacity of such a background tag must be too 
large, so the infectious capacity can not distinguish popular 
tags from background tags. So we will remove them among 
collected data. 

 To remove prevailed tags, we use only hashtags which 
have not been used in some period and regard them as 
unpopular tags. We use unpopular hashtags in the training 
phase (resp., test phase), which were not used in the period of 
12 hours before the training phase (resp., the period of the 
training phase) (see Fig. 3). In other words, we assume that 
prevailed tags appear frequently and thus must appear in this 
period. 

As a result, in the training phase, we use tweets for about 
three days from July 6, and there exist about 100,000 
hashtags, which were unpopular, and 350,000 tweets labeled 
with these hashtags. In the test phase, we use tweets of about 
five days and there exist about 140,000 hashtags and 400,000 
tweets labeled with these hashtags (see Table I). 

We need positive hashtags which will become popular in 
future among currently unpopular hashtags, so we regard a 
hashtag satisfying O(l) ≥1, 000as popular, that is a positive 

hashtag in this paper. 
 

 
Fig. 3. This diagram shows periods we used as the training phase and test 

phase. We used hashtags in the training phase (resp. test phase), which were 
not used in the blue dotted line (resp. orange dotted line). 

 
TABLE I: DATA SET WE USE IN THE TRAINING AND TEST PHASE 

Phase A period # of tags # of tweets
Training 7/6-7/9 (2012) 109,185 352,790
Test 7/9-7/14 (2012) 141,741 408,425

 

B. Properties of Infectious Capacity 
We show two hypothetical properties of an infectious 

capacity, and then verify them. The graph in Fig. 4 shows 
increases of items labeled for each popular hashtag in the 
training phase as the number of objects used with the 
corresponding hashtag is increased, where X-axis Ot (l)  
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shows for each label and Y-axis It (l) . So the slope of each 

line in the graph represents the infectious capacity of the 
corresponding label. Note that, some lines have slopes whose 
values are almost zero. 

 

 
Fig. 4. This graph shows changes of the number of occurrences of items for 
each trendy hashtag as the number of occurrences of objects in the training 

phase is increase.  
 

One line is for one hashtag. These lines look straight lines, 
so values of the infectious capacities are constant over time. 
In addition, the values of the infectious capacities of many 
popular hashtags are similar. The line with the highest slope 
is the hashtag which means “The celebrity who you have seen 
directly” in English. This tag is attached to many celebrities, 
so there exist generally many items. Therefore, the infectious 
capacity of the label is too high. 

We find that the following two hypothetical properties 
from this graph. 
 The slopes of the lines are almost constant, that is, the 

values of infectious capacities for many trendy hashtags do 
not change over time. 

 The values of infectious capacities for many trendy 
hashtags are similar. 
In the second property, the red arrow on the vertical line on 

the righthand side of the graph indicates the range of the 
similar values. The first property means that we can forecast 
the variety per usage for a label just after the label is used. 
Combined with the second one, we are able to predict latent 
trends before labels become popular using a threshold about 
the infectious capacity. From these properties, we can expect 
to predict trendy hashtags before trends and bursts emerge. 

In the rest of this section, we verify the first property by 
single regression analysis for items and objects. 
Subsequently, we assume that the second property is valid, 
and use it for prediction in the following sections, which 
means we will verify the second one by the prediction result. 
In the analysis, explanatory variables are Ot (l)  for a label l  

at each time  and explained variables are It (l) . Data for this 

verification is 128 hashtags in the training phase, where we 
use hastags satisfying Ot (l) ≥ 200 in stead of 

Ot (l) ≥1, 000 because of statistical stability. 

The mean value of coefficient of determination, which 
denotes the precision of the single regression analysis in the 
results, is 0.878. In this analysis, the p -values of all 128 
hashtags are lower than 0.05, and this generally shows that 
the result is extremely precise. In this analysis, for a hashtag, 
we use the number of occurrences of it in the dataset and the 

number of items used with it as independent and dependent 
variables, respectively. Therefore, the direct consequence of 
the analysis is that a hashtag has a constant infectious 
capacity as the number of occurrences is increasing. We can 
extend the consequence as follows: For time points t1  and 

t2  (t1 > t2 ) , the infectious capacity for a hashtag is not 
changed whether or not it is used during this period due to the 
above result. So the infectious capacity is also constant over 
time. That is, if a hashtag has a constant infectious capacity 
over the number of occurrences of it, then so it does over time. 
Thus it result proves the first property. 

Although we have shown that the infectious capacity is 
constant as time passes, there must be some upper bound for 
the number of the items which could be labeled by one label. 
Therefore, the above result does not mean that the value of 
the infectious capacity for a label is constant forever. 

C. Training Phase 
From the second property in the previous section, we can 

predict trends by using a threshold derived from the property 
because we can easily test if the infectious capacity of a given 
unknown hashtag is in the threshold. So in this section, we 
determine thresholds, assuming that we have a set of positive 
hashtags. 

The second property comes from the fact that all popular 
hashtags have similar values of their infectious capacities. 
This fact is found in Fig. 4, where we have defined 1,000 to 
be the threshold of popularity. However, to predict future 
trends of labels, we need to evaluate infectious capacities at 
an earlier point t . Therefore, we use time points t  satisfying 
Ot (l)  = 200, 300, 400 or 500. 

In general, an arbitrary range of infectious capacities does 
contain negative hashtags and does not contain some positive 
ones. So, we evaluate each range for all pairs of hashtags by 
F -measure and choose the range for the threshold which 
achieves the highest F -measure. F -measure is a weighted 
harmonic average of precision and recall, and defined by 
F =1/ ((s / P)+ (1− s) / R) , where precision 

P = A∩ B / A , recall R = A∩ B / B , A  is a set of 

hashtags predicted to be popular in the future, and B  a set of 
positive hashtags. Although the weight s  of F -measure is 
1/2 in many cases, we set s = 1/4 because we put a larger 
priority on recall R . Trends of labels are rare phenomenons, 
so we place more importance on detecting trends than on 
making wrong prediction. 

We found that there exists the hashtags which are attached 
many times to some specific item among positive hashtags. In 
other words, an item is shared among so many objects to 
which a hashtag are attached. Therefore, the infectious 
capacity of such a label is low. In the process of threshold 
determination, we remove the hashtags having the extremely 
low infectious capacity from positive hashtags in the training 
phase because our idea can predict the labels used for many 
different items. 

The result is shown in Table II. Basically, the range 
becomes wider as Ot (l)  increases since the number of 

negative hashtags decrease as Ot (l)  increases. 
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TABLE II: EACH THRESHOLD DETERMINED AT THE NUMBER OF OBJECTS IN 
THE TRAINING PHASE 

Ot (l)  Threshold

200 0.625 ~ 0.760
300 0.630 ~ 0.693
400 0.520 ~ 2.080
500 0.488 ~ 1.998

 

D. Test Phase 
We show the result of the test phase, using the thresholds 

decided in the previous section. First, we show that popular 
hashtags can be detected by using labeled data and 
recall/precision criteria. Second, we show that some of the 
detected hashtags are detected before they become popular, 
that is, our method can predict trendy hashtags before they 
emerge. 

The result is shown in Table III. In Table III, the first 
column represents the threshold T  of popularity, the second 
column the number of hashtags whose frequencies are more 
than or equal to the number in the first column. For example, 
we have 44 hashtags whose frequencies are at least 500. The 
other columns are for evaluated values, precision, recall and 
F -measure, where there exist 18 positive hashtags in the test 
phase. Though there exist about 140,000 hashtags in total in 
the test phase, popular tags are very few since they are rare. 

This table shows that the result basically becomes better as 
the number of objects is increased except that Ot (l) = 300 . 

When , the threshold is narrow (see Table II), therefore the 
result is not good. However, the result at Ot (l) = 300  is 

much worse than at Ot (l) = 200  because the range of the 

threshold is small. At Ot (l) = 300 , increasing the precision 

by setting the range of the threshold small more improve 
F -measure than increasing the recall by setting the range of 
the threshold large, as a reslut, the range of the threshold is 
small. 

 
TABLE III: RESULTS OF EXPERIMENTS IN THE TEST PHASE 

Ot (l)  # of tags at t  P  R  F

200 143 0.26
3 

0.27
8 

0.27
4

300 83 0.33
3 

0.11
1 

0.13
3

400 56 0.45
8 

0.61
1 

0.56
0

500 44 0.52
4 

0.61
1 

0.58
7

 
TABLE IV: TRENDY BUT NOT PREDICTED HASHTAGS, TRANSLATED FROM 

JAPANESE HASHTAGS 

Hashtags 

Retweet if you are an idiot 
You show the world your shortcomings when you make a retweet 
Retweet if you want the man in the Friday road show to come back
The Kanagawa Prefecture Police 
No parking 
Threewords 
Happybirthdayheechul 

 
Even allowing the fact that forecasting future trends 

without models seems to be quite difficult in general, we can 
not conclude that the results in Table III are good. Examining 
hashtags which are not predicted as trendy ones, we find that 
these tags are used in retweets, since all retweets of one 
original tweet are the same, the variety of items used with 
such a label is not increased. Table IV shows the hashtags 
which are popular but not predicted by our method. The 
hashtags shownd in this paper are translated from Japanese 
hashtags. 4 hashtags out of positive 18 hashtags are used for 
retweets. Therefore, the values of infectious capacities for 
these labels are far below under the defined threshold. 

We can detect retweets since they are the same object. If 
more than 3/4 of tweets labeled by a hashtag are retweets, we 
remove the tweets attached with the hashtag. Then we 
evaluate again using the data set without these tags. Table V 
shows the result. Now, our method achieves approximately 
0.7 of F -measure. 

In total, 11 hashtags out of 14 positive hashtags which are 
not used as retweets are able to be predicted by our method. 
So we can conclude that our method is able to predict trends 
of labels, which do not have extremely low infectious 
capacities, with a high precision. Table VI shows predicted 
hashtags. Although the sentence of each hashtag translated 
from Japanese into English is long in Table VI, original 
hashtags in Japanese are short since Japanese has ideographic 
characters. 

Next, we examine whether we can predict trends of labels, 
i.e. hashtags, before they emerge. 

 
TABLE V: RESULTS OF EXPERIMENTS IN THE TEST PHASE AFTER 4 

HASHTAGS WHICH ARE MAINLY USED FOR RETWEETS ARE REMOVED FROM 
POPULAR HASHTAGS 

Ot (l)  P  R  F
200 0.263 0.357 0.328
300 0.333 0.143 0.167

400 0.458 0.786 0.667

500 0.524 0.786 0.698

 
TABLE VI: TRENDY HASHTAGS TRANSLATED FROM JAPANESE HASHTAGS 

WE WERE ABLE TO PREDICT IN THE TEST PHASE 

Label Hashtags 
1 When you attach “of love” to Japanese history terms, you 

become popular 
2 ozawa-shintou (name of a political party) 
3 You may be able to understand your true character by 

looking at the predictive text of your cell phone 
4 When you type “an arrest”, aim for the predicate text to type 

“a release” 
5 If you are talking about me, what am I so famous? 
6 If I were a teacher, I would give students homework like this 

over summer vacation 
7 I am not going to get mad, so please tell me what you 

thought of my first impression 
8 If you type “me”, you will receive the first set of predictive 

text 
9 If you simplify your name to just your initials, your name 

become like “delinquent” 
10 RPG Gamer Test 
11 My follower introduced me to three new words 

 
The graph of Fig. 5 shows increases of the number of 

objects for the predicted labels over time, where Y-axis  
shows the total tweets, that is Ot (l) , X-axis time t , and one 
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unit of time is 5 minutes. Two graphs of Fig. 6 are obtained 
by magnification near the origin of Fig. 5, where both graphs 
are the same but, on the lower graph, the labels in red (resp., 
blue) are predicted as popular at Ot (l) = 200  (resp.,  

Ot (l) = 400 ). We can see that each hashtag is predicted 

before labels emerge or are emerging. For example, label 7 
has been predicted at  before the trend of it emerged at. So we 
can conclude that we have predicted latent trends of labels 
using an infectious capacity. These graphs show the 
comparison with conventional techniques detecting trends 
after they emerge. 

 

 
Fig. 5. This graph shows changes of the number of objects for popular labels 

over time. 
 

 
 

 
Fig. 6. Both graphs are obtained by magnification near the origin of Fig. 5, 
where all popular hashtags are shown in the two graphs, but on the lower 
graph, the labels in red (resp. blue) are predicted as popular at  Ot (l) = 200  

(resp. Ot (l) = 400). 

 

V. CONCLUSION 
A big goal of our research is to develop a method to predict 

future trends before trends are emerging. To do so, we have 
considered the trend of labels, instead of items, treating 
hashtags as labels. Focusing on relations with labels, items 
and objects, we have introduced the infection capacity of 

labels, and proposed a method to predict trends without 
building a model and without using temporal changes of the 
occurrences of labels. Using this method, we have predicted 
latent trends of labels before labels become popular. 

Surprisingly enough, we have experimentally discovered 
that the infection capacity of labels do not change at any time 
and maintain constant values. This results seems to be 
contrary to intuition. 

We have experimentally proved that our method can 
predict trendy hashtags before they emerge. We did not 
compare our method directly to other existing method 
because of the following reasons. First of all, existing 
methods, such as burst detection, can be applied after hastags 
become popular. Secondly, it is arbitrary to choose an 
appropriate value for a parameter of existing methods which 
use the parameter for gradient of the number of occurrences 
of hastags over time to detect a rapid increase of hashtags. 
However, the numbers of occurrences of both popular and 
unpopular hashtags go up and down dynamically, and 
increasing or decreasing rate depends on hashtags’ features. 
For example, even when hashtags for national events have 
larger occurrences than those for local events, the gradient 
for hashtags for local events can be much larger than that for 
national events. Thus, to set a threshold for the gradient, we 
must know what kinds of events used for hashtags. On the 
other hand, our method is not influenced by gradient of the 
number of occurrences of hashtags and does not require 
knowledge about events (items).  

Although a popular event or something important will 
affect the popularity of a label, our method concern the use of 
a label and predicting whether a label is used. So we do not 
need to know what an event for a label is. For example, given 
the hashtag #Brazil, though events such as the Olympics in 
Brazil will affect the popularity of #Brazil, we are not 
predicting popular events. Regardless of the kinds of events, 
all we have to do is counting the number of events labeled 
with #Brazil. 

Besides, our method does not only predict a label which 
will be trendy shortly after it is created, but we does predict 
one which will be used many times in the future. 

Since the infectious capacity is simply defined with the 
variety and frequency of items, we can expect that the 
proposed index is applicable to a wide variety of targets in 
many fields. However, preliminary experiments using 
hashtags and tweets in English do not show that the index can 
be used to predict trendy hashtags in English. We think that 
this is because of the following reasons. First, Japanese has 
ideographic characters and so we can express out intention in 
the small number of characters. So they use complex 
hashtags for tweets with the limited number of characters. 
Second, some usage of hashtags in Japan is different from 
that in other cultures. We sometimes use hashtags for a word 
game, called Ogiri, where, given a topic, players try to make 
an answer with wit and humor. For example, given 
“CalmDownABand”, an answer might be “Water Guns’N 
Roses”. So for making intriguing answers, various concepts 
are involved, and therefore, many items are used for answers. 
However, there are not many such a situation in English. 
Therefore, it is an important future work to apply the 
proposed index to data in different language. 
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Although we can predict popular hashtags which are used 
for many items, the labels peculiar to some specific items can 
not be detected. In other words, there are another type of 
popular labels. From preliminary experiments, the values of 
infectious capacities for such labels also have some range. So, 
detecting such a label is also an important future work. 

It is also an important future work to evaluate our method 
using a large amount of data and improve precision of trends 
detection. 
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