
  

 

Abstract—Cloud storage is a crucial component of cloud 

computing, where cloud storage providers supply a large 

amount of on-demand data storage so that users can save and 

retrieve their data anytime anywhere in the cloud. Any service 

interruption or failure could have negative and serious impact 

on the reputation of cloud service providers. Therefore, it is 

significant to model and design reliability for cloud storage 

systems. The RAID (Redundant Array of Independent Disks) 

technology is one of the most effective ways to achieve data 

reliability. There are several standard RAID levels with 

different fault tolerance techniques. In this paper, we model and 

evaluate reliability of RAID-6 configuration implemented in the 

cloud infrastructure (referred to as cloud-RAID-6). A hybrid 

analytical modeling method is proposed, which combines a 

Markov model for analyzing a single disk state probabilities 

and a multi-valued decision diagram model for analyzing the 

entire cloud-RAID-6 system state probabilities. The suggested 

method is applicable to identical and non-identical disks within 

the cloud-RAID-6. The proposed methodology is illustrated 

through examples.   

 

Index Terms—Cloud-RAID-6, Markov model, multi-valued 

decision diagram, lattice structure, multi-state, reliability. 

 

I. INTRODUCTION 

According to the National Institute of Standards and 

Technology (NIST), cloud computing is described as a model 

that enables convenient, ubiquitous and on-demand network 

access to a shared pool of configurable computing resources 

[1]. Examples of the shared resources include servers, 

storages, services, applications, software, and etc.  Providers 

can rapidly provide various resources in the form of services 

with the minimal management effort [1]. Based on their own 

needs, users can reuse or combine services available from the 

cloud anytime and anywhere, forming a loosely-coupled 

network application program. As a major revolution in the 

information industry, cloud computing is becoming an 

important and influential aspect of our way of life, and it has 

attracted considerable attentions from both academic and 

industrial communities. 

It is a critical challenge to guarantee the reliability of cloud 

computing systems due to the dynamic environment [2], [3]. 

Particularly, resource allocation is typically done 

dynamically based on performance predictions in the cloud 

[4], [5]. For instance, resource allocation was done based on 

estimation of future loads on servers or Quality of Service 
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reliability models are not directly applicable to analyzing 

reliability of cloud computing systems [3].  

In particular, cloud storage is a crucial component of cloud 

computing, where the storage providers (as a third party) 

supply a large amount of on-demand data storage to users [6]. 

Users are invisible to the complex underlying management 

with data migrating into cloud storage servers, and they 

expect to be able to access their data anytime anywhere. 

Therefore any service failure or interruption could have 

serious and negative impact on the reputation of cloud service 

providers. A number of major breakdowns of cloud 

computing has been reported in the last several years. For 

example, eight hours of unexpected outage of Simple Storage 

Service happened on the Amazon Cloud storage platform 

(Amazon S3), affecting numerous users [7]. Occurrence of 

such failures in services reflects the significance of 

addressing reliability issues for cloud storage systems. 

While data reliability has become a significant metric of 

QoS, cloud-RAIDs using different data redundancy 

techniques are being designed and implemented as an 

effective solution to achieve high data reliability and they 

have been provided by several cloud storage providers [8]. 

Though there exist works modeling reliability of traditional 

RAID systems (see, e.g., [9]), they made a limited 

assumption that all the disks are located in the same place and 

are identical. In the cloud-RAID, data are distributed across 

multiple cloud storage providers and thus disks providing the 

service can be located in different sites and be statistically 

non-identical. Therefore, the existing methodology for RAID 

is not applicable to the reliability analysis of cloud-RAID.   

In this paper, we propose a new hybrid analytical modeling 

methodology that consider both physical and logical 

architecture of cloud-RAID storage systems. The 

methodology integrates a Markov model and a multi-valued 

decision diagram (MDD) model. The Markov model is used 

to consider physical characteristics of each single disk and 

further analyze different disk state probabilities (or 

probability of disk being in different performance levels). 

The MDD model is used to analyze reliability of the entire 

cloud-RAID system that involves multiple disks located at 

different sites of the cloud. 

The remainder of the paper is organized as follows. 

Section II presents background of the MDD model and its 

lattice structure. Section III presents an illustrative example 

of cloud-RAID-6 system. Section IV presents the proposed 

methodology. Section V discusses reliability analysis results. 

Finally Section VI concludes the paper. 

 

II. PRELIMINARY ON MDD 

As extensions of traditional binary decision diagrams, 

MDDs are graph-based data structures for representing and 

manipulating multi-valued logical functions [10], [11]. An 
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(QoS) offered by a specific application [4], [5]. Due to factors 

such as wide area networks, large-scale service sharing, 

heterogeneous hardware and software components, and 

interactions among these components, traditional network 



  

MDD can express a multi-valued logical function as a 

directed acyclic graph that is both compact and canonical. 

Let𝑓: {0, 1, 2, 3,… ,𝑀}𝑤 → {0,1} be a multi-valued logic 

function on a set of (M+1)-valued variables 𝒙 =
 𝑥1 , 𝑥2 ,… , 𝑥𝑤  . Equation (1) givesthe decomposition of 

function f with regard to variable 𝑥𝑖 ∈ 𝒙. 

 

𝑓 =  𝑥𝑖 = 0 𝑓𝑥𝑖=0 + ⋯+  𝑥𝑖 = 𝑀 𝑓𝑥𝑖=𝑀 .            (1) 

 

Equation (2) give the concise case format [12] of (1). 

 

𝑓 = 𝑐𝑎𝑠𝑒  𝑥𝑖 , 𝑓𝑥��=0, 𝑓𝑥𝑖=1,… , 𝑓𝑥𝑖=𝑀  

        = 𝑐𝑎𝑠𝑒 𝑥𝑖 , 𝑓0, 𝑓1 … , 𝑓𝑀 .                              (2) 
 

 
Fig. 1. MDD lattice structure. 

 

An MDD is a rooted graph, consisting of one or more 

decision nodes (or non-sink nodes) and two terminal nodes 

(or sink nodes). The two terminal nodes are labeled „0‟ and 

„1‟, representing the modeled system not being or being in a 

particular system state, respectively. 

Each non-sink node in an MDD encodes a case construct 

of (2). Specifically, each non-sink node is associated with a 

multi-valued variable 𝑥𝑖  and has (M+1) outgoing edges. The 

j-th edge (0≤j≤M) is connected to a child node encoding the 

multi-valued function 𝑓𝑥𝑖=𝑗 . During the MDD generation, if 

all the multi-valued variables are ordered, an ordered MDD 

(OMDD) can be obtained, where every root node to sink node 

path visits variables in an ascending order. Furthermore by 

applying two reduction rules of “merging isomorphic 

subtrees” and “deletion of useless nodes”, a reduced OMDD 

(ROMDD) can be obtained [12]. Each path from root-to-sink 

node „1‟ represents a disjoint combination of component 

states that can lead to the system being in a particular state. 

Therefore, the probability of a system being in a particular 

state can be obtained by adding probabilities of all paths from 

root to sink node „1‟ of the corresponding system state MDD 

model.   

In the case of modeling a multi-state system whose 

structure function depends on at least K out of N components 

being at state i+1 or above, a well-defined lattice structure of 

MDD model can be constructed. Fig. 1 illustrates the lattice 

structure of MDD model, which is an extension of the lattice 

structure of binary decision diagrams for binary state systems 

constructed in [13]. The MDD lattice structure is applied in 

Section IV to model reliability of the cloud-RAID-6 system.  

III. CLOUD-RAID-6 STORAGE SYSTEM 

RAID technology is one of the most effective ways to 

achieve data reliability and protect the data from a disk 

failure. There exist several standard RAID levels, which 

utilize different fault tolerance methods such as striping, 

mirroring, and parity to store data onto multiple hard disk 

drives [14].  

Among all the levels, RAID-6 is one of the levels that can 

provide protection for data from concurrent faults of any two 

disk drives by using two independent distributed parity 

blocks. In this paper, we study cloud-RAID-6, which is the 

RAID-6 configuration being implemented the cloud 

infrastructure where different disk drives can be provided by 

different storage system providers. 

In cloud-RAID-6, the data is split into several columns 

with evenly distributed parity blocks and spread across 

multiple providers to tolerate possible failures. Just as using 

two disks for double checking in the traditional RAID-6, 

these parity blocks require two complete columns of storage 

space from any two of the multiple cloud storage providers 

for data redundancy. The storage space utilization is (n-2)/nif 

there are n cloud storage providers in the cloud-RAID-6 

storage system.  

Fig. 2 illustrates the basic architecture of an example 

cloud-RAID-6 storage system. The data is spilt into stripes 

saved in 5 columns (supported by 5 cloud storage providers) 

with 5P plus 5 Q redundancy arrays evenly distributed. If any 

two of the cloud storage providers are not available, the 

whole storage system can still operate due to the data 

redundancy. The lost data are able to be retrieved using the 

parity blocks and remaining data stripes saved by other cloud 

storage providers, thus the entire storage system can be 

reconstructed. 

Specifically, in the example cloud-RAID-6, the P parity 

stripe 𝐴𝑝  can be simply generated by applying exclusive OR 

(XOR) operation to 𝐴1, 𝐴2, and 𝐴3: 

 

𝐴𝑝 = 𝐴1𝑋0𝑅𝐴2𝑋𝑂𝑅𝐴3 

 

The Q parity stripe Aq  is calculated using Reed-Solomon 

coding with the algebra of suitable Galois field. 

 

𝐴𝑞 = 𝑔0𝐴1𝑋0𝑅 𝑔1𝐴2𝑋𝑂𝑅𝑔
2𝐴3 

 

where g is some generator of a certain Galois field. 
 

 
Fig. 2. Architecture of an example cloud-RAID-6 storage system. 

 

For instance, if the service from the cloud storage provider 
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1 fails, the unavailable data stripe A1 is no longer accessible, 

but it can be recovered by 𝑋𝑂𝑅𝑖𝑛𝑔 the parity stripe 𝐴𝑝  from 

cloud provider 4 and the remaining data stripes 𝐴2and 𝐴3. If 

one parity stripe 𝐴𝑝  or 𝐴𝑞  is lost, we can just re-compute.  

However, when two failures occur at the same time, for 

example, one data stripe like 𝐴1 and P parity stripe 𝐴𝑝  are 

lost at the same time, or one data A1and one Q parity stripe 

𝐴𝑞 are lost, or two data  𝐴1,  𝐴2 are lost, the data can be 

recovered from P and Q parity syndromes by using a more 

complicated method described in [15]. 
 

IV. PROPOSED HYBRID EVALUATION METHOD 

Based on the example configuration in the Fig. 2, we 

consider the basic architecture of the cloud-RAID-6 in two 

levels:  

1) The cloud-RAID components: storing space in columns 

provided by one cloud server considered as an 

independent virtual disk drive.  

2) The cloud-RAID system: the storage system in cloud 

environment contributed by multiple cloud storage 

providers.  

At level 1, we use a Markov process to model failure and 

recovery behavior of an individual disk with the assumption 

of exponential failure and restoration time. At level 2, we 

explore an MDD-based K-out-of-N model for evaluating the 

reliability of cloud-RAID-6 that consists of multiple disks 

from different providers. In light of the proposed hierarchical 

approach, impacts of some important parameters like disk 

transition rate  𝜆 , recovery rate  𝜇  on the reliability of 

cloud-RAID-6 storage system are examined. 

A. Individual Disk State Probabilities 

Based on previous studies in [9] and [16], a disk drive in 

RAID can assume the following three states: G (good state), 

D (degraded state), or F (permanent failed state). Each disk 

has a self-recovery mechanism with recovery rate 𝜇 which is 

also called media repair or data retrieve as shown in Fig. 3. 
    

 
Fig. 3. Markov model for a single disk. 

 

When a disk is in state G and D, the disk is operating 

correctly. The disk in state G may enter state D with 

transition rate 𝜆𝑔−𝑑  or directly goes to state F with transition 

rate 𝜆𝑔−𝑓  owing to unrepaired faults or permanent data lost. 

A disk in state D may return to state G with recovery rate 𝜇 

after successfully performing the related restoration process 

or may go to state F with transition rate 𝜆𝑑−𝑓  if the 

restoration fails.  

Let 𝑃0 𝑡 ,𝑃1 𝑡 ,𝑃2 𝑡 represent probabilities that the disk 

is in state G, D and F at time 𝑡, respectively. Based on the 

Markov model in Fig. 3, the following equations are 

obtained. 

𝑃 0 𝑡 =  − 𝜆𝑔−𝑑  +  𝜆𝑔−𝑓 𝑃0 𝑡 +  𝜇𝑃1 𝑡             (3) 

 

𝑃 1 𝑡 =  𝜆𝑔−𝑑𝑃0 𝑡 −  𝜇 + 𝜆𝑑−𝑓 𝑃1 𝑡                (4) 

 

𝑃 2 𝑡 =  𝜆𝑔−𝑓𝑃𝑜 𝑡 + 𝜆𝑑−𝑓𝑃1(𝑡)                    (5) 

 

Applying Laplace transform with the assumption of initial 

probability of the disk being 𝑃0 0 = 1, the probabilities of 

the disk being in the good state G and degradation state D are 

 

𝑃0 𝑡 =
𝜇+𝜆𝑑−𝑓−𝑐1

𝑐2−𝑐1
𝑒−𝑐1𝑡  +  

𝜇+𝜆𝑑−𝑓−𝑐2

𝑐1−𝑐2
𝑒−𝑐2𝑡        (6) 

 

𝑃1 𝑡 =
𝜆𝑔−𝑑

𝑐2−𝑐1
𝑒−𝑐1𝑡  + 

𝜆𝑔−𝑑

𝑐1−𝑐2
𝑒−𝑐2𝑡             (7) 

 

where 

 

𝑐1 = 0.5  𝑆𝑢𝑚 +  𝑆𝑢𝑚2 − 4(𝜆𝑔−𝑑𝜆𝑑−𝑓 + 𝜆𝑔−𝑓𝜆𝑑−𝑓 + 𝜆𝑔−𝑓𝜇)  

 

𝑐2 = 0.5  𝑆𝑢𝑚 +  𝑆𝑢𝑚2 − 4(𝜆𝑔−𝑑𝜆𝑑−𝑓 + 𝜆𝑔−𝑓𝜆𝑑−𝑓 + 𝜆𝑔−𝑓𝜇)  

 

𝑆𝑢𝑚 = 𝜇 + 𝜆𝑔−𝑑+ 𝜆𝑔−𝑓 + 𝜆𝑑−𝑓 . 

 

The probability of the disk being in the permanent failure 

state is thus 

 

𝑃2 𝑡 = 1 − 𝑃0 𝑡 − 𝑃1 𝑡  

=

1 −  
𝜇+𝜆𝑔−𝑑+𝜆𝑑−𝑓−𝑐1

𝑐2−𝑐1
𝑒−𝑐1𝑡 −

𝜇+𝜆𝑔−𝑑+𝜆𝑑−𝑓−𝑐2

𝑐1−𝑐2
𝑒−𝑐2𝑡    (8) 

 

Equation (8) also gives unreliability of the disk. 

B. Cloud-RAID-6 System State Probabilities 

The ground of this approach is to develop an analytical 

model for reliability evaluation of an overall cloud-RAID 

storage system. As illustrated in Fig. 4, each individual disk 

can be defined as a three-state component in this paper, 

modeled by a non-sink node in the MDD model. In particular, 

the disk k (𝑘 = 1, 2, 3, 4, 5) that can be in states G, D, and F is 

displayed by a non-sink node with three outgoing edges, 

associated with probabilities 𝑃0𝑘 ,𝑃1𝑘 ,𝑃2𝑘 , respectively. 
 

 
Fig. 4. MDD for disk 𝑘 (𝑘 = 1, 2, 3, 4, 5). 

 

The entire cloud-RAID 6 system also has three states: good, 

degraded, and failed associated with probabilities 

𝑃𝑠=0 𝑡 ,𝑃𝑠=1 𝑡  and 𝑃𝑠=2(𝑡) respectively.  

The example cloud-RAID-6 system is considered being in 

a good state when at least 3 disks are in state G, modeled 

using 3-out-of-5 MDD lattice structure in Fig. 5. The two 

sink nodes „1‟ and „0‟ means the system is or is not in the 
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good state.   
 

 
Fig. 5. MDD of system being in good state 0. 

 

The probability of the system being in the good state 

𝑃𝑠=0(𝑡) is given as the sum of probabilities of all paths from 

the root node 1 to sink node „1‟ in the MDD of Fig. 5. 

 

   𝑃𝑠=0 = 𝑃01𝑃02𝑃03  + 𝑃01𝑃02 (1 − 𝑃03 )𝑃04  

+𝑃01𝑃02 (1 − 𝑃03 ) 1 − 𝑃04 𝑃05  

+𝑃01 1 − 𝑃02 𝑃03𝑃04 

+𝑃01(1 − 𝑃02 )𝑃03 1 − 𝑃04 𝑃05  

+𝑃01 1 − 𝑃02 (1 − 𝑃03)𝑃04𝑃05  

+ 1 − 𝑃01 𝑃02𝑃03 1 − 𝑃04 𝑃05  

+ 1 − 𝑃01  1 − 𝑃02 𝑃03𝑃04𝑃05(9) 

 

Similarly, the entire cloud-RAID-6 system is considered 

being in a failed state when 3 disks or more are in state F 

modeled using 3-out-of-5 MDD lattice structure in Fig. 6. 

Sink node „1‟ in Fig. 6 means the system is in the failed state; 

sink node „0‟ means the system is not in the failed state.  
 

 
Fig. 6. MDD of system being in failed state 2. 

 

Evaluating the MDD in Fig. 6, the probability of the 

system being in the failed state 𝑃𝑠=2 𝑡  is 

 

𝑃𝑠=2 = 𝑃21𝑃22𝑃23 + 𝑃21𝑃22(1 − 𝑃23 )𝑃24  

+𝑃21𝑃22 (1 − 𝑃23 ) 1 − 𝑃24 𝑃25  

+𝑃21 1 − 𝑃22 𝑃23𝑃24  

+𝑃21(1 − 𝑃22 )𝑃23 1 − 𝑃24 𝑃25  

+𝑃21 1 − 𝑃22 (1 − 𝑃23)𝑃24𝑃25  

+ 1 − 𝑃21 𝑃22𝑃23 1 − 𝑃24 𝑃25  

+ 1 − 𝑃21  1 − 𝑃22 𝑃23𝑃24𝑃25(10) 

 

Any state in-between the good state and failed state is 

considered as a degraded state. The probability that the 

system is in the degraded state can thus be simply obtained as 

 

                 𝑃𝑠=1 𝑡 = 1 − 𝑃𝑠=2 𝑡 − 𝑃𝑠=0(𝑡)                  (11) 

 

V. ANALYSIS RESULTS 

In this section numerical results are presented for the 

example cloud-RAID-6 system.  

A. Individual Disk State Probabilities 

Table I shows transition rates 𝜆𝑔−𝑑 , 𝜆𝑔−𝑓 ,  𝜆𝑑−𝑓  (numbers 

of faults per hour) and recovery rate 𝜇 for the five disks of the 

example cloud-RAID-6 system. 
 

TABLE I: TRANSITION RATES AND RECOVERY RATE FOR EACH DISK 

Disk k μ 𝜆𝑔−𝑑  𝜆𝑔−𝑓  𝜆𝑑−𝑓  

1 0.01 0.00015 0.00002 0.0002 

2 0.05 0.0002 0.000019 0.00019 

3 0.16 0.0001 0.000025 0.00026 

4 0.24 0.0003 0.000013 0.0004 

5 0.13 0.00025 0.00001 0.00032 

 

Tables II, III, IV show probabilities of individual disks and 

the entire example cloud-RAID-6 system being in the good, 

degraded, and failed states for different mission times (in 

hours), respectively. The state probabilities for each disk 

𝑃𝑘0 ,  𝑃𝑘1  and 𝑃𝑘2  are calculated by (6), (7) and (8), 

respectively. 

The state probabilities of the entire cloud-RAID-6 system 

𝑃𝑠=0, 𝑃𝑠=1  and 𝑃𝑠=2  are computed by (9), (10) and (11), 

respectively. 

B. Individual Disk State Probabilities 

 

 
Fig. 7. Probability of good state for each disk and the system. 

 

 
Fig. 8. Probability of degraded state for each disk and the system. 
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Fig. 9. Probability of failed state for each disk and the system. 

 

 
Fig. 10. Probability of good, degraded, failed states for the system. 

 

 
TABLE II: PROBABILITY OF GOOD STATE FOR INDIVIDUAL DISKS AND THE SYSTEM 

t 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 

𝑃01 0.942135 0.900473 0.860653 0.822594 0.786217 0.751450 0.718220 0.686459 0.656103 0.627090 

𝑃02 0.959512 0.924320 0.890420 0.857762 0.826303 0.795997 0.766803 0.738679 0.711587 0.685489 

𝑃03 0.950358 0.903744 0.859416 0.817262 0.777176 0.739056 0.702806 0.668333 0.635552 0.604379 

𝑃04 0.972184 0.946320 0.921144 0.896637 0.872782 0.849563 0.826960 0.804960 0.783544 0.762698 

𝑃05 0.977165 0.956680 0.936624 0.916988 0.897764 0.878943 0.860516 0.842476 0.824814 0.807523 

 𝑃𝑠=0 0.996836 0.988632 0.975313 0.957119 0.934482 0.907950 0.878127 0.845631 0.811066 0.775003 

 
TABLE III: PROBABILITY OF DEGRADED STATE FOR INDIVIDUAL DISKS AND THE SYSTEM 

t 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 

𝑃11 0.013886 0.013272 0.012685 0.012124 0.011588 0.011075 0.010586 0.010117 0.009670 0.009242 

𝑃12 0.003825 0.003685 0.003550 0.003419 0.003294 0.003173 0.003057 0.002945 0.002837 0.002733 

𝑃13 0.000593 0.000564 0.000536 0.000510 0.000485 0.000461 0.000439 0.000417 0.000397 0.000377 

𝑃14 0.001213 0.001181 0.001150 0.001119 0.001089 0.001060 0.001032 0.001005 0.000978 0.000952 

𝑃15 0.001875 0.001835 0.001797 0.001759 0.001722 0.001686 0.001651 0.001616 0.001582 0.001549 

 𝑃𝑠=1 0.002786 0.008643 0.016386 0.025114 0.034157 0.043031 0.051395 0.059021 0.065770 0.071568 

 
TABLE IV: PROBABILITY OF FAILED STATE FOR INDIVIDUAL DISKS AND THE SYSTEM 

t 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 

𝑃21 0.043979 0.086256 0.126663 0.165283 0.202195 0.237475 0.271195 0.303423 0.334227 0.363668 

𝑃22 0.036663 0.071995 0.106031 0.138818 0.170403 0.200830 0.230141 0.258376 0.285576 0.311779 

𝑃23 0.049049 0.095692 0.140048 0.182228 0.222339 0.260483 0.296756 0.331249 0.364051 0.395244 

𝑃24 0.026602 0.052499 0.077707 0.102244 0.126128 0.149377 0.172007 0.194036 0.215478 0.236350 

𝑃25 0.020960 0.041485 0.061579 0.081253 0.100514 0.119371 0.137833 0.155907 0.173603 0.190928 

 𝑃𝑠=2 0.000377 0.002725 0.008301 0.017767 0.031360 0.049019 0.070478 0.095348 0.123164 0.153430 

 

Fig. 7, Fig. 8, and Fig. 9 respectively show the trend for the 

probability of being at the good state, degradation state and 

failure state over the period from 2,000 to 20,000hours for 

each disk 𝑃𝑘  (𝑘 = 1, 2, 3, 4, 5)and the entire system 𝑃𝑠. Fig. 

10 summarizes the state probabilities of the entire system. 

Obviously in Fig. 7, the system good state probability 

𝑃𝑠=0 stays at a higher level until 16,000 hours while all 

probabilities for individual disks and the system decrease 

gradually with the time increasing. With appropriate 

implementation of the RAID-6 technology into cloud 

infrastructure, the cloud-RAID can significantly improve the 

performance of cloud storage system rather than using a 

single disk from one cloud provider. After 16,000 hours, 𝑃𝑠=0 

drops to around 0.8, worse than the most reliable disk but still 

perform better than other disks. However this phenomenon 

shows that the advantage of the redundant architecture of 

cloud-RAID is related to time. 

As shown in Fig. 8, there is a big gap between the 

probability of degraded state for each disk and for the entire 

system. The probability of the system being at the degraded 

state 𝑃𝑠=1 increases sharply, peaking at about 0.07 during the 

considered mission time while most of single disk degraded 

state probabilities 𝑃𝑘1decline slowly below 0.01. From Fig. 8, 

we also observe that the probability of disk 1 being at the 

degraded state 𝑃11  is a little bit higher than the degraded state 

probabilities of other disks. This is because the recovery rate 

𝜇 for disk1 (0.01) is less than other disks, which reflects the 

impact of recovery rate 𝜇on the performance of each disk. 

 

VI. CONCLUSION 

In this paper, we model a fault-tolerant cloud-RAID-6 

storage system that distributes data and double parity to 

multiple non-identical disks from different cloud storage 

providers. A hybrid analytical modeling methodology is 

proposed. At the lower level, a Markov model is used for 

considering physical failure and recovery behaviors of a 

single disk and further for analyzing the probabilities of the 

disk being at three different performance levels or states. At 

the higher level, an efficient MDD model is utilized for 

modeling the fault tolerant behavior of multiple disks and 

further analyzing the probabilities of the entire 

cloud-RAID-6 system being at three different states. The 

failure state probability gives the unreliability of the entire 

cloud-RAID-6 system. The benefit and feasibility of the 

cloud-RAID-6 storage model is verified by comparing the 

state probabilities of the example cloud-RAID-6 system with 

those of its individual disks. 

In this work we have assumed perfectly reliable links in the 
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reliability modeling of cloud-RAID-6 systems. We will relax 

this assumption in our future work. We will also investigate 

other levels of RAID architecture for reliability modeling and 

evaluation of cloud storage systems. 
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