

Abstract—Cloud computing is one of the promising and

successful technology in this technological era and because of the

limitation of remote sensing the concept called Cloud Aided

Remote Sensing Multiprocessing System (CARMS) came into

existence. It is the combination of technologies called Remote

sensing and Cloud Computing, which makes Internet of

everything enabler possible (ubiquitous computing). In CARMS

scenario, system can have different types of tasks or requests

and some maybe requested at the same instance of time. In such

cases, it is important that the system should serve maximum

possible tasks gaining profit to the sensing services at clouds and

providing user satisfaction at the same time. Hence, for the

sensing services of sensors in cloud, an optimal scheduling or

task allocation scheme has to be developed so that multiple

requests or tasks may get response and therefore, these tasks can

be scheduled, processed and handled properly without any delay.

Thus, the proposed work provides an algorithm that allows

efficient task allocation which aims at providing efficient

distribution of tasks to the Virtual Machines in the cloud.

Index Terms—Remote sensing (RS), cloud computing (CC),

internet of everything enabler (IOE), cloud aided remote sensing

multiprocessing system (CARMS), distributive sensor cloud

system (DSCS).

I. INTRODUCTION

The Major role or purpose of Remote Sensing is to acquire

or collect data remotely or in real time from everywhere

without needing physical field visits and this is done with the

help of sensory things or objects (sensors, SAN etc). As

sensors play a very important role in providing a very useful

information so they are being utilized in different applications

like defense for military border tracking and surveillance,

weather condition, healthcare, Natural disaster relief etc.

However, it have to suffer from or have many issues or

limitations like short communication range, security and

privacy, power consideration, storage capacity, processing

capabilities etc. As the Cloud Computing is the emerged

ongoing research technology which allow efficient

computation by centralizing storage and memory. Most of the

organizations are using this technology as it is easy and

economical to use. Currently, many researchers are working

on checking the suitability of this technology and its

implemention for avoiding the limitation of Remote Sensing

II. BACKGROUND

CARMS is the combination of cloud computing and remote

sensing, which provide cloud aided remote sensing services to

users through the Internet and Sensor or Sensing devices.

Remote Sensing is ―a science of Acquiring, Processing and

Interpreting Images and related data that are obtained from

ground based, air-or space instruments [1], [16].‖ Further,

Cloud Computing is ―Internet-based computing, whereby

shared resources, software and information are provided to

computers and other devices on-demand [2].‖ As shown in

Fig. 1, CARMS can be simply divided into Cloud Computing

and Remote Sensing. At its easiest it refers to an infrastructure

where the data storage, data accessing and the data handing

out happen inside or from the cloud. CARMS applications

move the computing power and data storage away from

sensory devices and into the cloud, bringing applications and

CARMS computing to not just smart-sensing users but due to

a much broader range of sensing subscribers.‖ This

emphasizes that Remote Sensing benefits from Cloud

Computing features-storage and data processing, also reveals

a CARMS Services- moving part of the computation and the

storage away from sensory devices. Thus, CARMS can be

defined as: ―An Infrastructure which provide Ubiquitous

Computing with the help of Sensors, Clouds and Internet as a

communication medium‖

In CARMS, the previous or conventional ways of

collecting and processing sensory data have been transferred

to cloud and thus the limitation of remote sensing have been

Study and Analysis of Cloud Aided Remote Sensing

Multiprocessing System (CARMS) with Task Allocation

M. Zubair khan, Geeta Devi, and Yasser M. Alginahi

International Journal of Future Computer and Communication, Vol. 5, No. 1, February 2016

47doi: 10.18178/ijfcc.2016.5.1.442

Manuscript received September 10, 2015; revised December 9, 2015.

M. Zubair Khan is with Taibah University, P.O. Box 344, Madinah,

Saudi Arabia (e-mail: mkhanb@taibahu.edu.sa).

Geeta Devi is with Invertis University Bareilly, India (e-mail:

geetar01@gmail.com).

Yasser M. Alginahi is with Deanship of Academic Services, Taibah

University, P.O. Box. 344, Madinah, Saudi Arabia (e-mail:

yginahi@taibahu.edu.sa).

also. The new technology CARMS emerged from the

combination of cloud computing and remote sensing.

Therefore, CARMS can be viewed as an emerging technology

that has great potential for enabling IOE (Internet of

Everything) therefore enabling smart cloud services. And this

technology is then provided to all the devices such as sensors

of mobile devices, smart phones, portable terminal and so on,

many of the applications have been developed which are

using CARMS like Nimbits [1], Pachube Platform [2], Thing

Speak [3]-[15]. It will give rise to better remote sensing

applications to the society, once it is successfully developed

without any flaws. So, this paper presents an overview of

CARS with the proposed task allocation algorithm.

The rest of this paper is organized as follows: Section II,

gives introduction to CARMS; Section III discusses CARMS

existing architecture; Section IV refers to the CARMS

Services Models; Section V explains the proposed efficient

task allocation algorithm and Section VI presents the

performance appraisal of the proposed algorithm. Finally,

Section VII concludes the paper.

reduced, so the acquisition and processing mode of remote

sensing applications have been totally changed. CARMS now

enables:

1) Distributed sensory data collection: Sensed data can be

collected from the distributed environment at one place.

2) Global resource and data sharing: Resources like sensors

etc and sensed Information can be shared globally among

the world.

3) Remote and real time data access: Sensed data can be

accessed and analyzed in real time from anywhere.

4) Elastic resource provisioning and scaling: Where service

users can provision and scale up and down their needed

resources based on demand.

5) Pay-as-you-go pricing models: where cloud users can

request, release, and pay for resources whenever needed.

+

Fig. 1. Cloud aided remote sensing architecture.

Fig. 2. Architecture of CARMS.

III. CARMS EXISTING ARCHITECTURE

CARMS Architecture can be viewed as a geographically

distributed platform that connects many billions of sensors

and things and provides multitier layers of abstraction of

sensors and sensor networks in Fig. 2. It has four main layers.

 Fog Layer

 Stratus Layer

 Alto-Cumulus Layer

 Cirrus Layer

A. Fog Layer

It encapsulates all physical objects, machines and anything

that is equipped with computing, storage, networking, sensing

and/or actuating resources, which can connect to, and be part

of the Internet; for example: Smart Phones, Sensors, Vehicles

etc. The sensory elements of this layer are those that collect

and send raw sensed data to stratus layer or being pushed by

fog layer to stratus layer.

The Functions of fog layer are to provide:

 Heterogeneous networking and communication

infrastructures to connect billions of things.

 Unique identification of all things through Internet

Protocol Version 6 (IPV6).

 Data aggregation points to serve as sensing clusters.

B. Stratus Layer

This is the second layer that consists of thousands of clouds

whose main resources are sensory devices and SANS. Each

Stratus cloud manages and acts as a liaison for a difficult

group of SANS that share similar features, context, or

properties. Stratus clouds are domain specific i.e. each cloud

is very likely to be concerned with one application domain

(e.g., Medical, environment, agriculture).

The Functions of stratus layer includes:

 Abstracting and virtualizing physical SANs through

virtual network embedding (VNE) techniques.

International Journal of Future Computer and Communication, Vol. 5, No. 1, February 2016

48

 Handling and managing virtual SAN migration and

portability across different clouds.

 Managing and ensuring operations and functionalities of

virtual SAN instances.

 Enabling and managing (physical or virtual) SAN

configuration to ensure network connectivity and

coverage.

 Controlling the layer‘s operations and functionalities to

ensure that customer‘s service level agreements (SLAs)

communicated from higher layers are met.

This layer does not interact directly with CARMS

customers, but serves them through requests received from

higher layers.

C. Alto-Cumulus Layer

It is a middle layer that serves as a point of liaison between

stratus and cirrus layers. It facilitates negotiations and SLA‘s

between stratus and cirrus layers, and ensure that the agreed

upon terms are not violated. An Alto-cumulus cloud may map

to and organize multiple stratus clouds belonging to different

domains. This enables inter-cloud resource sharing, thereby

increasing resource elasticity and scaling.

The major functions of this layer are:

 Serving as a point of liaison between cirrus and stratus

layer.

 Enabling business and payment transactions between

cirrus and stratus layers by providing two-way brokerage

services.

 Enabling and facilitating SLA negotiations between

cirrus and stratus, and monitoring and ensuring that these

SLAs are met. (Playing the role of Policy enforcement

Agent).

 Coordinating and facilitating inter-cloud interactions,

data exchange, task migration and resource sharing

across different stratus clouds.

D. Cirrus Layer

This is the highest layer in the CARMS architecture. Its

main role is to interact with CARS service customers and

satisfy their requests with the help of lower layer. This layer

does not deal with resource virtualization nor does it need to

know which cloud handles which resources. What it needs to

do is just to communicate customer‘s requests specified via

their SLA to alto-cumulus clouds.

The Functions of this layer includes:

 Acting as a customer‘s entry point to CARMS systems.

 Allowing CARMS customers to set up their sensing task

requirements and do whatever their chosen service

model allows them to do (e.g., software configuration/

deployment).

 Providing online applications for remote data analysis to

be used by customers to visualize their data in real time.

IV. CARMS SERVICE MODELS

The main purposes of CARMS are to provide cloud

customers with flexible access to data and sensing services, to

allow them to develop their own domain-specific applications,

and to allow clouds to share physical resources. Thus, the

CARMS services are classified into three smart service

models, which are analogous to Cloud Computing Service

models:

A. SAIaaS

(Sensing and Actuating Infrastructure as a Service): In this

design, Infrastructure provided are sensors or sensor networks.

This model requires that physical sensor and SAN resources

serve multiple sensing tasks concurrently. Customers can‘t

make changes to physical resources (i.e., SANs & sensors),

but have full control over their allocated virtual instances.

B. SAPaaS

(Sensing and Actuating Platform as a Service): In this

model, CARMS customers are provided with a set of

applications program interface (APIs) and libraries that they

can use to develop their own sensing and actuating

applications without worrying about the physical (SANs).

These CARMS customers in this case, do have full control

over their applications and can manage their resources, but

they cannot alter any change in the physical or virtual

infrastructure (e.g., shutdown a sensor, connect to another

sensor, enable or deploy a new sensor etc).

C. SDAaaS

(Sensing Data and Analytics as a Service): Many practical

applications need to have access and be able to process sensed

data without needing to change anything in the physical

sensors or in the virtual realization of SANs. CARS service

customers using this service model, are only interested in the

context in which sensed data is collected, its accuracy.

V. DESCRIPTION OF PROPOSED EFFICIENT TASK

ALLOCATION ALGORITHM

CARMS is an Internet based technology in which sensing

data are stored and accessed from the cloud. These stored

sensing data at cloud are shared among its various users based

on the type of sensing services they require. As the number of

users increases at Cirrus Layer, the task to be schedule also

increases and the performance of the CARMS system

depends on the scheduling algorithm used in task allocation.

The better scheduling algorithm can utilize better executing

competence and maintain the load balancing of the system.

Many researchers have already put many efforts to develop

workload prediction techniques for cloud computing with the

objectives of balancing workloads across servers which

increases server‘s utilization and/or reducing power

consumption. However, not much research has been done

when it comes to cloud-based remote sensing. As the

complexity of scheduling and task allocation of number of

tasks or requests from cirrus layer increases, the ability to find

good allocations and scheduling algorithm become more

prominent. So the task allocation algorithm should be used for

balancing and allocating customer request loads to optimize

CARMS performance.

VI. CONTRIBUTION

This part of our paper consists of a proposed Algorithm and

its implementation.

International Journal of Future Computer and Communication, Vol. 5, No. 1, February 2016

49

A. Proposed ETA Algorithm

A task that enters into the System is equipped with the

following information number of tasks (T) with their modules

(mi), number of processors (Pi) with their capacity IMCC

(Inter Module Communication Cost): IMCC is a matrix which

is used to represent the data communication between the

modules during the execution and it can be calculated by

calculating the amount of data transmitted from one module to

another. Each entry of a IMCC between mi and mj of task T is

represented by cij), which can be calculated as:

IMCC= (Communication between mi on processor k and

mj on processor l)* (distance between processor k and l)

ETM (Execution Time Matrix): Matrix which determines

the quantity of time taken by module to execute on a particular

processor. And it depends on the capability or speed of the

processor to which it is assigned and the amount of work to be

performed by the module

With these given information our objective is to find an

assignment of modules to processors, in a cloud, for which

possible schedule is likely to be found by finding a suitable

clustering and assignment.

Designing Algorithm for efficient task allocation models

follows a number of systemic processes or steps which are as

follows:

1) Each Layer on CARMS system (DSCS) consist of

different servers or clouds say Ci (i=1 to n) for different

Layers which in turns consist of, or maintain ‗N’ list of

Virtual Machines/Processors (which may varies

according to the demand of the system) where each of

them may have different capacity or same, which is

represented by ‗M’.

2) Each cloud maintains different types of queues for

different types of tasks (or modules). As each cloud is

domain specific.

3) The users from different machines logs into the portal

server at Cirrus Layer and send their request for different

sensing services. These requests get collected into the

Queue (Q) at Cirrus Layer. Let Q has ‗n’ number of task

or request at time ‗t‘.

4) Each task is transferred to further layers based on their

type of sensing request.

5) 5. For each Tj of the layer is divided into different

modules ‗mi‘(i = 0 to n) and

CLUSTER_OF_MODULES(); //based on their IMCC

will be Executed.

6) Repeat (for all the Task say Tj in order).Then for cluster

allocation the modules are assigned to the Pk based on the

base case (Best Case, Average Case and Worst Case.

Check if (Sij<=Mk) , where Sij is the size of mj of task Ti

If true

Assign modules of Cij to Processor Pk.

7) Update processor table

Mk= Mk – Sij

//Mk is the available memory capacity of processor k

// Sij is the size of cluster Cij of the task T and sort the Pk (by

their capacity).

8) Repeat step 6 //for each cluster Cij of Tj

9) Repeat steps 5 to 7 // for each layer (Li)

 Repeat until

 Q = NULL.

10) Compute:

 Total Cost (TC)

 Processor Utilization (PU)

 Response Time (RT)

 Average PU (APU)

B. Implementation

The application for the above algorithm is developed in C

and the learning has been carried out by using few examples

given below, to judge the performance of the algorithm. Here,

we assume that the IMC matrices, the execution time matrices,

no_of_ tasks , no_of_modules in each task, no_of_processor,

capacity of processors and size of the modules are given for

every module of each task in units of time.

For example:

1) Given a task T1, T2 and T3 with their modules and memory

required (in MB) by each module.

T1 = {m11 (4), m12 (5) , m13 (6)}

T2 = {m21 (5), m22 (6), m23 (7), m24 (3), m25 (4)}

T3 = {m31 (8), m32 (9), m33 (7)}

2) Number of processors say P1, P2 and P3 with their

Memory capacity say 100MB.

3) IMCC for task T1 (Table I) and T2 (Table II).

TABLE I: IMCC OF TASK T1

 m11 m21 m31

m11 0 5 3

m21 5 1 2

m31 3 2 1

TABLE II: IMCC OF TASK T2

 m21 m22 m23 m24 m25

m21 0 7 9 5 11

m22 7 0 13 15 5

m23 9 13 0 7 13

m24 5 15 7 0 17

m25 11 5 13 17 0

4) Execution time matrix of task T1 (Table III).

TABLE III: EXECUTION TIME MATRIX OF TASK T1

 p1 p2 p3

m11 2 5 3

m21 5 1 2

m31 3 2 1

Cluster formed for Task T1 is as

C11 = {m11, m21}, Calculate the size of S11 = 4+6=10

C12 = {m31}, Size of S12 = 9

Then after executing the proposed algorithm the following

result will be shown (Table IV):

TABLE IV: EXECUTION RESULTS FOR PROPOSED ALGORITHM

Processor (Pk) Memory

Capacity (Mk)

Modules

Assigned

Left

Memory

P1 100 m11, m21 90

P2 100 m31 91

Cluster formed for Task T2 is as

C21 = {m24, m25}, Calculate the size of S21 = 3+4=7

International Journal of Future Computer and Communication, Vol. 5, No. 1, February 2016

50

International Journal of Future Computer and Communication, Vol. 5, No. 1, February 2016

51

C22 = {m22, m23}, Size of S22 = 6+7 = 13

C23 = {m21}, Size of S23 = 5

After executing the second task the final table is shown in

Table V.

TABLE V: RESULTS AFTER EXECUTING T2

Processor (Pk) Memory

Capacity(Mk)

Modules Assigned Memory

Left

P1 100 m11, m21, m22, m23 77

P2 100 m31, m24, m25, m21 79

Table V, shows that how efficiently tasks are allocated and

balanced load is obtained.

TABLE VI: TOTAL COST AND RESPONSE TIME FOR EACH PROCESSOR

Modules Processors PEC(k) IPCC(k) PEC(k)+

IPCC(k)

m11, m21 P1 7 92 99

m31 P2 3 70 73

Table VI shows the total cost of each processor and the

response time. The response time of the system in the above

case is 99.

The simulation of the proposed algorithm was carried out

using MatLab.

VII. PERFORMANCE EVALUATION

For scheduling/task allocation scheme I have compared the

algorithm results with the base case I have developed. In order

to show the efficiency of the design, I have compared the task

scheduling scheme with the base case. The measure, I have

used for performance comparison is Response Time.

The response time for increasing the number of tasks was

found for the best case, the average case and the worst case.

Fig. 3 shows the graph of Number of Tasks v/s Response

Time (in sec) for proposed algorithm. In the best-case

scenario, for the number of request the response time will not

be affected. On the other hand when the number_of_tasks are

more in worst case, we have taken the tasks with a higher

frequency rate which causes the response time to increase

rapidly. However, in average case, the response time for

average case increases linearly with the number of tasks.

Fig. 3. Number of tasks / response time for task allocation.

VIII. CONCLUSION

As CARMS is a vast and new phrase of this technological

era, so there is a huge scope of improvement in this area.

Therefore, this paper provides an overview of CARMS

system, algorithm or technique that allows selecting efficient

task allocation algorithm. The theoretical analysis and

simulation results which have been done show that the

proposed algorithm has better performance both in finding

solution and response time. I believe that the modeling

technique and the algorithm presented in this paper are

general, effective, time and cost efficient thus are applicable

to practical CARMS system.

REFERENCES

[1] Nimbits Data Logging Cloud Sever. [Online]. Available:

http://www.nimbits.com

[2] Pachube Feed Cloud Service. [Online]. Available:

http://www.pachube.com

[3] IoT—ThingSpeak. [Online]. Available: http://www.thingspeak.com

[4] M. Whaiduzzaman, M. N. Haque, and M. R. Karim ―A study on

strategic provisioning cloud computing services,‖ 2014.

[5] S. Abdelwahab, B. Hamdaoui, and M. Guizani, ―Enabling smart cloud

services through remote sensing: An internet of everything enabler‖

IEEE, 2014.

[6] J, Gubbi, R, Buyya, S. Marusic, and M. Palaniswami, Internet of

Things (IoT): A Vision, Architectural Elements, and Future Directions,

Elsevier, 2013.

[7] M. Sanjay, V. Kumar, and R. Dalvi, ―Sensor cloud: A cloud of virtual

sensors,‖ IEEE Journal in Software, IEEE, vol. 31, no. 2, pp. 70-77,

Mar. 2014.

[8] S. Ehsan et al., ―Design and analysis of delay-tolerant sensor networks

for monitoring and tracking free-roaming animals,‖ IEEE Trans.

Wireless Commun., vol. 11, no. 3, pp. 1220–1227, Mar. 2012.

[9] X. Sheng, J. tang, X. Xiao, and G. Xue, ―Sensing as a service:

Challenges, solutions and future directions,‖ 2013.

[10] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi,

and M. A. Hossain., ―A survey on sensor-cloud: Architecture,

applications, and approaches,‖ International Journal of Distributed

Sensor Networks, p. 18, 2013.

[11] M. A. Tawfeek, A. El-Sisi, A. E. keshk, and F. A. Torkey, ―cloud Task

scheduling based on ant colony optimization,‖ IEEE, 2013.

[12] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, ―Cloud task scheduling

based on load balancing ant colony optimization,‖ College of

Computer Science and Technology Jilin University, Chang Chun,

China, 2011.

[13] W. Sun, N. Zhang, H. Wang, W. Yin, and T. Qiu, ―PACO: A period

ACO_based scheduling algorithm in cloud computing,‖ School of

Software Technology Dalian University of Technology Dalian, China,

2013.

[14] S. Selvarani and G. S. Sadhasivam, ―Improved cost-based algorithm

for task scheduling in cloud computing,‖ Coimbatore, India, 2010.

[15] M. A. M. Viera et al., ―Scheduling nodes in wireless sensor networks:

A Voronoi approach,‖ presented at International Conference on Local

Computer Networks, IEEE, 2003.

[16] M. Yuriyama and T. Kushida, ―Sensor-cloud infrastructure-physical

sensor management with virtualized sensors on cloud computing,‖

presented at 13th Int‘l Conf. Network-Based Information Systems

(NBIS 10), IEEE CS, 2010.

M. Zubair Khan got the Ph.D. degree in computer

science and information technology from Faculty of

Engineering, M.J.P. Rohilkhand University, Bareilly

India, and the master of technology in computer science

and engineering from U.P. Technical University,

Lucknow, India.

He is currently working as senior faculty member in

the Department of Computer Science, Deanship of

Academic Services, Taibah University. Past he has worked as head and

associate professor, in the Department of Computer Science and Engineering,

Invertis University, Bareilly India. He has published more than 36 journals

and conference papers.

Dr. M. Zubair Khan is a member of Computer Society of India since 2004.

His current research interests are data mining, big data, parallel and

distributed computing , theory of computations, and computer networks. He

has more than 13 years teaching and research experience.

http://www.nimbits.com/
http://www.pachube.com/
http://www.thingspeak.com/

Geeta Devi is currently working as an assistant

professor in ANA College of Management and

Technology, Bareilly (India). Her research interest

includes cloud computing, cloud scheduling, data

mining and scheduling algorithms. She obtained

the Bsc (computer Sc) during 2008, the Msc

(computer Sc) during 2010 from Pune University,

Maharashtra (India) and the M.Tech. degree in

computer science and engineering in 2015 from

Invertis University, Bareilly, Uttar Pradesh (India). She has total 3 year

experience of teaching in different colleges of Pune University and She has

published some technical papers in conference proceedings.

Yasser M. Alginahi earned a Ph.D. in electrical

engineering from the University of Windsor,

Ontario, Canada, and a master of science in

electrical engineering from Wright State

University, Ohio, U.S.A.

He is an associate professor at the Department of

Computer Science, Deanship of Academic

Services, Taibah University. He is also the

consultation unit coordinator at the IT Research

Center for the Holy Quran and its sciences, Taibah University. Dr. Alginahi

is on editorial board of several international journals. He published a book

entitled Document Image Analysis and he has published over 60 journal and

conference papers.

Dr. Alginahi is a licensed professional engineer, Ontario, Canada, a

member of Professional Engineers Ontario, a senior member of IEEE and

IACSIT since 2010. He worked as a principal investigator and co-principal

investigator on many funded research projects by the Deanship of Scientific

Research at Taibah University and other organizations such as King

Abdul-Aziz City of Science and Technology. His current research interests

are big data, information security, document image analysis, pattern

recognition, ocr, modeling and simulation, and numerical computations.

International Journal of Future Computer and Communication, Vol. 5, No. 1, February 2016

52

