
  

 

Abstract—Cloud computing is one of the promising and 

successful technology in this technological era and because of the 

limitation of remote sensing the concept called Cloud Aided 

Remote Sensing Multiprocessing System (CARMS) came into 

existence. It is the combination of technologies called Remote 

sensing and Cloud Computing, which makes Internet of 

everything enabler possible (ubiquitous computing). In CARMS 

scenario, system can have different types of tasks or requests 

and some maybe requested at the same instance of time. In such 

cases, it is important that the system should serve maximum 

possible tasks gaining profit to the sensing services at clouds and 

providing user satisfaction at the same time. Hence, for the 

sensing services of sensors in cloud, an optimal scheduling or 

task allocation scheme has to be developed so that multiple 

requests or tasks may get response and therefore, these tasks can 

be scheduled, processed and handled properly without any delay.  

Thus, the proposed work provides an algorithm that allows 

efficient task allocation which aims at providing efficient 

distribution of tasks to the Virtual Machines in the cloud. 

 

Index Terms—Remote sensing (RS), cloud computing (CC), 

internet of everything enabler (IOE), cloud aided remote sensing 

multiprocessing system (CARMS), distributive sensor cloud 

system (DSCS).  

 

I. INTRODUCTION 

The Major role or purpose of Remote Sensing is to acquire 

or collect data remotely or in real time from everywhere 

without needing physical field visits and this is done with the 

help of sensory things or objects (sensors, SAN etc). As 

sensors play a very important role in providing a very useful 

information so they are being utilized in different applications 

like defense for military border tracking and surveillance, 

weather condition, healthcare, Natural disaster relief etc. 

However, it have to suffer from or have many issues or 

limitations like short communication range, security and 

privacy, power consideration, storage capacity, processing 

capabilities etc. As the Cloud Computing is the emerged 

ongoing research technology which allow efficient 

computation by centralizing storage and memory. Most of the 

organizations are using this technology as it is easy and 

economical to use. Currently, many researchers are working 

on checking the suitability of this technology and its 

implemention for avoiding the limitation of Remote Sensing 

 

 

 

 

  

 

 

 

 

 

  

 

II. BACKGROUND 

CARMS is the combination of cloud computing and remote 

sensing, which provide cloud aided remote sensing services to 

users through the Internet and Sensor or Sensing devices.  

Remote Sensing is ―a science of Acquiring, Processing and 

Interpreting Images and related data that are obtained from 

ground based, air-or space instruments [1], [16].‖ Further, 

Cloud Computing is ―Internet-based computing, whereby 

shared resources, software and information are provided to 

computers and other devices on-demand [2].‖ As shown in 

Fig. 1, CARMS can be simply divided into Cloud Computing 

and Remote Sensing. At its easiest it refers to an infrastructure 

where the data storage, data accessing and the data handing 

out happen inside or from the cloud. CARMS applications 

move the computing power and data storage away from 

sensory devices and into the cloud, bringing applications and 

CARMS computing to not just smart-sensing users but due to 

a much broader range of sensing subscribers.‖ This 

emphasizes that Remote Sensing benefits from Cloud 

Computing features-storage and data processing, also reveals 

a CARMS Services- moving part of the computation and the 

storage away from sensory devices.  Thus, CARMS can be 

defined as: ―An Infrastructure which provide Ubiquitous 

Computing with the help of Sensors, Clouds and Internet as a 

communication medium‖ 

In CARMS, the previous or conventional ways of 

collecting and processing sensory data have been transferred 

to cloud and thus the limitation of remote sensing have been 

Study and Analysis of Cloud Aided Remote Sensing 

Multiprocessing System (CARMS) with Task Allocation 

M. Zubair khan, Geeta Devi, and Yasser M. Alginahi 

International Journal of Future Computer and Communication, Vol. 5, No. 1, February 2016

47doi: 10.18178/ijfcc.2016.5.1.442

Manuscript received September 10, 2015; revised December 9, 2015.

M. Zubair Khan is with Taibah University, P.O. Box 344, Madinah, 

Saudi Arabia (e-mail: mkhanb@taibahu.edu.sa). 

Geeta Devi is with Invertis University Bareilly, India (e-mail:  

geetar01@gmail.com).

Yasser M. Alginahi is with Deanship of Academic Services, Taibah 

University, P.O. Box. 344, Madinah, Saudi Arabia (e-mail: 

yginahi@taibahu.edu.sa).

also.  The new technology CARMS emerged from the

combination of cloud computing and remote sensing. 

Therefore, CARMS can be viewed as an emerging technology 

that has great potential for enabling IOE (Internet of 

Everything) therefore enabling smart cloud services. And this 

technology is then provided to all the devices such as sensors 

of mobile devices, smart phones, portable terminal and so on, 

many of the applications have been developed which are 

using CARMS like Nimbits [1], Pachube Platform [2], Thing

Speak [3]-[15]. It will give rise to better remote sensing 

applications to the society, once it is successfully developed 

without any flaws. So, this paper presents an overview of 

CARS with the proposed task allocation algorithm.

The rest of this paper is organized as follows: Section II, 

gives introduction to CARMS; Section III discusses CARMS 

existing architecture; Section IV refers to the CARMS 

Services Models; Section V explains the proposed efficient 

task allocation algorithm and Section VI presents the 

performance appraisal of the proposed algorithm. Finally, 

Section VII concludes the paper. 



  

reduced, so the acquisition and processing mode of remote 

sensing applications have been totally changed. CARMS now 

enables: 

1) Distributed sensory data collection: Sensed data can be 

collected from the distributed environment at one place. 

2) Global resource and data sharing: Resources like sensors 

etc and sensed Information can be shared globally among 

the world. 

3) Remote and real time data access: Sensed data can be 

accessed and analyzed in real time from anywhere. 

4) Elastic resource provisioning and scaling: Where service 

users can provision and scale up and down their needed 

resources based on demand. 

5) Pay-as-you-go pricing models: where cloud users can 

request, release, and pay for resources whenever needed. 

 

 

+ 

 
Fig. 1. Cloud aided remote sensing architecture. 

 

 
Fig. 2. Architecture of CARMS. 

 

III. CARMS EXISTING ARCHITECTURE 

CARMS Architecture can be viewed as a geographically 

distributed platform that connects many billions of sensors 

and things and provides multitier layers of abstraction of 

sensors and sensor networks in Fig. 2. It has four main layers. 

 Fog Layer 

 Stratus Layer 

 Alto-Cumulus Layer 

 Cirrus Layer 

A. Fog Layer 

It encapsulates all physical objects, machines and anything 

that is equipped with computing, storage, networking, sensing 

and/or actuating resources, which can connect to, and be part 

of the Internet; for example: Smart Phones, Sensors, Vehicles 

etc. The sensory elements of this layer are those that collect 

and send raw sensed data to stratus layer or being pushed by 

fog layer to stratus layer.   

The Functions of fog layer are to provide: 

 Heterogeneous networking and communication 

infrastructures to connect billions of things. 

 Unique identification of all things through Internet 

Protocol Version 6 (IPV6). 

 Data aggregation points to serve as sensing clusters. 

B. Stratus Layer 

This is the second layer that consists of thousands of clouds 

whose main resources are sensory devices and SANS. Each 

Stratus cloud manages and acts as a liaison for a difficult 

group of SANS that share similar features, context, or 

properties. Stratus clouds are domain specific i.e. each cloud 

is very likely to be concerned with one application domain 

(e.g., Medical, environment, agriculture). 

The Functions of stratus layer includes: 

 Abstracting and virtualizing physical SANs through 

virtual network embedding (VNE) techniques. 
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 Handling and managing virtual SAN migration and 

portability across different clouds. 

 Managing and ensuring operations and functionalities of 

virtual SAN instances. 

 Enabling and managing (physical or virtual) SAN 

configuration to ensure network connectivity and 

coverage. 

 Controlling the layer‘s operations and functionalities to 

ensure that customer‘s service level agreements (SLAs) 

communicated from higher layers are met. 

This layer does not interact directly with CARMS 

customers, but serves them through requests received from 

higher layers. 

C. Alto-Cumulus Layer 

It is a middle layer that serves as a point of liaison between 

stratus and cirrus layers. It facilitates negotiations and SLA‘s 

between stratus and cirrus layers, and ensure that the agreed 

upon terms are not violated. An Alto-cumulus cloud may map 

to and organize multiple stratus clouds belonging to different 

domains. This enables inter-cloud resource sharing, thereby 

increasing resource elasticity and scaling. 

The major functions of this layer are: 

 Serving as a point of liaison between cirrus and stratus 

layer. 

 Enabling business and payment transactions between 

cirrus and stratus layers by providing two-way brokerage 

services. 

 Enabling and facilitating SLA negotiations between 

cirrus and stratus, and monitoring and ensuring that these 

SLAs are met. (Playing the role of Policy enforcement 

Agent). 

 Coordinating and facilitating inter-cloud interactions, 

data exchange, task migration and resource sharing 

across different stratus clouds. 

D. Cirrus Layer 

This is the highest layer in the CARMS architecture. Its 

main role is to interact with CARS service customers and 

satisfy their requests with the help of lower layer. This layer 

does not deal with resource virtualization nor does it need to 

know which cloud handles which resources. What it needs to 

do is just to communicate customer‘s requests specified via 

their SLA to alto-cumulus clouds. 

The Functions of this layer includes: 

 Acting as a customer‘s entry point to CARMS systems. 

 Allowing CARMS customers to set up their sensing task 

requirements and do whatever their chosen service 

model allows them to do (e.g., software configuration/ 

deployment). 

 Providing online applications for remote data analysis to 

be used by customers to visualize their data in real time. 

 

IV. CARMS SERVICE MODELS 

The main purposes of CARMS are to provide cloud 

customers with flexible access to data and sensing services, to 

allow them to develop their own domain-specific applications, 

and to allow clouds to share physical resources. Thus, the 

CARMS services are classified into three smart service 

models, which are analogous to Cloud Computing Service 

models: 

A. SAIaaS  

(Sensing and Actuating Infrastructure as a Service): In this 

design, Infrastructure provided are sensors or sensor networks. 

This model requires that physical sensor and SAN resources 

serve multiple sensing tasks concurrently. Customers can‘t 

make changes to physical resources (i.e., SANs & sensors), 

but have full control over their allocated virtual instances. 

B. SAPaaS  

(Sensing and Actuating Platform as a Service): In this 

model, CARMS customers are provided with a set of 

applications program interface (APIs) and libraries that they 

can use to develop their own sensing and actuating 

applications without worrying about the physical (SANs). 

These CARMS customers in this case, do have full control 

over their applications and can manage their resources, but 

they cannot alter any change in the physical or virtual 

infrastructure (e.g., shutdown a sensor, connect to another 

sensor, enable or deploy a new sensor etc). 

C. SDAaaS  

(Sensing Data and Analytics as a Service): Many practical 

applications need to have access and be able to process sensed 

data without needing to change anything in the physical 

sensors or in the virtual realization of SANs. CARS service 

customers using this service model, are only interested in the 

context in which sensed data is collected, its accuracy. 

 

V.  DESCRIPTION OF PROPOSED EFFICIENT TASK 

ALLOCATION ALGORITHM  

CARMS is an Internet based technology in which sensing 

data are stored and accessed from the cloud. These stored 

sensing data at cloud are shared among its various users based 

on the type of sensing services they require. As the number of 

users increases at Cirrus Layer, the task to be schedule also 

increases and the performance of the CARMS system 

depends on the scheduling algorithm used in task allocation. 

The better scheduling algorithm can utilize better executing 

competence and maintain the load balancing of the system. 

Many researchers have already put many efforts to develop 

workload prediction techniques for cloud computing with the 

objectives of balancing workloads across servers which 

increases server‘s utilization and/or reducing power 

consumption. However, not much research has been done 

when it comes to cloud-based remote sensing. As the 

complexity of scheduling and task allocation of number of 

tasks or requests from cirrus layer increases, the ability to find 

good allocations and scheduling algorithm become more 

prominent. So the task allocation algorithm should be used for 

balancing and allocating customer request loads to optimize 

CARMS performance. 

 

VI. CONTRIBUTION  

This part of our paper consists of a proposed Algorithm and 

its implementation.  
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A. Proposed ETA Algorithm 

A task that enters into the System is equipped with the 

following information number of tasks (T) with their modules 

(mi), number of processors (Pi) with their capacity IMCC 

(Inter Module Communication Cost): IMCC is a matrix which 

is used to represent the data communication between the 

modules during the execution and it can be calculated by 

calculating the amount of data transmitted from one module to 

another. Each entry of a IMCC between mi and mj of task T is 

represented by cij ), which can be calculated as:   

 

IMCC= (Communication between mi  on processor k and 

mj on processor l )* (distance between processor k and l) 

 

ETM (Execution Time Matrix): Matrix which determines 

the quantity of time taken by module to execute on a particular 

processor. And it depends on the capability or speed of the 

processor to which it is assigned and the amount of work to be 

performed by the module 

With these given information our objective is to find an 

assignment of modules to processors, in a cloud, for which 

possible schedule is likely to be found by finding a suitable 

clustering and assignment. 

Designing Algorithm for efficient task allocation models 

follows a number of systemic processes or steps which are as 

follows:  

1) Each Layer on CARMS system (DSCS) consist of 

different servers or clouds say Ci (i=1 to n) for different 

Layers which in turns consist of, or maintain ‗N’ list of 

Virtual Machines/Processors (which may varies 

according to the demand of the system) where each of 

them may have different capacity or same, which is 

represented by ‗M’.  

2) Each cloud maintains different types of queues for 

different types of tasks (or modules). As each cloud is 

domain specific. 

3) The users from different machines logs into the portal 

server at Cirrus Layer and send their request for different 

sensing services. These requests get collected into the 

Queue (Q) at Cirrus Layer. Let Q has ‗n’ number of task 

or request at time ‗t‘. 

4) Each task is transferred to further layers based on their 

type of sensing request.  

5) 5. For each Tj of the layer is divided into different 

modules ‗mi‘( i = 0 to n) and  

CLUSTER_OF_MODULES( );  //based on their IMCC 

will be Executed. 

6) Repeat (for all the Task say Tj in order).Then for cluster 

allocation the modules are assigned to the Pk based on the 

base case (Best Case, Average Case and Worst Case.  

Check if (Sij<=Mk) , where Sij is the size of mj of task Ti 

If true 

Assign modules of Cij to Processor Pk.   

7) Update processor table  

Mk= Mk – Sij  

//Mk is the available memory capacity of processor k  

// Sij is the size of cluster Cij of the task T and sort the Pk (by 

their capacity). 

8) Repeat step 6 //for each cluster Cij of Tj  

9) Repeat steps 5 to 7 // for each layer (Li)  

    Repeat until      

    Q = NULL. 

10) Compute:  

 Total Cost (TC) 

 Processor Utilization (PU) 

 Response Time (RT) 

 Average PU (APU) 

B. Implementation 

The application for the above algorithm is developed in C 

and the learning has been carried out by using few examples 

given below, to judge the performance of the algorithm. Here, 

we assume that the IMC matrices, the execution time matrices, 

no_of_ tasks , no_of_modules in each task, no_of_processor, 

capacity of processors and size of the modules are given for 

every module of each task in units of time. 

For example:   

1) Given a task T1, T2 and T3 with their modules and memory 

required (in MB) by each module. 

T1 = {m11 ( 4), m12 (5) , m13 (6)}  

T2 = {m21 (5), m22 (6), m23 (7), m24 (3), m25 (4)} 

T3 = {m31 (8), m32 (9), m33 (7)} 

2) Number of processors say P1, P2 and P3 with their 

Memory capacity say 100MB. 

3) IMCC for task T1 (Table I) and T2 (Table II). 
 

TABLE I: IMCC OF TASK T1 

 m11 m21 m31 

m11 0 5 3 

m21 5 1 2 

m31 3 2 1 

 

TABLE II: IMCC OF TASK T2 

   m21 m22 m23 m24 m25 

m21 0 7 9 5 11 

m22 7 0 13 15 5 

m23 9 13 0 7 13 

m24 5 15 7 0 17 

m25 11 5 13 17 0 

 

4) Execution time matrix of task T1 (Table III). 
 

TABLE III: EXECUTION TIME MATRIX OF TASK T1 

 p1 p2 p3 

m11 2 5 3 

m21 5 1 2 

m31 3 2 1 

 

Cluster formed for Task T1 is as 

C11  = {m11, m21}, Calculate the size of S11 = 4+6=10 

C12  = {m31}, Size of S12  = 9 

Then after executing the proposed algorithm the following 

result will be shown (Table IV): 
 

TABLE IV: EXECUTION RESULTS FOR PROPOSED ALGORITHM 

Processor (Pk) Memory 

Capacity (Mk) 

Modules 

Assigned 

Left 

Memory 

P1 100 m11, m21 90 

P2 100 m31 91 

      
Cluster formed for Task T2 is as 

C21  = {m24, m25}, Calculate the size of S21  = 3+4=7 
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C22  = {m22, m23}, Size of S22  = 6+7 = 13 

C23  = {m21}, Size of S23  = 5 

After executing the second task the final table is shown in 

Table V. 
 

TABLE V: RESULTS AFTER EXECUTING T2 

Processor (Pk) Memory 

Capacity(Mk) 

Modules Assigned Memory 

Left 

P1 100 m11, m21, m22, m23 77 

P2 100 m31, m24, m25, m21 79 

 
Table V, shows that how efficiently tasks are allocated and 

balanced load is obtained. 
 

TABLE VI: TOTAL COST AND RESPONSE TIME FOR EACH PROCESSOR 

Modules Processors PEC(k) IPCC(k) PEC(k)+ 

IPCC(k) 

m11, m21 P1 7 92 99 

m31 P2 3 70 73 

      
Table VI shows the total cost of each processor and the 

response time. The response time of the system in the above 

case is 99.   

The simulation of the proposed algorithm was carried out 

using MatLab.  

 

VII. PERFORMANCE EVALUATION 

For scheduling/task allocation scheme I have compared the 

algorithm results with the base case I have developed. In order 

to show the efficiency of the design, I have compared the task 

scheduling scheme with the base case. The measure, I have 

used for performance comparison is Response Time.  

The response time for increasing the number of tasks was 

found for the best case, the average case and the worst case. 

Fig. 3 shows the graph of Number of Tasks v/s Response 

Time (in sec) for proposed algorithm. In the best-case 

scenario, for the number of request the response time will not 

be affected. On the other hand when the number_of_tasks are 

more in worst case, we have taken the tasks with a higher 

frequency rate which causes the response time to increase 

rapidly. However, in average case, the response time for 

average case increases linearly with the number of tasks.  
 

 
Fig. 3. Number of tasks / response time for task allocation. 

 

VIII. CONCLUSION 

As CARMS is a vast and new phrase of this technological 

era, so there is a huge scope of improvement in this area. 

Therefore, this paper provides an overview of CARMS 

system, algorithm or technique that allows selecting efficient 

task allocation algorithm. The theoretical analysis and 

simulation results which have been done show that the 

proposed algorithm has better performance both in finding 

solution and response time. I believe that the modeling 

technique and the algorithm presented in this paper are 

general, effective, time and cost efficient thus are applicable 

to practical CARMS system. 
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