
  

 

Abstract—Keyword Spotting is a challenging task aiming at 

detecting the predefined keywords in utterances. In the low 

resource environment such as little keyword templates and the 

lack of linguistic information, the detection performance is 

always unsatisfactory. In this paper, we focus on the low 

resource situation where every keyword only has about 40 

templates and the linguistic information is unknown. We explore 

using deep neural networks for acoustic modeling. In addition, 

we investigate several techniques including transfer-learning, 

multilingual bottleneck features, balancing keyword filler data 

and data augmentation to address the low resource problem and 

improve the system's performance. Compared with a 

query-by-example baseline system, substantial performance 

improvement can be obtained with our proposed keyword 

spotting system with deep neural network (KWS-DNN) 

framework. 

 

Index Terms—Keyword spotting, DNN, acoustic model.  

 

I. INTRODUCTION 

Keyword Spotting aims at detecting given keywords in 

audio streams. It is often used on spoken document indexing 

and retrieval [1], spoken language understanding [2], and 

hands-free device wake-up interface [3]. For KWS task, there 

are three widely used methods: large vocabulary continuous 

speech recognition (LVCSR) based, query-by-example (QBE) 

based and keyword-filler based methods. 

The LVCSR based systems [4]-[6] focus on generating rich 

lattices and effective keyword indexing researching, and often 

have higher accuracy than keyword-filler based systems when 

the training data and prior info is sufficient. It is very powerful 

to search a large database of audio content offline. But 

sometimes to build a LVCSR system is too difficult and 

expensive. Because it requires sufficient language resources, 

including hundreds of hours of transcription and a reliable 

pronunciation dictionary. In many practical scenarios, where 

the language for detection is a minority language or even the 

language is unknown, it is impracticable to build such an 

LVCSR system for keyword spotting. 

The QBE based systems are often used in low resource 

environment. A typical QBE approach simply uses 

posteriorgrams as features and a dynamic time warping 

(DTW) algorithm is approached on this features to match 

keyword templates from test data [7]-[10]. It can be used in 
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extra-low resource situation where every keyword only has 

little templates. However, the performance quickly becomes 

saturated as the number of keyword templates increases. 

The keyword-filler based systems often train a 

discriminative detector to split test segments into two classes: 

keyword and filler. The keyword class contains all predefined 

keywords and the filler class contains one filler or multi-fillers 

which stand for silence, non-keyword filler and so on. 

In a real applicative low resource scenario, we are able to 

get and transcript dozens of templates for each keyword rather 

than one or two templates. So in this paper, we focus on this 

situation. We build a QBE-based system as baseline and focus 

on our proposed keyword spotting system with deep neural 

network (KWS-DNN) system. To train such a system, what 

we need are only the utterances containing keywords and the 

corresponding start-time and end-time information of the 

keywords. So, it is very flexible and needs little cost to apply 

online. 

To compensate for the lacking of training data, we have 

tried many methods. First, we use multilingual bottleneck 

(MBN) features to replace filter-bank (Fbank) features and try 

data augmentation method to "add data". We also try transfer 

leaning, which uses a well-trained deep neural network (DNN) 

model as a seed, and replace its output layer for our KWS 

mission. The results prove that the effect of the MBN feature 

and transfer learning method is very encouraging. However, 

the data augmentation method doesn't have a significant effect. 

Finally, recognition results of KWS-DNN system achieve 

huge improvement than baseline. 

Details of our proposed KWS-DNN system are described 

in Section II. In Section III, we introduce the QBE-based 

baseline. Experimental setup and results are presented in 

Section IV. Finally, conclusions are summarized in Section V.  

 

II. SYSTEM DESCRIPTION 

Like other machine learning tasks such as image 

identification and continuous speech recognition, the system 

performance of KWS relies heavily on training data and 

training methods. In LVCSR based system, an acoustic model 

can be well trained by hundreds of hours of transcription. The 

acoustic model can be a traditional gaussian mixture model or 

a neural network model. Using the well-trained acoustic 

model with a related language model, we can decode the test 

data and obtain rich lattice. Followed by an effective keyword 

research algorithm, the LVCSR based system can always have 

good performance. The LVCSR based system is a 

generalization task system, and decoding results are generated 

from the lattice which contains not only the pre-defined 

keywords but also the other words in dictionary. The 
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keywords are treated equally with other words, so once the 

lattice is generated we can search any word in the dictionary if 

we want. But in a more common and real application scenario, 

it is very difficult and unrealistic to get enough data to train an 

phone-based acoustic model and language model for the 

LVCSR system. 

In this paper, we just focus on the low resource 

environment, and we assume that getting a few training 

utterances containing keywords and their transcription info 

are practicable. We set the 40 as the number of each 

keyword's templates. Namely each keyword has about 40 

templates contained in the training utterances. It turns out to 

be reasonable and suitable. 

As for keyword-filler based systems [11]-[14], each 

keyword or filler unit has a corresponding generative 

GMM-HMM model. The keyword HMMs are represented by 

sub-word models such as mono-phone or tri-phone models 

and trained from a big transcribed dataset. And Filler HMMs 

are trained for absorbing not-keyword audio segments. There 

are several choices of filler models: single filler the set of 

mono-phone or tri-phone, words, and even a full LVCSR 

system [15]. At runtime, the system builds a Viterbi decoder 

to give recognition results. But in this low resource 

environment, it is always unsatisfactory to obtain a 

well-trained HMM for each keyword within about 40 

templates. Besides the Viterbi decoder need a little runtime 

computation. 

The QBE based method can be used in our low resource 

environment, but may have bottleneck and poor potential for 

further performance promotion. Because the QBE system is 

just taking an averaging among the templates when 

processing the multi-query situation. In this way, too much 

useful information contained in different templates is 

discarded. 

We use the specific data to train a acoustic DNN model 

followed by a posterior handling method producing 

recognition results which is similar to the system described in 

[3]. We also investigate several techniques including 

transfer-learning, multilingual bottleneck features, balancing 

keyword filler data and data augmentation to address the low 

resource problem and improve the system's performance. 

Details are presented in the following section. 
 

 
Fig. 1. KWS-DNN system. 

 

A. Basic KWS-DNN System 

In recent years, neural network has been used for KWS for 

acoustic modeling and feature extracting [3], [16]. In [3], a 

well-trained DNN followed with a posterior confidence score 

handling module is built to predict the keywords and has a 

substantial performance. In their work, they use a big training 

dataset called VS data. The VS data contains 3,000 hours of 

English training data and each keyword has about 2.3K 

templates. With the big training dataset and effective DNN 

acoustic modeling, this DNN-based framework outperforms 

the standard GMM-HMM based system. 
 

 
Fig. 2. Topology of the acoustic DNN. 

 

Though we don't have much training data, the using of 

neural networks is inspiring. We build our own keyword-filler 

based DNN KWS system and we call it KWS-DNN system as 

shown in Fig.1. We use the DNN instead of the conventional 

GMM for acoustic modeling. The topology of the acoustic 

DNN is shown in Fig.2, each keyword has one corresponding 

unit in the output layer of the DNN model, and we add some 

fillers for absorbing noise and non-keyword utterance 

segments. A posterior handling is followed to give 

recognition results which is the same as the posterior handling 

modules described in [3]. We also try some methods for 

further performance improvement. We will firstly describe 

our system from training and testing. 

At training, the inputs are utterances which contain 

keyword-fillers and their transcriptions. The transcriptions 

give the keyword boundary information and are used for 

keywords labeling. Before extracting utterance features, we 

implement a Voice Activity Detection (VAD) module to get 

boundaries of silence. The other parts of the utterance are 

labeled as non-keyword fillers. The Fbank feature is firstly 

extracted. With the Fbank features as inputs, the 

Bottleneck-Extractor produces bottleneck features. The 

Bottleneck-Extractor actually is a well-trained multi-layer 

forward propagation DNN acoustic model. With the training 

labels and bottleneck features, an acoustic DNN model for 

KWS is trained. 

At testing, the utterance is firstly processed by the same 

VAD module, and only active voice regions will be processed. 

Acoustic posterior score is computed by this DNN model 

from bottleneck feature for every frame. A posterior handling 

module is followed which combines the label posteriors into a 

confidence score to process recognition results. The 

recognition results contain the keywords and fillers, as well as 

their time stamp and confidence scores. 

B. Feature Extractor 
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There are several kinds of features that can be used: 

hand-designed features such as Fbank feature, PLP features, 

MFCC features, LPC features and data-driven features such 

as bottleneck features and LSTM features. Hand-designed 

features give the basic descriptions of the utterances from 

acoustic aspect. The LSTM feature extractor extracts a fixed 

dimensionality feature from a variable length audio segment 

[16]. Bottleneck features generated by a multi-layer 

perceptron (MLP) can be considered as a non-linear feature 

transformation and dimensionality reduction technique. They 

can extract useful information from multiple frames of the 

acoustic features and have been proved effective in improving 

the accuracy of ASR [17]. Motivated by this, we use 

multilingual bottleneck features for our KWS task. We 

believe that the robust feature which contains more useful 

information for phoneme classification can give performance 

improvement for our KWS task. 

C. Balance Keyword and Filler Data 

A highly unbalanced dataset is always a challenge for 

neural network training. In our task, it is also a problem where 

negative frames of filler segments are always hundreds of 

times over positive keywords frames. 

One way to balance fillers and keywords is to re-sample the 

training examples and keep the filler examples the same 

magnitude with the keyword examples. It's called re-sampling 

method. Down-sampling the fillers is a solution, but only 

using down-sampling isn't suitable. If we down-sample fillers, 

there will be little frames for training and we'll lose too much 

informative instances. Over-sampling is another re-sampling 

method which increases the number of keyword instances by 

over-sampling them. In this way, no information is lost from 

the training samples [18]. However, the minority keyword 

instances are over-represented in the training set, and 

moreover, adding training instances means increasing training 

time. 

Another way is to use weighted example method. This 

method gives positive and negative examples different 

weights to train our acoustic DNN model. While we train the 

DNN, the activation function is sigmoid and the related error 

function is common cross-entropy (CE), defined as Eq.1. We 

give different weighted CE error function shown in Eq.2. 

 

j

.logj jC d p                            (1) 

 

.logw j j

j

C w d p                            (2) 

where pj is the normalized output probability for state j, and dj 

is the label value. When the frame is labeled for state j, the 

value of dj is 1 otherwise is 0. Value w is the weight value. The 

weight value of positive keyword frames is 1, and weight 

value of negative filler frames is less than 1. 

Multiplied with each frame's back-propagate errors, the 

weight value can give different contribution to 

back-propagate errors of positive and negative instances, 

which means that when the training instance is negative it has 

less weight and opportunity to update the parameters of DNN 

model. Using the weighted example method, we can include 

more filler instances for training. 

In our experiment, we combine the down-sampling and 

weighted example methods. We firstly down-sample the 

negative examples and just keep fillers near positive 

keywords and try to control the negative examples that are 

dozens of times over positive examples, and then use 

weighted example method to train DNN. 

D. Transfer Leaning and Data Augmentation 

We also try transfer leaning and data augmentation 

methods. The transfer learning here refers to the situation 

where the KWS DNN parameters are initialized with the 

corresponding parameters of an existing well-trained network, 

and are not trained from [19], [20]. We firstly train a DNN 

model for speech recognition with a suitable topology using a 

big multilingual dataset, and then use this well-trained DNN 

model as a seed to initialize the hidden layers of our KWS 

network. We replace its output layer with our task-related 

output layer, and then all layers are updated during re-training. 

In this way, the hidden layers has potentiality to learn a better 

and more robust feature representation by exploiting larger 

amounts of data and avoiding bad local optima [19]. 

We also try data augmentation method. Namely we use 

transforms of the data as the input while preserving the labels. 

We explore two data argumentation methods including 

adding noise and vocal tract length perturbation (VTLP) data 

[21]. Four kinds of noise types (babble noise, pink noise, 

subway noise and white noise) and four VTLP warp factors 

(0.92, 0.96, 1.04 and 1.08) are used to generate augmentation 

dataset. We randomly choose part of augmentation dataset 

along with the raw dataset to be the whole training dataset. In 

our experiment, transfer leaning method is effective, but data 

augmentation method doesn't gain improvement. 

 

III. QBE-BASED BASELINE 

In the low resource environment, QBE-based approach is a 

simple and feasible solution for KWS task. It has advantage in 

extra-low resource environment where every keyword only 

has less than 5 templates. We use the QBE-based system as 

our baseline. 

Our baseline is similar as the system described in [22]. At 

training, phone posteriorgram feature vectors of keyword 

queries are extracted at frame-level. If a keyword has 

multi-queries, we align their feature vectors into the longest 

query of this keyword and get an averaged feature vector. And 

in running time, input audio document is firstly processed by a 

VAD module, and only active audio segments are retained for 

extracting features. A distance matrix is computed between 

audio segments and keywords, followed by a DTW matching 

procedure. A confidence score is then obtained from the 

DTW alignment cost. 

We train a DNN model for phoneme posteriorgram 

features extracting. The model has 5 hidden layers with 1024 

nodes for each layer and training data contains 700 hours of 

Mandarin Chinese and 700 hours of English data. The last 

layer of the DNN model contains 137 states for 39 English 

monophone, 96 Mandarin Chinese, silence and short-pause 

(sp). We use sigmoid as activation function and use stochastic 

gradient descent (SGD) to optimize the CE target.  
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IV. DATABASE AND RESULTS 

Use In this section, we will present our experimental 

settings and results. 

Our goal is to build a light-weighted KWS system under the 

low resource environment with little training data and no 

language information. To simulate this scenario, we use a 

small dataset collected by the Speech and Audio Technology 

Laboratory of Tsinghua University (THU-SATLab). This 

dataset contains about 40 hours of audios of Chinese. We 

choose 30 keywords and every keyword only has about 40 

queries. The testing audio is about 10 hours. 
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We firstly compare filter-bank (Fbank) with bottleneck 

feature. The results are listed in Tab.I. The Fbank feature used 

is a 120-dimensional feature vector containing 

40-dimensional Mel filter-bank feature and their first- and 

second-order derivatives. The Bottleneck feature is a 

256-dimensional vector extracted from a Bottleneck-DNN 

trained with 700 hours of English and 700 hours of Mandarin 

Chinese audios. In our experiment, we don't train a new 

phoneme posteriorgram feature extractor with bottleneck 

feature as input. Because we think the 1400-hour well-trained 

phoneme posteriorgram feature extractor has the same effect 

for extracting useful phoneme classification information 

while training.  KWS-DNN Down-Sampling in Table I, 

means that we down-sample the negative fillers and make sure 

they have the same magnitude frames with positive keywords. 

The acoustic DNN has 2 hidden layers with 256 nodes. The 

context window size is 11 and error function is CE. 
 

TABLE I: F1 VALUES (%) BY FBANK AND BOTTLENECK FEATURES 

Systems Fbank Bottleneck 

Baseline 5.76 - 

KWS-DNN Down-Sampling 8.27 26.86 

 

TABLE II: F1 VALUES (%) FOR KWS-DNN SYSTEM 

Systems Not use seed Use seed 

Down-Sampling and 

Weighted examples 
33.82 37.87 

Data Augmentation 33.15 37.81 

 

As shown in Table I, for Fbank feature, KWS-DNN 

Down-Sampling system's F1 value is better than QBE 

baseline. We think the reason for the performance 

improvement is that KWS-DNN system uses information of 

multi-queries more effective than baseline and QBE baseline 

loses much useful information while doing multi-queries 

averaging. 

The results of transfer leaning, balancing keyword and 

filler data, and data augmentation methods are shown in Table 

II. The seed DNN model for transfer leaning described in 

section above has 2 hidden layers and each hidden layer has 

256 nodes. For balancing keyword and filler data, we 

down-sample the negative filler examples and set the ratio of 

fill frames to keyword frames to about 15. The weight value w 

for weighted example method is 0.02. In the Table II, data 

augmentation is used on the base of down-sampling and 

weighted example method. 

 

V. CONCLUSION 

In this paper, we have proposed a KWS-DNN keyword 

spotting system. Experimental results show that the proposed 

framework outperforms QBE based system. Different kinds 

of methods are proposed to further improve the system's 

performance and we demonstrate that the using of bottleneck 

feature, down-sampling and weighted examples and transfer 

learning can improve the system's performance in our task.  
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