



Abstract—Semantic web services are broadly applied in

intelligent heterogeneous web. Particularly with the

development of the Internet of Things (IoT), countless internal

and external data are available which need web services to get

bundled and processed. For many proprietary organizations,

semantic service ontology or Universal Description, Discovery,

and Integration (UDDI) for Web Services Description

Language (WSDL) is designed to orchestrate services.

Annotation has been used as rules to create semantics ontology

or descriptive logic of execution schema for intelligent learning.

It is not flexible enough due to the reason that the current

annotation or BPEL-based process definitions are based on

context-related domain knowledge or QoS requirements. A

more flexible method for dynamic composition is needed to

address user' arbitrary requests. This paper is to propose a

context-free sequence-based method to automate the

composition of semantic web services. Its basic approach is to

collect bags of services which logic relation is defined by the

keywords of user query. Then the common services are found

and we use the subsequence algorithm to find a shortest path

from the connected services of two bags to fulfill the user query.

The found sequence of web services can be automatically

executed by the framework of Spring+RESTFul. The dynamic

web service composition is completed in an unsupervised way.

Index Terms—Subsequence, dynamic composition,

composition automation, semantic web service.

I. INTRODUCTION

Semantic web service is one of the solutions, which are to

annotate and offer semantics for web services to achieve the

interoperability between web services. The semantics is

defined in formal logic, graph theoretic methods or

BPEL-based process [1], etc., to meet the requirements of the

dynamic and changing queries requested by users. For

supervised and unsupervised learning, the automation is

either too complex or requires human intervene [2],

particularly in the area of service composition [3]-[5].

So this paper presents a new approach based on

subsequence to address the problem without relying on

BPEL. The rest of the paper is given in 6 sections. The

Section II describes the related works being done in the area

and the Section III is to detail the algorithm described in the

Section II. Then an implementation of eBay framework based

on Spring+RESTFul is given in the Section IV to use eBay

web services' WSDL to integrate RESTful to complete the

Manuscript received July 1, 2016; revised August 12, 2016. This work

was supported in part by Computer Science Department of Khon Kaen

University, Thailand.

The authors are with the Computer Science Department of Khon Kaen

University, Khon Kaen, 40000, Thailand (e-mail: liang_p@hotmail.com,

wongsar@kku.ac.th).

semantically composed processing in the Section V. Finally,

a conclusion in the Section VI is to summarize and explain

the issue addressed in the paper and future works to be done.

II. RELATED WORKS AND PROPOSED METHOD

Service orchestration has many methods for composition,

including model checking, semantics ontology and

entropy-based clustering, QoS-driven systems, etc., to

categorize web services, validate the functionality and

property of web services and then complete the composition

[3], [4], [6], [7]. These methods treat the service composition

as workflow or business processes. The pre-defined business

logic can be virtually automated through search paths or

business processes [8]. So the services are composed along

with the user's selection and direction, which means human

intervene, normally in advance.

This paper proposes a method for service orchestration and

takes the approach of combining the bag of set theory with

sub-sequence algorithm to automate the composition of

services for user query, which is unsupervised learning [9].

The proposal is applicable in a well-documented domain,

which means the services are well-defined by their

interface--input and output. Both input and output are defined

in XML schema within WSDL description

We are looking for a computable way to fulfill user query

with more intelligence and hopefully less human intervene.

This paper intends to tackle the issue by the algorithm as

below,

1) Based on user query, a user sequence of web services is

composed by the keywords as the input kin or output

kout and their logic relationship formed.

2) We first use MapReduce [10] to map eBay web services

to the pairs of key and value as

(k1<ConnectedWebService>,v1:keyword<String>).

The key is the connection of two web services. It means

that the second service has its input matched up with or

contained in the output of the first service. The value is

the user keyword. So each keyword has its bag of the

connected web services.

3) Then we need to reduce, we look into the (k1,v1) created

in the map function. The value v1 is a user keyword.

Now we allow the keywords to be the classifier to find

all the shortest paths from the input keywords kin to the

output keyword kout.

The next step is to look for the first common web service

between the paths. If the common web service requires the

input of two paths, the two paths join. Otherwise, the longer

one is discarded. If there is a subsequence that matches up

with the user sequence, then a possible service composition is

achieved.

Subsequence-Based Dynamic Web Service Composition

Ping Liang and Sartra Wongthanavasu

International Journal of Future Computer and Communication, Vol. 5, No. 4, August 2016

172doi: 10.18178/ijfcc.2016.5.4.466

mailto:liang_p@hotmail.com
mailto:wongsar@kku.ac.th

III. IMPLEMENTATION

A. Subsequence Generation

Using the eBay web services relationship, the algorithm is

as below. Mapreduce is used because Mapreduce can process

online data fast and also is able to be integrated with

Spring+RESTFul framework. Based on eBay web service

WSDL

(http://developer.ebay.com/webservices/latest/ebaysvc.wsdl),

we need to write the key and value for web service sequence

generation for map and reduce functions. As given in

Algorithm 1, the map function is to start with user query

keywords and eBay web services. To prepare for the input of

eBay web services, we modify the apireferencedocs

(http://developer.ebay.com/community/codebase/apireferenc

edocs/default.aspx) for Trading API to generate eBay web

services together. For simplicity, we limit to the fields

defined as "Required". They have the annotation of

"RequiredInput" in each "CallInfo" in eBaySvc.wsdl and are

easy to be identified. So we can get the inputs of the web

service list for the map function.

Starting from the input kin, the connection between web

services is established by finding out if there are any output

fields of one web service equal to or contained in another

one's input fields as in Algorithm 2. If the connection exists,

the pair of web services is recorded and the keyword kin is

assigned to this specific connection. The result of the map

function shall have the bags of the sequences of the

connected web services. The number of the bags as labelled

by the value v1 is the same as the number of the user query

keywords.

Algorithm 1: Mapping eBayWebService W to connected

eBayWebServices R

Input:

S = UserKeywords(String[]);

W = ListofeBayWS(eBayWS,

<InputList,OutputList>);

Output: R = BagsofMappedeBayWS(Collection,

UserKeyWord)

Collection c= new Collection(<firstWS,

secondWS>,equalInOut<String>)

WHILE {(i<S.size())}

keyword = s_i;

eBayWebService[] E = new eBayWebService[];

 WHILE {(j<W.size())}

 IF {si is contained in wj.InputList}

 E.add(w_j);

ENDIF

 ENDWHILE

 j=0;

 i=1;

 findBagofSequence(i,s_i,E,W,r_i);

context.write(r_i, s_i);

 ENDWHILE

The Algorithm 3 is the reduce function to find all the

shortest paths of subsequences from the input keyword to the

output. The paths must satisfy the logic relation of user

queries. As described in Section 3, the shortest paths from the

input kin to the output kout are generated by the map function.

Then the paths are reduced either by joining or discarding

depending on the logic relationship of the kin.

B. Service Composition

After using Mapreduce to quickly generate the shortest

sequences of the connected web serivce which also can

satisfy the logic relationship, we can apply the framework of

Spring+RESTFul. The MapReduce integrates web service

and the RESTFul is for user visualization. We use eBay Java

SDK for its Trading API to implement the sequence of the

web services. The linkage is realized by a chain of web

service calls, same as a chain of program sub-procedures. In

order to focus more on the idea of this paper, only GET

among RESTFul is implemented. The issue is that the web

services and their input and output are dynamic. So we keep

W which is a list of eBay Web Services - eBayWS,

<InputList,OutputList> and Collection of the connected web

services in the form of Collection(<firstService,

secondService>,equalInOut<String>). The output that

associates two web services must be ensured to be passed

correctly from the first service to the next one till the result is

achieved. The algorithm is given in Algorithm 4.

Algorithm 2: findBagsofSequence(i,s, E, W, R): Find the

bags of web services for each keyword

 WHILE {(i<E.size())}

 Collection c= new Collection(<firstWS,

 secondWS>,equalInOut<String>)

 eBayWebService[] EF = new

 eBayWebService[];

 WHILE {j<W.size()}

 IF {ei.Output is contained in wj}

 EF.add(w_j);

 c.add((e_i,w_j),e_i.Output;

 ENDIF

 ENDWHILE

 j=0;

 R.add(c, s); \\Recursion to find all the paths to generate

R;

 findBagsofSequence(i, s, ER, W, R);

 ENDWHILE

Algorithm 3: Reduce function

Input:

A = WSsequence(<sequence>[],keyword<String>);

SequenceArray<eBayWS> sequence=eBayWS()[];

kin = keyword for input

kout = keyword for output

WHILE{i<R.size()}

 WHILE{j<ri.size()

 sequence_i=findShortestPth(r_i,kin,kout);

 ENDWHILE

 j=0;

 A.add(sequence_i, kin);

ENDWHILE

WHILE{l<A.size()}

 as1 = al.sequencel;

International Journal of Future Computer and Communication, Vol. 5, No. 4, August 2016

173

 as2 = al.sequence(l+1);

 commonService =

 findFirstCommonService(as1,as2);

 ind1 = as1.commonService.index;

 ind2 = as2.commonService.index;

 IF{as1 (ind1-1).output != as2(ind2-1).output

 tempSequence = getSubsequence(as2,0,ind2);

 al.insert(tempSequence, ind1);

 ELSE

 minL=

finShortestPath(al.sequencel,al.sequence(l+1))

 al.delete(al.minL);

 ENDIF

ENDWHILE

Algorithm 4: Automatic composition of connected web

services ServiceComposition(A,W)

Object wsName, wsIn, wsOut;

wsIn = keyword for input;

WHILE{i<A.size()}

 Class<?> wsName = Class.forName(ai.firstWS);

 IF{wsName.OutputList != empty}

 wsOut = wsName(wsIn);

 ELSE

 exit();

 ENDIF

 wsName = Class.forName(ai.secondWS);

 IF{wsOut == ai.secondWS.OutputList}

 wsIn = wsOut;

 ELSE

 IF{wsOut contains

ai.secondWS.OutputList}

 fpath =

getSubfieldPath(ai.secondWS.OutputList);

 wsIn = wsOut.fpath;

 ENDIF

 ENDIF

ENDWHILE \\Note: A is the final composition of web

services

C. Spring + RESTFul Visualization

The sequence above is placed in Spring MVC + RESTFul

framework. A RESTFul structure is applied to get user

request and then display the response of the result generated

by the web service sequences.

@Path("generic")

public class GenericResource {

 SequenceComposition A;

 eBayWS W;

 @GET

 @Produces("text/html")

 public String getHtml(

 @QueryParam("Keyword") String Keyword,

 @QueryParam("Output") String Output) {

 return "<html><body><form

method=\"post\">

 Keyword:

 <input id=\"Keyword\"

name=\"Keyword\"/> "

 + "Output: <input id=\"Output\" \

name=\"Output\"/>

 <input type=\"submit\"/> " +

"</form></body></html>";

 }

 @POST

 @Produces("text/html")

 public String postHtml(@FormParam("Keyword")

String Keyword ,@FormParam("Output") String Output){

 String finalResult = Keyword + " "+ Output;

 //start hadoop mapreduce

 Job job = new Job(new Configuration());

 job.setJarByClass(WSJob.class);

 job.waitForCompletion(true);

 //eBay services composition

 Class<?> result = Class.forName(

 (ServiceComposition(A,W)));

 Field[] resultF = result.getFields();

 while(i<resultF.size()){

 finalResult += resultFi;

 }

 return "<html><body>"+finalResult+

 ="</body></html>";

 }

}

The complexity is composed by the map and reduce

function plus the service composition. The MapReduce

complexity includes the single-pair shortest path complexity,

recursion for reducing and the first common node among

sequences. The service composition is to search through

eBay web service structure to match up the input and output

of each web service. Based on that, the sequence of web

services can be called one after another automatically with

matched-up I/O. So we have the total complexity of our

method as below,

21
(* log) (*log)

2
O n m n n O n n  (1)

The single-pair shortest path complexity should be ≤1/2

of all-pair shortest path [11] because web services are scarce

and loose. This is due to the requirement of its design and

also to avoid a Non-deterministic Polynomial (NP)-hard

problem [7], [12];

The subsequence algorithm is not NP-hard problem as

long as there is no arbitrary number of inputs [13], [14]. And

we only need to compare the user query subsequence to the

available paths found one by one. So, for any two

subsequences, we have (N)
1

N
O n

ii



, N is the number of

the subsequences.

If there are m paths found, then we have

International Journal of Future Computer and Communication, Vol. 5, No. 4, August 2016

174

()
1

i

N
m O N n

i



 , M is the number of the paths of the

common services.

IV. COMPARISON WITH OTHER METHODS

As for the comparison to other methods, in the overview of

existing approaches in [1] it clearly indicates the advantages

and disadvantages of various approaches to tackle the

problem. This paper uses several open source BPEL-based

tools for service composition. The comparison with other

methods is given in Table I as below.

TABLE I: COMPARISON WITH EXISTING METHODS

Method &

Development
Pre-condition

Dynamic

Composition

Java Web Servlet

BPEL-supported process

definition in XML which is a

sequence of business tasks

No

Apache ODE &

Java Axis 2, JBI,

SMIX OSGi

BPEL-supported definition in

XML, WSDL, XSD which is a

sequence of business processes;

No

Orchestra & Java

Web Servlet with

Tomcat, JOnAS,

OSGi Felix

Process definition in

BPEL,XPDL which is a

sequence of business processes;

No

Method in this

paper

Java Web Servlet with

Spring+RESTFul User query

keywords

Yes

The method in this paper needs to read the static eBay

WSDL to prepare the web service description for the

establishment of the automatic composed sequence. It does

not pre-define any business processes as other methods do.

This becomes its advantage. The method in this paper only

implements the GET. The other RESTFull operations require

more user interaction, that is, further inputs. This may cause

the problems of sequence interruption or unexpected result.

V. CONCLUSION

This context-free composition of services is to ignore the

context-related knowledge and only follow the match-up of

keywords to simplify the search. It is fully automatic and

computable. However, the realization of the algorithm

depends on the standardization and normalization of the

annotation of service interface, like WSDL. In order to use

the method in wider range, e.g. the IoT, the fuzzy methods

must be introduced to clear up the ambiguity to correctly

gather a bag of connected services. Future works can

consider user preference and QoS in forming the sequence

for dynamic service composition.

ACKNOWLEDGMENT

Authors thank the support from Computer Science

Department, Khon Kaen University, Thailand.

REFERENCES

[1] P. Bartalos and M. Bielikov, “Automatic dynamic web service

composition: A survey and problem formalization,” Computing and

Informatics, vol. 30, pp. 793–827, 2011.

[2] F. Lécué, E. Silva, and L. F. Pires, “A framework for dynamic web

services composition,” Emerging Web Services Technology, vol. II,

Springer, 2008, pp. 59-75.

[3] H. Q. Yu and S. R. Marganiec. (2004). Semantic web services

composition via planning as model checking. [Online]. Available:

http://www.cs.le.ac.uk/people/hqy1/swsc_pamc1.0.pdf

[4] S. Dietze, N. Benn, J. Domingue, A. Conconi, and F. Cattaneo,

“Two-fold service matchmaking–Applying ontology mapping for

semantic web service discovery, the semantic web,” Lecture Notes in

Computer Science, vol. 5926, pp. 246-260, 2009.

[5] P. Shvaiko and J. Euzenat, “Ontology matching: State of the art and

future challenges,” IEEE Transaction on Knowledge and Data

Engineering, vol. 25, no. 1, pp. 158-176, 2013.

[6] E. M. Clarke, Jr. O. Grumberg, and D. A. Peled, Model Checking, US:

MIT Press, 1999.

[7] (2005). Semantic Web Services Ontology (SWSO). [Online]. Available:

http://www.w3.org/Submission/SWSF-SWSO/

[8] I. D. Pietro, F. Pagliarecci, L. Spalazzi, A. Marconi, and M. Pistore,

“Semantic web service selection at the process-level: The

eBay/Amazon/PayPal case study,” in Proc. 2008 IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent

Technology, 2008.

[9] D. S. Hirschberg, “Algorithms for the longest common subsequence

problem,” J. ACM, vol. 24, no. 4, pp. 664–675, 1977.

[10] Y. Mao, R. Morris, and Kaashoek, “Optimizing mapreduce for

multicore architectures,” Tech. Rep. MIT-CSAIL-TR-2010-020,

Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, 2010.

[11] C. Cooper, A. Frieze, K. Mehlhorn, and V. Priebe, “Average-case

complexity of shortest-paths problems in the vertex-potential model,”

Lecture Notes in Computer Science, vol. 1269, pp. 15-30, 1997.

[12] F. Harary, Graph Theory, Reading, MA: Addison-Wesley, 1994.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed., US: MIT Press and McGraw-Hill, 2001, pp.

350–355.

[14] D. Maier, “The complexity of some problems on subsequences and

supersequences,” J. ACM (ACM Press), vol. 25, no. 2, pp. 322–336,

1978.

Ping Liang received the M.Sc. degree in software

engineering from University of York, UK, in 2002

and is now a PhD student in computer science in

Khon Kaen Univeristy, Thailand. Her major

interests are in matching learning and artificial

intelligence. She is also a lecturer of Southwest

University for Nationalities in Chengdu, China. Her

research interests include text mining, information

fusion, and knowledge discovery.

Sartra Wongthanavasu received the B.Sc. degree

in mathematics from Khon Kaen University,

Thailand, in 1982, the M.S. degree in operations

research from National Institute of Development

Administration (NIDA), Thailand, in 1985 and M.S.

in computer science from Illinois Institute of

Technology (IIT), U.S.A., in 1996. He also received

the Ph.D. degree in computer science from Asian

Institute of Technology (AIT), Thailand, in 2001.

Currently, he is an associate professor in the Department of Computer

Science, Faculty of Science, Khon Kaen University, Thailand. His research

interests include machine learning, computer vision, cellular automata, and

knowledge engineering.

International Journal of Future Computer and Communication, Vol. 5, No. 4, August 2016

175

