

Abstract—String matching algorithms plays an important

role in many applications of computer science: in particular

searching, retrieving and processing of data. Various fields that

rely on computer science for computing and data processing

such as science, informatics (e.g. biology, medical, and

healthcare), statistics, image, video/signal processing and

computational aspect of business (e.g. finance, accounting, and

computer security) would benefit greatly from efficient data

search algorithm, in particular string matching. Any

applications involving the use of database would use string

matching algorithm. Many string matching algorithms such as

TBM (Turbo Boyer Moore), BMH (Boyer-Moore-Horspool),

BMHS (Boyer Moore Horspool Sundays, and BMHS2 (Boyer

Moore Horspool Sundays 2) were introduced based on the

celebrated BM (Boyer-Moore) algorithm considered to be one

of the early efficient string searching algorithms. Although

these algorithm offers significant performance improvement

over the BM algorithm, they were designed with the assumption

of single core computer architecture which executes the

algorithm in a serialized manner. Today,

multiple-core-processor computers are very common, and

applications are designed to process big data thanks to the

advanced in computing technology of various fields. High

performance computing system utilizing parallel and

distributed computing has started to become popular. This

work evaluates and compares the performance of the

aforementioned string matching algorithms in parallel and

distributed environment for high performance computing with

respect to that of the serialized single-core computing platform.

In this work, the variants of BM algorithms are implemented

and evaluated on Apache Spark, a popular distributed

computing platform, by executing a set of queries of different

search pattern lengths.

Index Terms—Apache spark, Boyer Moore, distributed

computing, string matching.

I. INTRODUCTION

String matching algorithms have been used greatly in

computing for various kinds of applications. One of the most

important applications is database query which is used

universally throughout the world for data processing and

management. Thanks to current technologies that have the

ability to collect more data than ever before, string matching

in big data could be a major bottleneck in many applications.

If not done efficiently, a typical database query using “LIKE”

Manuscript received January 9, 2017; revised March 19, 2017. This

research project was supported by the Faculty of Information and

Communication Technology, Mahidol University and the Integrative

Computational Bioscience Center, Mahidol University.

The authors are with Faculty of Information and Communication

Technology and Integrative Computational Bioscience Center, Mahidol

University, Thailand (e-mail: kunaphas.kon@gmail.com,

boonsit.yim@mahidol.ac.th).

command can take up to 10 minutes to search for a DNA

pattern in a regular human genome sequence data without

indexing. The “MATCH” command, recently added to

MySQL database server [1] relies on the hashing of the entire

words, but it is unable to search for patterns inside word

strings.

Thanks to the development of parallel and distributed

computing platform such as Hadoop and Apache Spark,

search queries could be performed quickly depending on the

number of nodes and resources of the nodes in the system.

However, parallel and distributed computing is still

considered a new concept and string matching algorithms

were not originally designed to directly support parallel and

distributed computing platform. Hence, we are interested in

finding out whether the performance of string matching

algorithms based on Boyer-Moore (BM) algorithm can

perform as same as we expect for single-core computing

environment.

This work contains 8 parts including introduction,

background, hypothesis, experiment setup, results and

discussion, conclusion, future work and acknowledgement.

II. BACKGROUND

In this paper, we consider five algorithms which are

efficient variants of BM algorithm. We briefly explain each

algorithm as follows:

A. Boyer-Moore (BM) Algorithm [2]

In contrary to the fundamental programming technique

that searches for matched string by comparing character at a

time from leftmost to rightmost position (brute-force) and

slide the comparison window forward one character at a time,

the BM algorithm compares characters in the comparison

window in reverse order (from rightmost to leftmost) of the

pattern. In addition, if a character mismatch is found during

the comparison, the comparison window will be shifted. In

order to determine shifting value when a mismatch or a

complete match occurs, it requires two pre-processing rules

which are “good suffix” and “bad character”. In

pre-processing phase for calculating bad character shifts, the

time complexity is O (m+σ), where σ is the size of the finite

character set relevant with pattern and text. The best case of

Boyer-Moore string matching time is O(n/m) compared to

the worst case which is O(mn) where m is the size of pattern

and n is the size of text to be searched.

Advantage: The combination of both good suffix and bad

character rule provides a good shift value.

Disadvantage: The preprocessing of Good suffix rule is

complex to Implement and understand. Bad character rule

On Performance Evaluation of BM-Based String Matching

Algorithms in Distributed Computing Environment

Kunaphas Kongkitimanon and Boonsit Yimwadsana

International Journal of Future Computer and Communication, Vol. 6, No. 1, March 2017

1doi: 10.18178/ijfcc.2017.6.1.479

mailto:kunaphas.kon@gmail.com

may produce small shift

B. Turbo Boyer Moore (TBM) [3]

TBM algorithm is a variation of the Boyer-Moore

algorithm. It remembers and recognizes the substrings of the

text that have already been matched against the pattern since

previous comparisons so that it will not compare the matched

substrings again for the next iteration. Then, TBM will just

compare the leftover characters of the pattern with the text to

be matched. TBM algorithm uses the same good suffix and

bad character rules as BM algorithm, but it requires an extra

space in order to remember the text that matched a suffix of

the pattern during the last attempt. The preprocessing phase

for calculating bad-character shifts can be performed in

O(m+n) time and space complexity. The searching phase is in

O(n) time complexity.

Advantage: It can sometimes perform a turbo-shift which

skips matched substrings found from previous comparison.

Disadvantage: Sometimes, TBM may produce small

pattern shift value because the turbo-shift is used only when a

good-suffix shift was performed [4].

C. Boyer Moore Horspool (BMH) [5]

BMH algorithm does not use the same shifting methods as

BM algorithm. It removes the good suffix rule because the

good suffix rule is not compatible with its search window

shifting approach. The BMH algorithm uses only the bad

character rule in order to maximize the length of the shifts by

ignoring the location of character-mismatch locations prior to

the last character of the pattern. The shift distance is

determined by first determining whether the rightmost

character in the text string region in the comparison window

appear in the pattern search string. If the last character is not

found in the pattern, the position of the pattern for the next

search iteration will be the length of the pattern. Otherwise,

the shift value will be the relative position of the matched

character in the pattern. Preprocessing time complexity is

O(m+n) and searching time complexity is O(mn)

Advantage: The concept of good suffix rule is removed so

that the algorithm can be implemented to support its basic

concept. In case of mismatch, the shift value is determined

by the bad character value of last character instead of

character that caused mismatch so more jump is archived.

Disadvantage: The removal of good-suffix sometimes

may not give the shift as much as that in BM

D. Boyer Moore Horspool Sunday (BMHS) [6], [7]

The basic idea of BMHS algorithm is to extend the BMH

algorithm by considering the next-to-last (next-to-rightmost)

character of the current text in the comparison window

(T[m+1], where m is the relative position to the first character

of the pattern in each comparison iteration) instead of

considering the last character of the current text in the

comparison window (T[m]). If the next-to-last character,

T[m+1], does not appear at all in the pattern, the shift value

for the comparison window is pattern length plus 1.

Otherwise, it calculates the shifts just like BM algorithm by

using the Bad suffix rule. This algorithm increases the shift

value by 1 compare to BMH algorithm.

Advantage: BMHS offers the current largest value of shift

value which is equal to pattern length plus one.

Disadvantage: Suppose the last character of the text in the

current comparison window aligning to the last character of

pattern is a mismatch, but next-to last character appears in the

pattern string, the shift value is larger in BMH algorithm than

in BMHS algorithm.

E. Boyer Moore Horspool Sunday 2 (BMHS2) [7], [8]

The idea of this algorithm is similar to BMHS that when a

single mismatch occurs at a position then the algorithm

considers the next-to-last character and last character of the

corresponding text, T[i+m+1] and T[i+m] respectively,

where m is the length of the pattern. The shift value for the

next pattern search position is calculated based on following

rules

1) If the current next-to-last character is not in the pattern,

right shift the pattern by m+1.

2) If the current next-to-last character occurs at the first

position of the pattern, right shift the pattern by m.

3) If the next-to-last character occurs at any position other

than the first position of pattern, then it will look at the

previous next-to-last character in the text to find out

whether this character appears in the pattern or not. If

the character is found in the pattern, the shift will be

determined according to the bad character rule.

Otherwise, the shift value is m+1, because it no longer

needs to compare anything else since the character of

previous next-to-last character does not appear together

with the next-to-last character. As a result, the whole

pattern will not be matched.

Advantage: This algorithm considers last character and

next-to-last character both so it combined advantages of both

BMH and BMHS.

Disadvantage: The overhead from character search

increases as we have to search two characters instead of just

one character in the case of BMH and BMHS in order to

determine the shift value.

F. Apache Spark [9], [10]

Apache Spark is a “big data” processing framework. It was

developed in 2009 at UC Berkeley’s AMP Lab. Apache

Spark is generally a lot faster than Hadoop MapReduce [10]

because of using in-memory data storage and the way its

processes the data . It processes “big data” on distributed data

collections calls RDD (resilient distributed dataset) which are

stored in distributed memory cluster. Spark holds

intermediate results in physical memory in contrast to

Hadoop which needs to write immediate results to disks and

then read updated data from the disks in order to perform the

next operation [11]. In some cases, Spark enables application

clusters to run up to 100 times faster than Hadoop

MapReduce, and 10 times faster even when running on disk

[12]. Spark also support many big data analytics and machine

learning applications such as GraphX, MLlib, and SQL.

However, Spark does not come with its own file management

system, so it needs to be integrated with others file

management system, for example HDFS (Hadoop

Distributed File System). Spark currently support three types

of cluster managers: standalone, Apache Mesos and Hadoop

YARN.

G. Running on a Cluster [13]-[15]

International Journal of Future Computer and Communication, Vol. 6, No. 1, March 2017

2

In distributed mode, Spark use a master/slave architecture

as shown in Fig. 1 with one central coordinator, Spark Driver,

and many distributed workers which call Spark Executors.

The driver and each of the executors run in their own Java

processes. Spark applications run processes on cluster

independently, and it worked in coordination with

SparkContext in the main program which call a driver

program as an application interpreter.

Fig. 1. The components of a distributed Spark application [13].

To run on cluster, an application is submitted to the cluster

via spark-submit command. Spark-submit launches the driver

program and invokes the main function specified by the user.

The driver program instantiates a SparkContext instance. The

SparkContext connects to the cluster manager in order to

allocate resources across cluster. The cluster manager starts

executors, which are processes that run computations and

store data for the application. Next, the driver performs two

duties; converting a user program into tasks and scheduling

tasks on executors. After finished, it sends application code

(work) to the executors in form of tasks. Executors compute

the tasks and save the results.

III. HYPOTHESIS

We believe that in distributed computing environment

(Apache Spark), the variants of BM-based algorithm may not

produce the same comparable performance that we observe

in single-core computing environment.

IV. EXPERIMENT SETUP

A. Experimental Environment and Datasets

All experiments were carried out in a cluster of CentOS

virtual machines consisting the maximum four slave nodes,

one driver program node and one master node. Each node

has 2 processing cores (Intel core i7-6700 @ 3.40 GHz) and 6

GB of physical memory assigned, thus the total number of

cores in the system is 12. The operating system for the cluster

is CentOS 7 running Apache Spark standalone cluster 2.0.0.

The datasets include the unbiased 1-GB dump text content

of Wikipedia [16] in XML format, and 3.2-GB HG19 Human

genome reference file [17].

B. Implementation

The BM-variant algorithms were implemented in Java.

Each algorithm accepted two parameters: text to be searched

and pattern. The codes were called by Apache Spark through

Scala programming interface. We defined the base Resilient

Distributed Datasets (RDD) from the external datasets which

we used as input. Next, we created the data map

transformation (as a part of Map-Reduce operation) by

passing the BM-variant algorithm codes in data map and

return the results in pair of line and pattern found. Then we

ran our Spark application under different scenarios as

follows:

For the 1-GB text data extracted from Wikipedia, we used

3 text patterns in different lengths which were “cat”,

“Thailand”, and “recommendations”. For the 1-GB human

genome data, we used 3 text patterns in different lengths

which were “TAT”, “TTTGCGGTAAG”, and
“AGAACGCAGAGACAAGGTTC”.

V. RESULT AND DISSCUSION

A. Experiment Results

Firstly, we tested the variants of BM algorithm by using

the following pattern sets: “cat, “Thailand” and

“recommendations” search against the 1-GB Wikipedia file.

We ran each algorithm for 5 times and collected the average

of the computing time under a single machine computing

environment as shown in Fig. 2.

Fig. 2. The computing time of variants of BM algorithm using common

English word patterns: “cat”, “Thailand”, and “recommendations” against

1-GB Wikipedia data.

Fig. 3. Computing times of the variants of BM algorithm using random DNA

sequence string “TAT”, “TTTGCGGTAAG” and

“AGAACGCAGAGACAAGGTTC” against 1-GB Human Genome data

According to Fig. 2, the performance of BMHS was the

best overall. This is due to its ability to perform the maximum

size of comparison-window shifts (the length of the pattern

plus one or m+1) on average as explained in Section II.

BMHS2 did not perform well even though it was claimed to

be an improvement over BMHS. We found that this is due to

its lack of preprocessing for bad character. It has to compute

International Journal of Future Computer and Communication, Vol. 6, No. 1, March 2017

3

the same bad character rule method every single time in order

to determine a pattern shift value. The performance of BMH

and BMHS are similar when the length of the pattern is large.

According to Fig. 3, all BM-variant algorithms performed

quite well for DNA data search using long-length patterns in

single machine environment. This is because all BM-variant

algorithms can take advantage of higher character matching

probability for bad character rule when the character space is

small (e.g., ‘A’, ‘T’, ‘G’, and ‘C’).

In distributed computing environment (Apache Spark),

according to Fig 4 the performance of BMHS was the worst,

and BMHS2 was the best among all BM-based variants. The

performance shown in Fig 4 was contrary to what we

expected.

Fig. 4. The computing times of variants of BM algorithms using common

English word patterns: “cat”, “Thailand”, and “recommendations” against

1-GB Wikipedia data in Apache Spark environment.

Fig. 5. The computing times of variants of BM algorithms using random

DNA sequence string “TAT”, “TTTGCGGTAAG” and

“AGAACGCAGAGACAAGGTTC” against 3.2-GB Human Genome data

in Apache Spark environment.

In Fig. 5, BMHS2 performed the best among variants of

BM algorithms. This is because its implementation does not

construct an array for bad character rule in preprocessing

stage in every Spark task. The construction of this array

requires large amount of extra space because of Spark

behavior on task distribution. An Apache Spark driver

program serializes a function and submits it to executors, and

then the executors will execute the code along with their own

partitions. The other BM-based variants except BMHS2 have

a preprocessing stage which calculates a shift value and store

in a bad character array. As a result, the preprocessing

overhead has to be performed for each task rather than one

single time at the start of the whole operation.

We investigated the computing environment and datasets

further in order to determine whether this surprising

performance is due to the characteristics of datasets (which

should not be any), how Apache Spark executed our codes

for BMHS, or how Apache Spark processed the datasets. We

found that the performance issue may be related to how

Apache Spark processed our datasets because Apache Spark

read the datasets one line at a time [18]. In addition, Apache

Spark waits until each node finishes computation for each

block of lines in order to aggregate the results before

continuing to process the next block. Hence, a large number

of ‘newline’ characters, ‘\n’, that a dataset contains, affects

the performance of Apache Spark. If each line contains short

text, BMHS will not be able to fully take advantages of their

large pattern shift value because the number of times that a

maximum shift (m+1) can occur is low.

We confirmed our explanation by running the experiments

excluding the ‘newline’ characters from the dataset in

different portions: 25, 50 and 75 percent. The performance

of the variants of BM-based algorithms is shown in Fig 6

Fig. 6. Computing times of the variants of BM algorithm on 8 cores by using

“Thailand” as a pattern search against different portions of ‘newline’ in

Apache Spark environment.

After we understood how ‘newline’ characters affect the

performance of Apache Spark and BM-based algorithms, we

completely clean our datasets and run the same experiment

again in different resource settings of Apache Spark. Fig 7

shows the performance of the variants of BM-based

algorithms on dataset with no ‘newline’ character in systems

with different number of processor cores.

Fig. 7. The computing times of variants of BM algorithms using common

English word patterns “Thailand” against 1-GB cleaned data (zero ‘newline’

character) of Wikipedia data in Apache Spark environment.

We observed that there is no performance difference

among all variants of BM-based algorithms in distributed

computing environment using Apache Spark when we

increase numbers of cores and use the dataset with no

‘newline’ character. This is because when the text is

transformed to contain only one single line, there is no

distributed computing process occurs. Apache Spark

International Journal of Future Computer and Communication, Vol. 6, No. 1, March 2017

4

distributes tasks one line at a time. If the data only contains

one single line, only one single node will process this entire

dataset. We confirmed this by monitoring the task and

executor characteristics using Apache Spark Web UI. The

results are shown in Table I.

TABLE I: THE TABLE SHOWS THAT ONLY ONE NODE EXECUTES THE

WHOLE DATA SET. (THIS RESULT GATHERED FROM TASK TABLE ON SPARK

WEB UI)

Executor ID Input size / Records

1 / 10.22.52.208 0.0 B / 0

0 / 10.22.52.206 0.0 B / 0

2 / 10.22.52.207 0.0 B / 0

3 / 10 .22.52.210 965.0 MB / 0

Moreover, when we submitted an application in Apache

Spark cluster mode, the Apache Spark driver had to

coordinate with workers and overall execution of tasks

frequently, so the performance of each algorithm is limited

by these actions in order to execute the task which is same as

how single machine execute a task (search the whole text file

without waiting command from driver like Apache Spark in

order to proceed next execution).

VI. CONCLUSION

This paper discussed and showed the performance of the

variants of BM-based algorithms on a single machine, and

the Apache Spark distributed computing environment in

cluster mode. The performance of the variants was we

expected according to the literature review described in

Section II. When we performed the experiments in Apache

Spark distributed computing environment, we found that

BMHS2 performed the best among other variants of BM

algorithms. Additionally, the number of ‘newline’ characters

greatly affect the performance of BMHS compare to other

variants due to the way that Apache Spark read the data and

process the code. After removing the ‘newline’ characters,

the performance of all variants of BM-based algorithms was

not significantly better than single machine and varied based

on the amount of resources given to the cluster nodes.

However, there is no performance difference among all

variants of the BM-based algorithms. It is important to note

that once the datasets are cleared of newline characters, all

BM-based variants perform almost the same in Apache Spark

distributed computing platform because only one single node

will be selected by the task schedule to determine when to run

the task. This is not true in single machine computing

platform whereas BMHS performs the best.

VII. FUTURE WORK

We will focus on improve variant BM algorithms to create

an algorithm that can run well in single-machine environment

and more efficiently on distributed computing environment

(e.g., Apache spark).

ACKNOWLEDGMENT

This research project was supported by Faculty of

Information and Communication Technology, Mahidol

University and the Integrative Computational Bioscience

Center, Mahidol University, Bangkok, Thailand.

REFERENCES

[1] Comparison of b-tree and hash indexes. [Online]. Available:

https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html

[2] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM , vol. 20, no. 10, pp. 762-772, 1977.

[3] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W.

Plandowski, and W. Rytter, “Speeding up two string matching

algorithms,” Algorithmica, vol. 12, pp. 247-267, 1994.

[4] C. Charras and T. Lecroq. Turbo-BM algorithm. [Online]. Available

http://www-igm.univ-mlv.fr/~lecroq/string/node15.html

[5] R. N. Horspool, “Practical fast searching in strings,” Software-Practice

and Experience, vol. 10, pp. 501-506, 1980.

[6] D. M. Sunday, “A very fast substring search algorithm,”

Communications of the ACM, vol. 33, no. 8, pp. 132-142, 1990.

[7] R. Choudhary, A. Rasool, and N. Khare, “Variation of Boyer-Moore

string matching,” International Journal of Computer Science and

Information Security, vol. 10, no. 2, pp. 95-101, 2012.

[8] L. Xie, G. Yue, and X. Liu, “Improved pattern matching algorithm of

BMHS,” in Proc. the 2010 Third International Symposium on

Information Science and Engineering, Washington DC, pp. 616-619,

Dec 2010.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” in Proc. the 2nd

USENIX Conference on Hot Topics in Cloud Computing, Boston, pp.

10-10, June 2010.

[10] S. Penchikala. (2015). Big data processing with apache spark. [Online].

Available: https://www.infoq.com/articles/apache-spark-introduction

[11] K. Noyes, “Five things you need to know about Hadoop vs. Apache

Spark,” IDG News Service, December 2015.

[12] Apache spark-lightning-fast cluster computing. [Online]. Available:

http://spark.apache.org/

[13] cluster-overview. [Online]. Available:

http://spark.apache.org/docs/latest/cluster-overview.html

[14] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark

Lightning-Fast Data Analysis, 1st Ed. O'Reilly Media, 2015 ch. 7, pp.

117-140.

[15] What are workers executors cores in spark standalone cluster. [Online].

Available:

http://stackoverflow.com/questions/32621990/what-are-workers-exec

utors-cores-in-spark-standalone-cluster

[16] M. Mahoney. (2011). Mattmahoney. [Online]. Available:

http://www.mattmahoney.net/dc/textdata.html

[17] K. R. Rosenbloom et al., “The UCSC genome browser database: 2015

update,” Nucleic Acids Research. vol. 43, pp. 670-681, Jan 2015.

[18] Apache Spark. Spark programming guide. [Online]. Available:

http://spark.apache.org/docs/latest/programming-guide.html

Kunaphas Kongkitimanon was born in Bangkok,

Thailand, in Nov. 1991. He received a bachelor of

science degree in information and communication

technology from the Faculty of Information and

Communication Technology, Mahidol University,

Bangkok, Thailand in 2013. Currently, he is a research

assistant in the Integrative Computational BioScience

Center, Mahidol University, Bangkok, Thailand and

pursuing a master of science degree in computer science from the Faculty of

Information and Communication Technology, Mahidol University.

Boonsit Yimwadsana was born in Bangkok, Thailand.

He received his bachelor, master and Ph.D. degree in

electrical engineering from Columbia University, New

York, NY, USA in 2000, 2001 and 2007 respectively.

Currently, he is working as a full-time faculty member

at the Faculty of Information and Communication

Technology, Mahidol University, Bangkok, Thailand

and a principal investigator and member of the

Integrative Computational Bioscience Center, Mahidol University, Bangkok,

Thailand. Asst. Prof. Boonsit Yimwadsana is a member of IEEE since 1998.

International Journal of Future Computer and Communication, Vol. 6, No. 1, March 2017

5

