
  

 

Abstract—String matching algorithms plays an important 

role in many applications of computer science: in particular 

searching, retrieving and processing of data.  Various fields that 

rely on computer science for computing and data processing 

such as science, informatics (e.g. biology, medical, and 

healthcare), statistics, image, video/signal processing and 

computational aspect of business (e.g. finance, accounting, and 

computer security) would benefit greatly from efficient data 

search algorithm, in particular string matching. Any 

applications involving the use of database would use string 

matching algorithm.  Many string matching algorithms such as 

TBM (Turbo Boyer Moore), BMH (Boyer-Moore-Horspool), 

BMHS (Boyer Moore Horspool Sundays, and BMHS2 (Boyer 

Moore Horspool Sundays 2) were introduced based on the 

celebrated BM (Boyer-Moore) algorithm considered to be one 

of the early efficient string searching algorithms. Although 

these algorithm offers significant performance improvement 

over the BM algorithm, they were designed with the assumption 

of single core computer architecture which executes the 

algorithm in a serialized manner. Today, 

multiple-core-processor computers are very common, and 

applications are designed to process big data thanks to the 

advanced in computing technology of various fields. High 

performance computing system utilizing parallel and 

distributed computing has started to become popular. This 

work evaluates and compares the performance of the 

aforementioned string matching algorithms in parallel and 

distributed environment for high performance computing with 

respect to that of the serialized single-core computing platform.  

In this work, the variants of BM algorithms are implemented 

and evaluated on Apache Spark, a popular distributed 

computing platform, by executing a set of queries of different 

search pattern lengths. 

 

Index Terms—Apache spark, Boyer Moore, distributed 

computing, string matching.  

 

I. INTRODUCTION 

String matching algorithms have been used greatly in 

computing for various kinds of applications.  One of the most 

important applications is database query which is used 

universally throughout the world for data processing and 

management.  Thanks to current technologies that have the 

ability to collect more data than ever before, string matching 

in big data could be a major bottleneck in many applications.  

If not done efficiently, a typical database query using “LIKE” 
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command can take up to 10 minutes to search for a DNA 

pattern in a regular human genome sequence data without 

indexing. The “MATCH” command, recently added to 

MySQL database server [1] relies on the hashing of the entire 

words, but it is unable to search for patterns inside word 

strings. 

Thanks to the development of parallel and distributed 

computing platform such as Hadoop and Apache Spark, 

search queries could be performed quickly depending on the 

number of nodes and resources of the nodes in the system.  

However, parallel and distributed computing is still 

considered a new concept and string matching algorithms 

were not originally designed to directly support parallel and 

distributed computing platform.  Hence, we are interested in 

finding out whether the performance of string matching 

algorithms based on Boyer-Moore (BM) algorithm can 

perform as same as we expect for single-core computing 

environment. 

This work contains 8 parts including introduction, 

background, hypothesis, experiment setup, results and 

discussion, conclusion, future work and acknowledgement. 

 

II. BACKGROUND 

In this paper, we consider five algorithms which are 

efficient variants of BM algorithm.  We briefly explain each 

algorithm as follows: 

A. Boyer-Moore (BM) Algorithm [2] 

In contrary to the fundamental programming technique 

that searches for matched string by comparing character at a 

time from leftmost to rightmost position (brute-force) and 

slide the comparison window forward one character at a time, 

the BM algorithm compares characters in the comparison 

window in reverse order (from rightmost to leftmost) of the 

pattern.  In addition, if a character mismatch is found during 

the comparison, the comparison window will be shifted.  In 

order to determine shifting value when a mismatch or a 

complete match occurs, it requires two pre-processing rules 

which are “good suffix” and “bad character”. In 

pre-processing phase for calculating bad character shifts, the 

time complexity is O (m+σ), where σ is the size of the finite 

character set relevant with pattern and text. The best case of 

Boyer-Moore string matching time is O(n/m) compared to 

the worst case which is O(mn) where m is the size of pattern 

and n is the size of text to be searched. 

Advantage: The combination of both good suffix and bad 

character rule provides a good shift value. 

Disadvantage: The preprocessing of Good suffix rule is 

complex to Implement and understand.  Bad character rule 
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may produce small shift 

B. Turbo Boyer Moore (TBM) [3]  

TBM algorithm is a variation of the Boyer-Moore 

algorithm. It remembers and recognizes the substrings of the 

text that have already been matched against the pattern since 

previous comparisons so that it will not compare the matched 

substrings again for the next iteration. Then, TBM will just 

compare the leftover characters of the pattern with the text to 

be matched.  TBM algorithm uses the same good suffix and 

bad character rules as BM algorithm, but it requires an extra 

space in order to remember the text that matched a suffix of 

the pattern during the last attempt. The preprocessing phase 

for calculating bad-character shifts can be performed in 

O(m+n) time and space complexity. The searching phase is in 

O(n) time complexity. 

Advantage: It can sometimes perform a turbo-shift which 

skips matched substrings found from previous comparison. 

Disadvantage: Sometimes, TBM may produce small 

pattern shift value because the turbo-shift is used only when a 

good-suffix shift was performed [4]. 

C. Boyer Moore Horspool (BMH) [5] 

BMH algorithm does not use the same shifting methods as 

BM algorithm. It removes the good suffix rule because the 

good suffix rule is not compatible with its search window 

shifting approach. The BMH algorithm uses only the bad 

character rule in order to maximize the length of the shifts by 

ignoring the location of character-mismatch locations prior to 

the last character of the pattern.  The shift distance is 

determined by first determining whether the rightmost 

character in the text string region in the comparison window 

appear in the pattern search string. If the last character is not 

found in the pattern, the position of the pattern for the next 

search iteration will be the length of the pattern.  Otherwise, 

the shift value will be the relative position of the matched 

character in the pattern.  Preprocessing time complexity is 

O(m+n) and searching time complexity is O(mn) 

Advantage: The concept of good suffix rule is removed so 

that the algorithm can be implemented to support its basic 

concept.  In case of mismatch, the shift value is determined 

by the bad character value of last character instead of 

character that caused mismatch so more jump is archived.  

Disadvantage: The removal of good-suffix sometimes 

may not give the shift as much as that in BM 

D. Boyer Moore Horspool Sunday (BMHS) [6], [7] 

The basic idea of BMHS algorithm is to extend the BMH 

algorithm by considering the next-to-last (next-to-rightmost) 

character of the current text in the comparison window 

(T[m+1], where m is the relative position to the first character 

of the pattern in each comparison iteration) instead of 

considering the last character of the current text in the 

comparison window (T[m]).  If the next-to-last character, 

T[m+1], does not appear at all in the pattern, the shift value 

for the comparison window is pattern length plus 1.  

Otherwise, it calculates the shifts just like BM algorithm by 

using the Bad suffix rule.  This algorithm increases the shift 

value by 1 compare to BMH algorithm. 

Advantage: BMHS offers the current largest value of shift 

value which is equal to pattern length plus one.  

Disadvantage: Suppose the last character of the text in the 

current comparison window aligning to the last character of 

pattern is a mismatch, but next-to last character appears in the 

pattern string, the shift value is larger in BMH algorithm than 

in BMHS algorithm. 

E. Boyer Moore Horspool Sunday 2 (BMHS2) [7], [8] 

The idea of this algorithm is similar to BMHS that when a 

single mismatch occurs at a position then the algorithm 

considers the next-to-last character and last character of the 

corresponding text, T[i+m+1] and T[i+m] respectively, 

where m is the length of the pattern. The shift value for the 

next pattern search position is calculated based on following 

rules  

1) If the current next-to-last character is not in the pattern, 

right shift the pattern by m+1. 

2) If the current next-to-last character occurs at the first 

position of the pattern, right shift the pattern by m. 

3) If the next-to-last character occurs at any position other 

than the first position of pattern, then it will look at the 

previous next-to-last character in the text to find out 

whether this character appears in the pattern or not.  If 

the character is found in the pattern, the shift will be 

determined according to the bad character rule.  

Otherwise, the shift value is m+1, because it no longer 

needs to compare anything else since the character of 

previous next-to-last character does not appear together 

with the next-to-last character. As a result, the whole 

pattern will not be matched.  

Advantage: This algorithm considers last character and 

next-to-last character both so it combined advantages of both 

BMH and BMHS. 

Disadvantage: The overhead from character search 

increases as we have to search two characters instead of just 

one character in the case of BMH and BMHS in order to 

determine the shift value. 

F. Apache Spark [9], [10] 

Apache Spark is a “big data” processing framework. It was 

developed in 2009 at UC Berkeley’s AMP Lab. Apache 

Spark is generally a lot faster than Hadoop MapReduce [10] 

because of using in-memory data storage and the way its 

processes the data . It processes “big data” on distributed data 

collections calls RDD (resilient distributed dataset) which are 

stored in distributed memory cluster. Spark holds 

intermediate results in physical memory in contrast to 

Hadoop which needs to write immediate results to disks and 

then read updated data from the disks in order to perform the 

next operation [11].  In some cases, Spark enables application 

clusters to run up to 100 times faster than Hadoop 

MapReduce, and 10 times faster even when running on disk 

[12]. Spark also support many big data analytics and machine 

learning applications such as GraphX, MLlib, and SQL. 

However, Spark does not come with its own file management 

system, so it needs to be integrated with others file 

management system, for example HDFS (Hadoop 

Distributed File System).  Spark currently support three types 

of cluster managers: standalone, Apache Mesos and Hadoop 

YARN. 

G. Running on a Cluster [13]-[15] 
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In distributed mode, Spark use a master/slave architecture 

as shown in Fig. 1 with one central coordinator, Spark Driver, 

and many distributed workers which call Spark Executors. 

The driver and each of the executors run in their own Java 

processes. Spark applications run processes on cluster 

independently, and it worked in coordination with 

SparkContext in the main program which call a driver 

program as an application interpreter. 
 

 
Fig. 1. The components of a distributed Spark application [13]. 

 

To run on cluster, an application is submitted to the cluster 

via spark-submit command. Spark-submit launches the driver 

program and invokes the main function specified by the user.  

The driver program instantiates a SparkContext instance. The 

SparkContext connects to the cluster manager in order to 

allocate resources across cluster. The cluster manager starts 

executors, which are processes that run computations and 

store data for the application. Next, the driver performs two 

duties; converting a user program into tasks and scheduling 

tasks on executors. After finished, it sends application code 

(work) to the executors in form of tasks. Executors compute 

the tasks and save the results. 

 

III. HYPOTHESIS 

We believe that in distributed computing environment 

(Apache Spark), the variants of BM-based algorithm may not 

produce the same comparable performance that we observe 

in single-core computing environment. 

 

IV. EXPERIMENT SETUP 

A. Experimental Environment and Datasets 

All experiments were carried out in a cluster of CentOS 

virtual machines consisting the maximum four slave nodes, 

one driver program node and one master node.  Each node 

has 2 processing cores (Intel core i7-6700 @ 3.40 GHz) and 6 

GB of physical memory assigned, thus the total number of 

cores in the system is 12. The operating system for the cluster 

is CentOS 7 running Apache Spark standalone cluster 2.0.0. 

The datasets include the unbiased 1-GB dump text content 

of Wikipedia [16] in XML format, and 3.2-GB HG19 Human 

genome reference file [17]. 

B. Implementation 

The BM-variant algorithms were implemented in Java.  

Each algorithm accepted two parameters: text to be searched 

and pattern.  The codes were called by Apache Spark through 

Scala programming interface.  We defined the base Resilient 

Distributed Datasets (RDD) from the external datasets which 

we used as input. Next, we created the data map 

transformation (as a part of Map-Reduce operation) by 

passing the BM-variant algorithm codes in data map and 

return the results in pair of line and pattern found. Then we 

ran our Spark application under different scenarios as 

follows: 

For the 1-GB text data extracted from Wikipedia, we used 

3 text patterns in different lengths which were “cat”, 

“Thailand”, and “recommendations”.  For the 1-GB human 

genome data, we used 3 text patterns in different lengths 

which were “TAT”, “TTTGCGGTAAG”, and 
“AGAACGCAGAGACAAGGTTC”. 

 

V. RESULT AND DISSCUSION 

A. Experiment Results 

Firstly, we tested the variants of BM algorithm by using 

the following pattern sets: “cat, “Thailand” and 

“recommendations” search against the 1-GB Wikipedia file. 

We ran each algorithm for 5 times and collected the average 

of the computing time under a single machine computing 

environment as shown in Fig. 2. 
 

 
Fig. 2. The computing time of variants of BM algorithm using common 

English word patterns: “cat”, “Thailand”, and “recommendations” against 

1-GB Wikipedia data. 

 

 

 
Fig. 3. Computing times of the variants of BM algorithm using random DNA 

sequence string “TAT”, “TTTGCGGTAAG” and 

“AGAACGCAGAGACAAGGTTC” against 1-GB Human Genome data 

 

According to Fig. 2, the performance of BMHS was the 

best overall. This is due to its ability to perform the maximum 

size of comparison-window shifts (the length of the pattern 

plus one or m+1) on average as explained in Section II.  

BMHS2 did not perform well even though it was claimed to 

be an improvement over BMHS.  We found that this is due to 

its lack of preprocessing for bad character. It has to compute 
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the same bad character rule method every single time in order 

to determine a pattern shift value. The performance of BMH 

and BMHS are similar when the length of the pattern is large. 

According to Fig. 3, all BM-variant algorithms performed 

quite well for DNA data search using long-length patterns in 

single machine environment.  This is because all BM-variant 

algorithms can take advantage of higher character matching 

probability for bad character rule when the character space is 

small (e.g., ‘A’, ‘T’, ‘G’, and ‘C’).   

In distributed computing environment (Apache Spark), 

according to Fig 4 the performance of BMHS was the worst, 

and BMHS2 was the best among all BM-based variants. The 

performance shown in Fig 4 was contrary to what we 

expected.   
 

 
Fig. 4. The computing times of variants of BM algorithms using common 

English word patterns: “cat”, “Thailand”, and “recommendations” against 

1-GB Wikipedia data in Apache Spark environment. 

 

 
Fig. 5. The computing times of variants of BM algorithms using random 

DNA sequence string “TAT”, “TTTGCGGTAAG” and 

“AGAACGCAGAGACAAGGTTC” against 3.2-GB Human Genome data 

in Apache Spark environment. 

 

In Fig. 5, BMHS2 performed the best among variants of 

BM algorithms.  This is because its implementation does not 

construct an array for bad character rule in preprocessing 

stage in every Spark task.  The construction of this array 

requires large amount of extra space because of Spark 

behavior on task distribution.  An Apache Spark driver 

program serializes a function and submits it to executors, and 

then the executors will execute the code along with their own 

partitions. The other BM-based variants except BMHS2 have 

a preprocessing stage which calculates a shift value and store 

in a bad character array. As a result, the preprocessing 

overhead has to be performed for each task rather than one 

single time at the start of the whole operation. 

We investigated the computing environment and datasets 

further in order to determine whether this surprising 

performance is due to the characteristics of datasets (which 

should not be any), how Apache Spark executed our codes 

for BMHS, or how Apache Spark processed the datasets. We 

found that the performance issue may be related to how 

Apache Spark processed our datasets because Apache Spark 

read the datasets one line at a time [18]. In addition, Apache 

Spark waits until each node finishes computation for each 

block of lines in order to aggregate the results before 

continuing to process the next block.  Hence, a large number 

of ‘newline’ characters, ‘\n’, that a dataset contains, affects 

the performance of Apache Spark.  If each line contains short 

text, BMHS will not be able to fully take advantages of their 

large pattern shift value because the number of times that a 

maximum shift (m+1) can occur is low. 

We confirmed our explanation by running the experiments 

excluding the ‘newline’ characters from the dataset in 

different portions: 25, 50 and 75 percent.  The performance 

of the variants of BM-based algorithms is shown in Fig 6 
 

 
Fig. 6. Computing times of the variants of BM algorithm on 8 cores by using 

“Thailand” as a pattern search against different portions of ‘newline’ in 

Apache Spark environment. 

 

After we understood how ‘newline’ characters affect the 

performance of Apache Spark and BM-based algorithms, we 

completely clean our datasets and run the same experiment 

again in different resource settings of Apache Spark. Fig 7 

shows the performance of the variants of BM-based 

algorithms on dataset with no ‘newline’ character in systems 

with different number of processor cores. 
 

 
Fig. 7. The computing times of variants of BM algorithms using common 

English word patterns “Thailand” against 1-GB cleaned data (zero ‘newline’ 

character) of Wikipedia data in Apache Spark environment. 

 

We observed that there is no performance difference 

among all variants of BM-based algorithms in distributed 

computing environment using Apache Spark when we 

increase numbers of cores and use the dataset with no 

‘newline’ character.  This is because when the text is 

transformed to contain only one single line, there is no 

distributed computing process occurs. Apache Spark 
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distributes tasks one line at a time.  If the data only contains 

one single line, only one single node will process this entire 

dataset.  We confirmed this by monitoring the task and 

executor characteristics using Apache Spark Web UI. The 

results are shown in Table I.  
 

TABLE I: THE TABLE SHOWS THAT ONLY ONE NODE EXECUTES THE 

WHOLE DATA SET. (THIS RESULT GATHERED FROM TASK TABLE ON SPARK 

WEB UI) 

Executor ID Input size / Records 

1 / 10.22.52.208 0.0 B / 0 

0 / 10.22.52.206 0.0 B / 0 

2 / 10.22.52.207 0.0 B / 0 

3 / 10 .22.52.210 965.0 MB / 0 

 

Moreover, when we submitted an application in Apache 

Spark cluster mode, the Apache Spark driver had to 

coordinate with workers and overall execution of tasks 

frequently, so the performance of each algorithm is limited 

by these actions in order to execute the task which is same as 

how single machine execute a task (search the whole text file 

without waiting command from driver like Apache Spark in 

order to proceed next execution).  

 

VI. CONCLUSION 

This paper discussed and showed the performance of the 

variants of BM-based algorithms on a single machine, and 

the Apache Spark distributed computing environment in 

cluster mode.  The performance of the variants was we 

expected according to the literature review described in 

Section II.  When we performed the experiments in Apache 

Spark distributed computing environment, we found that 

BMHS2 performed the best among other variants of BM 

algorithms. Additionally, the number of ‘newline’ characters 

greatly affect the performance of BMHS compare to other 

variants due to the way that Apache Spark read the data and 

process the code.  After removing the ‘newline’ characters, 

the performance of all variants of BM-based algorithms was 

not significantly better than single machine and varied based 

on the amount of resources given to the cluster nodes. 

However, there is no performance difference among all 

variants of the BM-based algorithms.  It is important to note 

that once the datasets are cleared of newline characters, all 

BM-based variants perform almost the same in Apache Spark 

distributed computing platform because only one single node 

will be selected by the task schedule to determine when to run 

the task.  This is not true in single machine computing 

platform whereas BMHS performs the best. 

 

VII. FUTURE WORK 

We will focus on improve variant BM algorithms to create 

an algorithm that can run well in single-machine environment 

and more efficiently on distributed computing environment 

(e.g., Apache spark). 
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